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Abstract The population vector code relates directional
tuning of single cells and global, directional motion inci-
ted by an assembly of neurons. In this paper three things
are done. First, we analyze the population vector code as
a purely geometric construct, focusing attention on its uni-
versality. Second, we generalize the algorithm on the basis
of its geometrical realization so that the same construct that
responds to sensation can function as an actuator for beha-
vioral output. Third, we suggest at least a partial answer to
the question of what many maps, neuronal representations
of the outside sensory world in space–time, are good for:
encoding vectorial input they enable a direct realization of
the population vector code.

Keywords Assembly · Population · Population vector ·
Population vector code · Muscles · Actuator

1 Introduction

When an animal “observes” a stimulus, viz., predator, prey,
or conspecific, moving in space–time its neuronal processing
can be decomposed into at least three components. First, sti-
mulus action has to be observed physically by detectors such
as retinal or infrared cells, or mechanosensory cells in the
auditory or lateral-line system in passive localization. Alter-
natively, there is active localization as performed by bats,
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blind Mexican cave fish, or weakly electric fish. The ensuing
neuronal action leads to object formation and localization.
The neuronal “object” is to characterize the stimulus in terms
of the sensorty modality/ies involved whereas “localization”
is performed through a map, a neuronal representation of the
outside sensory world (van Hemmen 2006). Both passive and
active detection constitute action in space–time, i.e., space
and time—in agreement with the spatio-temporal nature of
their input.

Second, the map or several maps arising from sensory
input is, or are, transformed into some representation that can
be acted on by the motor system. We will skip multisensory
integration, exciting as it may be.

Third, and finally, the motor system expresses behavior
as an “actuator” and generates an output through muscular
action. This is what we focus on first.

Signs of the fascinating actuator in this story were dis-
covered in the mid eighties of last century in the activity
of motor cortical neurons (Georgopoulos et al. 1982, 1983,
1986). The underlying geometric idea is appealingly simple
and its predictions are extremely powerful. Let us assign to
each neuron with label i its preferred direction ei , a unit vec-
tor. For an assembly (Hebb 1949) or population of motor
neurons {1 ≤ i ≤ N } with momentary firing rate νi the
weighted vector sum, the so-called population vector n,

n := νe =
N∑

i=1

νi ei (1)

encodes the direction e of movement resulting from an assem-
bly of motor neurons while ν, the length of the population
vector n, is proportional to the instantaneous speed of the
drawing motion we focus on. In passing we note that the ins-
tantaneous firing rate νi measures the momentary activity of
neuron i .
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Fig. 1 Calculation of population vectors. Top row The preferred direc-
tion of each cell is found from the so-called center → out task. Rasters
show when the cell fired relative to movement onset (long tick is move-
ment onset, one row of tick marks for each trial, horizontal axis is time
aligned to movement onset, rasters arranged by movement direction). A
unit vector represents the cell’s preferred direction. Middle row In this
example, the monkey drew a sinusoid and the activity of the recorded
neuron was highly modulated, increasing its discharge rate every time
the finger movement moved downward. The rates are plotted in the his-
togram on the left, the rate in each bin is used to weight the cell vector
pointing in the preferred direction. A weighted cell vector is calculated
for each bin. The small arrow marks the first bin. Bottom row The first
weighted cell vector from the example cell is represented by the arrow
in the cluster on the left pointing in bottom-left direction. The same
experiment is carried out hundreds of times while recording from dif-
ferent cells. Each of those cells also contributes a weighted cell vector
(black vectors, here simple lines, in cluster). These are all summed to
produce the population vector (big arrow). This represents the trajec-
tory in the first bin of the movement as shown by the neural trajectory
on the right which is constructed by adding population vectors from
subsequent bins tip-to-tail

The above statements are purely experimental facts and
we accept them as constituting a natural law, which simply
means a mathematical formulation of experimental findings
that is known under the name of ‘population vector code’
or as we prefer to call it, the ‘population vector algorithm’;
see Fig. 1 for an experimental illustration. It is a very potent
algorithm, indicating how a movement, even a continuous
one, can be represented by an assembly of neurons. That is,
we accept it as such and do not attempt at all to derive it.
In a sense, we see the population vector algorithm (PVA)
as a general principle describing movement representation.
However the brain really works, it must contain properties
that allow us to make good predictions using the algorithm

embodied in the population vector. There is no physical ins-
tantiation of the population vector per se. This would require
a summing node that is unlikely to exist. The summation pro-
bably does not happen until all the muscles contract in their
special way to move the limb.

Assembly and population codes have long histories.
Donald Hebb in his classic The organization of behavior
(Hebb 1949) was the first to stress the relevance of what he
called an ‘assembly’ of neurons to encode or decode infor-
mation. As for the population vector code, there are many
references, some interesting, some learned, some mathema-
tically challenging, but nearly all focusing on the statistics of
the population. We refer to a few (Salinas and Abbott 1994;
Lewis 1999; Averbeck et al. 2006) for an extensive overview
incl. references, and focus here on the geometrical nature
of the population vector algorithm and the function of the
population in generating motor behavior.

In the next section, we treat the population vector algo-
rithm proper. We then analyze and generalize its role as neu-
ronal actuator, and finish our essay by suggesting an at least
partial answer to one out of a collection of 23 key problems in
systems neuroscience (van Hemmen and Sejnowski 2006):
What is a neuronal map good for?

2 Population vector algorithm generating motion

Cosine tuning of individual neuronal responses is the basic
factor underlying the success of the population vector
algorithm (PVA); see Fig. 2. In the original discovery
(Georgopoulos et al. 1982), monkeys moved their arms from
the center of a surface to eight targets evenly spaced in a
circle around the start position. The modulation of neuronal
activity recorded from the motor cortex in this task was spe-
cific to the direction of the reach. Neurons tended to fire at
some maximal rate in a single direction (preferred direction)
and fire at progressively lower rates at larger angles away
from this. Tuning functions were constructed by plotting the
average discharge rate to each target against the direction of
the target from the center start position. These data were fit
with a simple multiple regression model expressed as a cosine
function between direction and discharge rate; we call this fit
cosine tuning. Most of the motor-cortical neurons recorded
in this task had tuning functions that were significantly fit by
a cosine.

The cosine functions have a period of 2π , suggesting that
these neurons are modulated by all movement directions.
Conversely, during every movement, most of the neurons
in the motor cortex are modulated simultaneously. A large
population of neurons is active at the same time throughout all
movements. Furthermore, for the cosine function itself there
is a nice hindsight argument based on Fisher information
(Zhang and Sejnowski 1999).
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Fig. 2 Cosine tuning function. Discharge rate versus movement direc-
tion in the center-out task. The rate of an individual neuron (normalized,
min = 0, max = 1). Movement direction is the angle from the cell’s
preferred direction (the movement direction with the highest discharge
rate). Data are mean and standard deviation of discharge rates from five
trials of movements to each of eight targets. The cosine function was fit
by a linear regression of the direction to the firing rate for the experiment
of Fig. 1, top row

Decoding, in this context, can be defined as a mapping
between neuronal activity and movement direction. Although
tuning functions of individual cells provide this mapping,
they function poorly as a decoding device. Each discharge
rate corresponds to two points (and two directions) on the
tuning curve. In addition, the discharge rates used for this
mapping are noisy so that there is a large uncertainty in this
mapping.

The solution for decoding lies in the consideration of a
population or, as Hebb (1949) called it, an assembly of neuro-
nal responses. Georgopoulos et al. (1984) developed the PVA
as a way of extracting movement direction from a population
of tuned neurons. Each neuron’s contribution was represen-
ted as a vector oriented in that cell’s preferred direction. The
vector’s length was proportional to the mean firing rate of the
neuron during movement to the target under consideration.
Contributions from the recorded population of tuned neurons
were added together vectorially and the resultant popula-
tion vector pointed in and predicted the movement direction;
cf. Eq. (1). As is illustrated by Fig. 3, his algorithm was
subsequently extended to three dimensions (Georgopoulos
et al. 1986, 1988; Schwartz et al. 1988), drawing movements
(Schwartz 1994), and prosthetic control (Taylor et al. 2002).
Population vectors continuously represent the instantaneous
velocity of e.g. the hand and this allows for an isomorphic
extraction of the arm’s trajectory from cortical activity.

The success of the population vector algorithm depen-
ded on two major factors: the cosine-like behavior of indi-
vidual neurons and the uniformity of the preferred direction

Fig. 3 3-Dimensional tuning function. This shows what a tuning func-
tion looks like in three-dimensional Cartesian space. The origin is at the
dimple on the upper right side of the volume. The distance from the ori-
gin to the shell in the direction of movement is proportional to the firing
rate of a cosine-tuned neuron. The vector emerging from the bottom is
pointing in the cell’s preferred direction

distribution across the population (Seung and Sompolinsky
1993; Salinas and Abbott 1994) in a great variety of sys-
tems such as spinocerebellar neurons (Bosco and Poppele
1993), the superior colliculus (Kutz et al. 1997), cerebellum
(Johnson and Ebner 2000), basal ganglia (Turner and Ander-
son 1997), and parietal cortex (Kalaska et al. 1983; Motter
et al. 1987). One idea about this robust representation is that
the cosine function may be representative of correlation. The
similarity between two vectors of arbitrary dimensionality is
proportional to the cosine of the angle between them. The
cosine-like tuning of these many neurons may be indicative
of the way inputs to these cells are combined and/or the ope-
ration being performed on them.

One goal of cortical neurophysiologists is to identify and
describe the mechanics of a cortical ‘operation’ (Mountcastle
1998). Generation of cosine tuning functions may be more
intermediate since cosine tuning is prevalent throughout the
motor system. Transformation of inputs to cells that are sinu-
soidally tuned, could be straightforward in terms of correla-
tion to cosine-like output. The cortical operation concept may
be broadened to include the sort of transformations that take
place in the generation of volitional movement.

An example of this is the mapping between coordinate sys-
tems (Pellionisz 1988; Helms Tillery et al. 1991; Soechting
and Flanders 1991b) and the fact that muscles must act across
joints. It has generated a lot of controversy that still per-
sists (Schwartz 2007). However, even though there are more
degrees of freedom in the intrinsic space, arm movements
are generated with strategies that link multiple joints toge-
ther (Soechting 1989; Soechting and Flanders 1991a). When
cortical activity regression was compared to models based on
hand velocity (extrinsic) and joint angular velocity (intrinsic),
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both models appeared to be equally valid, showing that both
coordinate frames were correlated (Reina et al. 2001). Gene-
rating movement based on correlation between reference
frames is an efficient strategy that would obviate explicit
transformation. Of course, this process is not limited to the
cortex and likely spans the entire neuroaxis, a concept that
matches the finding of wide-spread cosine tuning.

3 Population vector algorithm as neuronal actuator

A natural question therefore is: does the above algorithm
hold only for motor systems or is it a more general geo-
metrical procedure to mathematically describe how animals
move in space and time? Here we will argue that there is a
lot of evidence pointing exactly in this direction. That is to
say, the population vector algorithm is effectively a neuro-
nal actuator transforming neuronal activity into action. We
will illustrate our general statement through a detailed ana-
lysis of the neurobiology of the sand scorpion’s detection
and response to prey, an example so simple that it allows
a full comprehension of all computational steps. In addi-
tion, we will show that the back swimmer’s prey localization
can be described by the very same algorithm, in this way
underlining its universality. Finally, one may already have
wondered where the apparently omnipresent cosine tuning
discussed in the previous section comes from. As we will see
through the concrete example of the sand scorpion, cosine
tuning is a consequence of neuronal interaction and finds a
simple explanation by means of linearization in the operatio-
nal domain of the command neurons involved.

Though there is some previous work on special cases of
cosine tuning in sensory systems and other species, both a
neuronal model and a general context were missing until now.
Here we like to mention that Bergenheim et al. (2000) show
that PVA works for human muscle spindle afferents, Weber
et al. (2006) display how population vectors operate for affe-
rents recorded in the dorsal root ganglion (DRG), Bosco and
Poppele (1993) indicate how PVA works for the dorsal spi-
nocerebellar tract (DSCT), Kristan and Shaw (1997) have
demonstrated cosine tuning in the leech, and Salinas and
Abbott (1994) have analyzed the cricket cercal system with
its purported wind-direction population vector. For a review
of the early literature with a neat slant towards theoreti-
cal neuroscience the reader may profitably consult Abbott
(1994).

Sand scorpion as pathfinder to PVA The sand scorpion
Paruroctonus mesaensis is an ambush predator of insects and
other scorpions, always hunting at night from a motionless
rest position outside its burrow on the sand surface. It is a
so-called “sit-and-wait”, meaning here stand-and-wait, pre-
dator whose typical attack/defense position is shown in Fig. 4.

Fig. 4 Desert scorpion Paruroctonus mesaensis (about real size) as
seen from above. It is in a defense position with its eight tarsi (feet) on
a circle with radius R ≈ 2.5 cm and its huge pedipalps in front. Tail
and venom gland are ready for attack. The picture, due to Stürzl et al.
(2000), is a negative of a scorpion that is fluorescent in the dark under
the influence of ultraviolet light. The stimulus angle is ϕ = ϕS

The sand scorpion’s typical habitat is the Mojave desert and it
responds to surface (Rayleigh) waves generated by its prey,
e.g., small insects walking on the sand surface. The tarsal
detectors, the so-called basitarsal compound slit sensilla or
BCSS, are located above the joint of the tarsus (foot) and
basitarsus of each of the eight legs. They are extremely sen-
sitive; for details we refer to Stürzl et al. (2000) and Brownell
and van Hemmen (2001).

To localize prey the only information available to a sand
scorpion is the arrival time difference between the BCSS due
to the waves emanating from the stimulus, which is taken
to be a point source, The BCSS are on a circle of radius
R ≈ 2.5 cm at angles γk = ±18◦, ±54◦,±90◦, and ±140◦,
where 0◦ is ahead; see Fig. 4. We label them by 1 ≤ k ≤ 8
clockwise, starting with the right front leg. The Rayleigh
wave generated by a stimulus at angle ϕS and distance r
from the scorpion’s center approximates a plane wave once
r ≥ 8 cm. For a given stimulus angle ϕS , the time difference
∆t (ϕS|γk, γl) between the arrival of a wave at two BCSS of
tarsi at angles γk and γl is then

∆t (ϕS|γk, γl) ≈ R

vR

[
cos(ϕS − γl) − cos(ϕS − γk)

]
(2)

so that ∆t ∈ [−∆t0,∆t0] with ∆t0 = 2R/vR as the maximal
time difference of about 1 ms. Here vR is the velocity of
Rayleigh waves in dry sand, which is surprisingly low: about
50 m/s. Hence 1 ms is the maximal duration of a wave passing
by, which is still in the ordinary neuronal time range.

Balance of excitation and inhibition The next step in model
formulation is to make an informed guess at the neuronal
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mechanism that could transform time information into
patterned neuronal activity in the scorpion’s brain. While
we know very little about the neuroanatomy of scorpion cen-
tral nervous systems, we have fairly detailed studies of spi-
ders (both are Arachnids) showing ring-shaped integrative
neurons in the suboesophageal ganglion (SOG) where fiber
tracts from their eight legs converge; see Brownell and van
Hemmen (2001). Similarly, we know from behavioral obser-
vations of sand scorpions that vibration source localization
requires integrative input from multiple receptors within the
ring of eight, with receptors nearest and farthest away from
the target having the greatest impact on accuracy (Brownell
and Farley 1979); cf. Fig. 4.

Figure 5 shows a diagrammatic representation of interneu-
ronal circuitry that meets the above requirements through
conventional synaptic connectivity between a small set of
interneurons. Central to its construction are eight excita-
tory command neurons and inhibitory partners which will
evaluate the sensory input and eventually ‘command’ an
appropriate motor output for rotation toward the target. Each
BCSS, representing a direction γk , with 1 ≤ k ≤ 8, excites its
corresponding command interneuron and the associated inhi-
bitory interneuron, both labeled by k. The latter also receives
excitation from BCSS γk−1 and γk+1, adjacent to γk , thus
forming an inhibitory triad that will act with synaptic delay
(∆tI = 0.7 ms) to block the action of the command neuron
coding for direction γk̃ opposite γk in the sensory field. Thus,
for each command neuron encoding for turns in one direc-
tion (γk), the inhibitory triad antagonistic to it is centered and
represented by k̃ = [(k + 3) mod 8] + 1.

Population vector algorithm as actuator Let us now focus
on Fig. 5. What are the command neurons going to do if a
vibrational stimulus appears? They are in the direct neighbo-
rhood of the motor neurons that “command” the scorpion’s
leg muscles the animal has to use for turning and running
to its prey once the latter becomes noticeable to the BCSS;
say, once a year. Following Stürzl et al. (2000) and in the
spirit of the population vector algorithm (PVA) as presen-
ted in the previous section, we now assign a unit vector ek

with direction γk to each command neuron k and propose
that the animal’s reaction is described by (1). That is, by the
resultant vector population vector n made up from the indi-
vidual contributions νk ek of the “committee” members γk ,
1 ≤ k ≤ 8, that fire at a rate νk . In this way the population
vector algorithm functions as a neuronal actuator, a rather
fascinating perspective.

The BCSS slits and, hence, neurons respond individually
in dependence upon the intensity of the stimulus wave. Thus
it may well be that instead of one committee we have a mul-
tiple of active committees of command neurons, each corres-
ponding to a BCCS and patterned after Fig. 5. The ensuing
arguments will not change, however, and our considerations

Fig. 5 Inhibitory triad model to account for vibration source locali-
zation in sand scorpions. The circular array of BCSS receptors (outer
circles), at fixed angles γk relative to the sensory field center, innervate
eight command neurons (inner circles, dark). Only two of the eight
associated inhibitory neurons are shown (for clarity, only those cor-
responding to legs R3 and L2, i.e., k and k̃). Inhibitory and excitatory
synapses are represented as open or darkened circles, respectively. This
arrangement of neurons and interactions is hypothetical but consistent
with other time-measuring circuits in vertebrates (Kapfer et al. 2002)
and invertebrates (Barth 1985; Brownell and Polis 2001). Of course the
scale is incorrect: The outer radius is R ≈ 2.5 cm whereas the inner one
in the scorpion’s brain (SOG) has a micron range. After Stürzl et al.
(2000)

are also valid in this more general context, which we will not
discuss here. Instead we turn to a quality check.

The proof of the pudding is in the eating. Figure 6 shows
a comparison between a healthy or lesioned scorpion’s res-
ponse to a vibrational stimulus and the predictions of the
model (Stürzl et al. 2000). Sensory response of the BCSS is
characterized by a very low threshold but the price the ani-
mal pays, so to speak, for this high sensitivity is that, though
phase-locked, the spike response is somewhat stochastic so
that all a realistic theory can predict is a probability distribu-
tion, represented by a corresponding density function. The
latter appears as dark shading in Fig. 6. We see two things.
First, the agreement is quite satisfying. Second, replacing
the inhibitory triad of Fig. 5 by a single neuron gives an
agreement that is far less good than that resulting from the
triad. The key issue, however, is that the PVA is quite effi-
cient as actuator of the animal’s response originating directly
(Brownell and van Hemmen 2001) from its motor system.

Cosine tuning Is there a cosine tuning of the individual com-
mand neurons and, if so, where does it come from? We have
seen that tuning of individual command neurons stems from
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Fig. 6 Scorpion’s response angleφ of (vertical axis) as a function of the
stimulus angle ϕS (horizontal axis). a Systematic deviation, an under-
shooting, of the response of an intact animal that hardly ever manages
the complete turn ϕS . b–f Ablated basitarsal compound slit sensilla
(BCSS) are indicated by dots at the end of the tarsi (legs). Both the pro-
bability density P(φ) (dark shadings) and experimental points (dots)
are indicated. Experimental data are due to Brownell and Farley (1979);
see also Brownell (1977, 1984). If the inhibitory triad is replaced by a
single inhibitory neuron, we find the dashed line as the mean response;
the agreement with experiment is in general less good. Picture due to
Stürzl et al. (2000)

the time differences between command neuron k’s excitatory
input and that from its inhibitory triad k̃ opposite to k. The
leading time difference ∆t (ϕS|γk, γk̃) as given by (2) has a
cosine dependence upon the stimulus angle ϕS . It is conve-
nient to compute the neuron’s average number 〈nk〉 of spikes
as a function of the time difference ∆t , the so-called tuning
curve. Dividing by the duration of the time interval τS during
which spike counting happens we obtain the mean “instan-
taneous” firing rate νk = 〈nk〉/τS ; admittedly this notion is
a bit shaky since in counting spikes we cannot take the limit
τS → 0. As we see in Fig. 7, it is a good approximation to
take a linear ∆t dependence,

〈nk〉(∆t) = a − b ∆t, (3)

with a and b positive constants for the mean number of
spikes 〈nk〉 in a time interval of length τS , the average (always

Fig. 7 Tuning curve (top), its linear approximation (dashed), and stan-
dard deviation (bottom) for a command neuron with M = 2 active neu-
rons per BCSS; for the parameter values underlying the present plot
resulting from an exact numerical evaluation with the neurons taken
to be à la Hodgkin-Huxley; see Stürzl et al. (2000, Fig. 4). Within
error bars the fit to the tuning curve is a cosine. The recording time τS
was 500 ms, as in Brownell’s experiments (Brownell and Farley 1979;
Brownell 1984). The interval [−1, 1] ms of the ∆t axis between the
vertical dashed lines being the physically accessible range, the linear
approximation leading to (3) is fair

denoted by angular brackets) taken with respect to the
probability distribution that we use to describe the neuro-
nal response. The spontaneous rate ν0 containing no direc-
tional information, we replace (Salinas and Abbott 1994)
νk = nk/τS in (1) by nk − n0 with n0 = ν0τS so as to get the
“real” instantaneous firing rate νk .

Taking advantage of (1) and (3) we verify that 〈φ(ϕS)〉 =
ϕS if the legs and, thus, the angles γk were equidistributed
according to γk = −22.5◦ + k 45◦ for 1 ≤ k ≤ 8, and
if the triad were the single neuron k̄. Since 〈φ(ϕS)〉 :=
arg[∑k〈nk〉 exp(iγk)] where 〈nk〉 is given by (5), we find

〈φ(ϕS)〉 = arg

{
∑

k

[a + 2b cos(γk − ϕS)] eiγk

}
= ϕS (4)

For realistic γk , an inhibitory triad, and dropping (3), we get
a small but systematic deviation from ϕS as shown in Fig. 6a:
for positive/negative ϕS the animal is off by about ∓10◦. We
thus see that command neurons providing the sand scorpion’s
motor system with a population vector code they have gene-
rated themselves allow an even detailed explanation of the
animal’s prey capture performance.

We make a quick detour to what the above two-
dimensional argument means for three-dimensional space-
time. To this end we return to Eq. (1) but imagine that the
animal aims at a stimulus it has detected in the direction e.
In three dimensions we replace the preferred directions γk

simply by vectors ek ; directions are always unit vectors. The
instantaneous firing rates νk are supposed to be functions
f (e · ek) of the cosine of the angle between e and ek . Then
PVA à la (1) reads
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n := νe =
N∑

k=1

f (e · ek) ek . (5)

Is, however, the right-hand side of (5) parallel to e? In general
it is not but let us, in view of the above results and the experi-
mentally known cosine tuning, simply assume the function f
is linear. For the moment we drop the constant vector

∑
k ek

and ask under what condition do we find

N∑

k=1

b (e · ek) ek = νe? (6)

We cannot expect to get the exact equality in (6) but in view
of our sand-scorpion example (4) it is plain that (e · ek) may
well do a decent job; see also Figs. 5 and 6. That is to say,
from a practical point of view the weighted sum points in e’s
direction and we may wonder why this is so in general.

Cosine tuning revisited Since according to (3) the instanta-
neous firing rate νk is to fine approximation linear in ∆t and
(2) exhibits a cosine dependence upon ϕS we directly obtain
a cosine tuning. To arrive at this conclusion three things have
to be constantly borne in mind.

– First, it is an approximation – even for this very simple
model.

– Second, the cosine dependence hinges on neuronal inter-
action. That is, in the example of Fig. 5 cosine tuning
originates from the ring circuit of excitation-inhibition.

– Third, though detection may well depend on a millisecond
precision of the sensory neurons including up to one or
two nuclei in the brain, an actuator has to act, and acts, on
the motor system. Hence all it needs is a rate instead of
spike coding. Since the former is also much cheaper than
the latter we see that brains drop temporal precision as
quickly as possible. For example, a scorpion’s SOG ope-
rates with millisecond precision even though its output is
a firing rate. In addition, PVA hinges on rate coding, as
is already evident from its very formulation (1).

How then should we look at (6) from a higher point of
view? Let us imagine we have a cosine tuning of neurons
that are dependent on an input stimulus with direction e and
constitute an assembly of many, viz., N , participants. Fur-
thermore, let us assume all their preferred directions ek occur
with about equal probability. For N 
 1 the finite sum in
the left-hand side of (6) can be approximated by an integral
[due to the so-called random shooting or Monte Carlo eva-
luation of a multi-dimensional integral (Press et al. 2007)].
For a uniform distribution of directions we have to integrate
over a unit circle in d = 2 and a unit sphere in d = 3
dimensions.

Fig. 8 Left: Abdominal hairs of the “ordinary” back swimmer
Notonecta glauca, as seen from below. The two groups of hairs on
the right and on the left function as detectors at the end of the body
(Lang 1980). Right: Back swimmer hanging so to speak at the water
surface. One sees one of the “rowing” legs and three of the four legs
used for vibration detection. The scale bar on the right indicates 2 mm.
The angles of the six legs are ϕk = ±30◦,±90◦,±150◦ for the back
swimmer studied here, viz., Notonecta undulata. Both pictures stem
from C. Wesenberg-Lund, Biologie der Süsswasserinsekten, Springer,
Berlin (1943) Figs. 115 and 116

For d = 2 we get 〈φ(ϕS)〉 = ϕS through the very same
symmetry argument as in (4). For d = 3 we take e instead
of ϕS in the (x, y) plane, say ϕS = 0 parallel to the x-axis,
and decompose the integral over the unit sphere into circles
parallel to the (x, y) plane. Because of the underlying sym-
metry each circle gives a vector parallel to the x-axis and
adding them all we get a vector parallel to e, as desired. That
is, for a homogeneous distribution of preferred directions in
the motor system (Georgopoulos et al. 1988) and with e as
a given token the PVA gives e as output—as it should. In
the next section we will turn to the question of where the
vectorial tokens may come from.

Back swimmer For a second example of the universality of
PVA as a neuronal actuator we turn to the back swimmer,
a surface-dwelling bug that spends much of its time han-
ging just beneath the surface of a quiet pond. It depends
on a vibration sense to localize its prey, viz., insects that
become trapped on the water surface. The vibrational fre-
quency range is 20–150 Hz and the ripples may be as small
as 1µm. For details regarding various issues of its prey detec-
tion we refer to Murphey and Mendenhall (1973) and par-
ticularly Murphey (1973). Here too frequencies are so low
that spike response is practically phase-locked, up to a sto-
chastic scatter. The back swimmer is an insect with six legs,
two of which it uses for “rowing”. The receptors located at
the tibio-tarsal joints of the remaining four legs together with
two groups of abdominal receptors (i.e., hairs) at the end of
the body (Fig. 8) provide the animal with the sensory input
it needs for localizing its prey splashing at the water surface.
That is, we take prey as a point source and the back swimmer
as an animal living at the water surface and equipped with
six, instead of eight, BCSS-like receptors.
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Fig. 9 Same as Fig. 6 but now for the back swimmer Notonecta
undulata (in hunting position bottom right) with inhibition as specified
by Murphey (1973). The horizontal axis is the input or stimulus one,
the vertical axis indicates the response. Here a is for the back swimmer
as such, this time heavy dots (top-left corner) indicating the positions of
the front detectors, and b–f for lesioned animals with lesions indicated
by an arrow. In addition, there are two groups of abdominal receptors
at the very end. As we see, the agreement between experiment (dots)
and theory (dark shadings) is at least as good as in Fig. 6. By reasons
beyond our control several experimental points (black dots) are out-
side the plotting square [−180◦, 180◦]2. By simply shifting them 360◦
upwards or downwards we see that the agreement becomes even better.
Experimental data are due to Murphey and Mendenhall (1973, Figs. 2,
4b, 6) and Murphey (1973, Figs. 3 and 6)

Except for a few minor changes, we have used exactly the
same model as before to explain a back swimmer’s response
to vibrational input and, lo and behold, Figure 9 shows that
the model’s description of the experimental data is at least as
good as that of the sand scorpion in Fig. 6. This underlines
the universality of the model and, more importantly in the
present context, that of the population vector algorithm as a
neuronal actuator.

4 Population vector code and what a map is good for

Equation (1) tells us that the “population vector” n := νe is a
vector sum of N constituents, viz., νi ei with 1 ≤ i ≤ N . The
vector n encodes the direction e of movement resulting from
the assembly of N motor neurons while ν, its length, is pro-
portional to the instantaneous speed of the drawing motion
we focus on. The equation as such looks like a triviality but
as a mathematical description of neurobiological reality it is
not. Quite to the contrary, over the years it has turned out that
the population vector as a resultant of motor action is univer-
sally valid. That is, it is a universal (van Hemmen 2007). Here
we suggest that this universality may well extend beyond the
motor system it has been devised for and that the popula-
tion vector algorithm functions as a generally valid neuronal
actuator.

Pondering about the sense of a population vector as a geo-
metric universal in conjunction with the preferred directions
ei , the cosine tuning, and the population vector algorithm (1)
associated with all this, and despite its appealing function
as neuronal actuator, we are nevertheless left with the puzz-
ling question of where the vectorial tokens ei as input come
from and whether there is a still deeper meaning to the vector
algorithm as such.

To see how we could answer these closely related ques-
tions we return to where it all came from, viz., the maps as
neuronal representations of the outside sensory world and
underlying the vector construction as such. The sand scor-
pion of Sect. 3 provides us with one of the simplest examples
of a ‘map’ in that, once a stimulus is there, the “committee”
of N = 8 command neurons in action, with their preferred
directions ek and 1 ≤ k ≤ N = 8, effectively constitutes a
map.

So we can ask (van Hemmen 2006): What is a neuronal
map, how does it arise (a nature or nurture question), and
what is it good for? A map as such is a representation of
the outside sensory world in space-time, i.e., in space and
time. Space-time consists of vector quantities. Of course one
often has additional properties on top of space-time such
as orientation in primary visual cortex of higher vertebrates
but this we can, and will, skip here, just pointing out that
time reappears for instance in the direction preference of V1
neurons. The point is not to hunt for complications but to
exhibit general principles.

In Sect. 3, we have analyzed in detail two examples that
were so simple that we could see at every stage what was
happening. For quite a while the barn owl’s azimuthal sound
localization performed by the neurons in the laminar nucleus
provided neurobiology with “the” example of a map (Konishi
1993, 2003) for which a complete theory (Gerstner et al.
1996; Kempter et al. 2001; van Hemmen 2001; Leibold and
van Hemmen 2002) mathematically explaining it exists. For
azimuthal sound localization in mammals the message is the
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same but the mechanisms are different (Brand et al. 2002;
Kapfer et al. 2002; McAlpine and Grothe 2003; Leibold and
van Hemmen 2005). Interestingly, assigning to a map neuron
k in the barn owl’s laminar nucleus the encoded direction ek

in space, and taking the sum (1) over all map neurons, one
finds the azimuthal direction the barn owl adopts (C. Leibold
2007 private communication). The laminar map is consistent
with the principles of the population vector.

Space–time is vectorial. We therefore hypothesize that
part of the answer to the question of ‘What a neuronal map
is good for?’ is that neuronal maps as spatio-temporal repre-
sentations of the outside world provide an animal’s brain
with vectorial input originating from its sensory modalities.
The output of this map population is in the same vector form
found in the motor system. Principles of linearity and cosine
projection are the same in sensory and motor systems. From
the perspective of control systems, this is an efficient stra-
tegy, eliminating the need for a transformation between the
two. This type of design may also have significance in the
future design of intelligent machines.

Acknowledgment The authors thank Wolfgang Stürzl for the simu-
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