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Analysis of a correlation-based model for the development
of orientation-selective receptive fields in the visual cortex
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Abstract. We analyse a model for the development of orientation-selective receptive fields
of simple cells in a locally connected network of cortical neurons. The Hebbian learning rule
that underlies the development is described by a linear differential equation. The structure of
the emerging cortical map can be predicted by deriving the eigenfunctions corresponding to the
leading eigenvalues of the associated matrix. We show that the receptive fields have the typical
form of a wavelet. Mathematically, receptive fields are given by a Hermitian polynomial with
Gaussian cut-off and a phase factor. Both the phase of the wavelet and the orientation are
changing periodically along the surface of the cortical map as suggested by previous simulation
studies and as also found in experiments. In order to get orientation-selective receptive fields, the
spatial correlation function of the inputs that drive the development must have a zero crossing.

1. Introduction

Processing of visual information proceeds in several stages along the visual pathway. The
optic nerve originating from the retina carries the information to the lateral geniculate
nucleus (LGN) which is a part of the thalamus, a larger brain nucleus. From there nerve
fibres project to the visual cortex, where most of the higher processing takes place.

Cells in the LGN and the visual cortex are characterized by their receptive field defined
as the area on the retina that is to be stimulated by an appropriate light pattern so as to
evoke a response of the neuron under consideration. In the LGN, two main types of cell
can be distinguished, the ON cells and the OFF cells. An ON cell responds best if a bright
spot is projected into the centre of its receptive field. Similarly, an OFF cell shows maximal
response if a dark spot (surrounded by a weakly illuminated background) covers the centre
of its receptive field. The LGN receptive fields are concentric.

Unlike neurons in the LGN [HW61], cortical cells respond selectively to more specific
spatial and temporal stimulus parameters, in particular, to the orientation of bars (or edges)
located within the cells’ receptive field [HW59]. Cortical simple cells receive direct input
from the LGN and represent the first processing stage within the visual cortex. According
to a classical model of Hubel and Wiesel [HW62], orientation selectivity of cortical cells
is based on the convergence of ON and OFF type LGN neurons onto a simple cell. These
inputs give rise to ON and OFF subregions within the receptive field of a simple cell that
are aligned along its preferred orientation. A considerable amount of experimental evidence
is in agreement with this picture [Fer87, CZS91, RAW94, RA95].
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Neurons in the cortex form a thin sheet that covers most of the surface of the brain.
Receptive field properties such as the preferred orientation vary systematically along the
surface of the cortical sheet. The two-dimensional organization of the neuronal response
properties is called a cortical map.

Because of the huge number of neurons (about 109 in primate visual cortex) and
104 synapses per neuron, it is hard to imagine how the complete wiring that underlies
the receptive field properties of cortical cells could be specified genetically. Rather, it
seems likely that the development of receptive field properties is driven by an activity-
dependent learning process which tunes the connectivity pattern during a critical period, a
developmental phase which usually starts shortly before and lasts up to a few weeks after
birth; for a review see [SS82].

Beginning with von der Malsburg [vdM73], numerous models have been formulated that
describe activity-dependent learning as a self-organization process according to a Hebbian
rule [Lin86c, Lin86a, Lin86b, YKC89]. In this article we study analytically the properties
of the developmental model of Miller [Mil94]. The Hebbian learning rule driving the
development leads to a linear differential equation. We derive the eigenfunctions of the
matrix associated with the learning equation. The eigenfunction to the leading eigenvalue
determines the shape of the neuronal receptive field and also the map structure of cortical
cells. The central quantity driving the developmental process is the correlation function of
the activity of LGN cells. It has been proposed [Mil94] that this correlation function must
change sign for orientation selectivity to emerge. It will become clear from our analysis
why this is indeed the case.

The paper is organized as follows. Section 2 introduces the main elements of the
developmental model of [Mil94]. In section 3 the eigenfunction and eigenvalues of the
developmental equation are derived. The results of this analysis are then compared with
the outcome of a simulation run of the model in section 4. We conclude our considerations
with a discussion in section 5.

2. The developmental model

In this section we recapitulate the main elements of the developmental model introduced
in [Mil94]. As was mentioned above, the model is based on an activity-dependent learning
rule and aims at a description of the emergence of orientation-selective receptive fields of
simple cells.

Before turning to the learning equation itself, we have to clarify the structure of the
model network. In agreement with Hubel and Wiesel [HW62], the spatial receptive field of
a simple cell is determined by the convergence of two types of input, i.e. inputs from ON
and OFF type cells in the LGN. In the model under consideration, cortical cells and cells
in the LGN are arranged on a two-dimensional grid. The vectorx = (x, y) denotes the
position of a cell on the cortical grid andααα = (α, β) labels a position on the LGN grid;
see figure 1. Both grids serve to support so-called retinotopic maps that can be observed
in the LGN and the visual cortex. By a retinotopic map we mean that neighbouring cells
in the cortex and the LGN correspond to neighbouring positions on the retina. That is, a
retinotopic map conserves the neighbourhood relations of the visual input. The positionsααα
andx are given in the same retinotopic coordinates and, hence, can be added and subtracted
arbitrarily.

To obtain the local potentialh(x, t) of a cortical simple cell, the mean firing rates
of cells in the LGNac(ααα, t) (with c = ON,OFF) are summed and weighted with the
efficacyWc(x,ααα) of the feedforward synapses. Furthermore, simple cells receive input
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Figure 1. A cortical simple cell receives input from ON and OFF type neurons in the LGN.
These inputs are weighted by the feedforward synapsesWc(x,ααα). In addition, other cortical
neurons contribute to the local potential of simple cells, where the functionB(x,x′) denotes
the strength of intracortical synapses. It is assumed that only weights between the LGN and the
cortex are modified during development.

from other cortical cells with intracortical connection strengthB(x,x′). In good agreement
with experimental results [Fer94], we assume linearity and obtain the following functional
form for the local potential of a simple cell at cortex locationx and timet :

h(x, t) =
∑

c=ON,OFF

∑
ααα

Wc(x,ααα) ac(ααα, t)+
∑
x′
B(x,x′) h(x′, t). (1)

Since equation (1) is purely linear it can be rewritten as

h(x, t) =
∑
x′
I (x,x′)

∑
c=ON,OFF

∑
ααα

Wc(x′,ααα) ac(ααα, t) (2)

with

I−1(x,x′) = 1− B(x,x′) (3)

whereI−1 denotes the inverse of the matrixI . For the sake of simplicity we assume that
the long-time average of the ratesac(ααα, t) vanishes. In other words, the quantityac(ααα, t)
denotes the deviation of the momentary firing rate from the average mean firing rate and
can take both positive and negative values.

It is commonly assumed that the activity-driven modification of synapses takes
place according to some type of Hebbian learning rule [Heb49]. A Hebbian synapse
is strengthened, if the pre- and postsynaptic activity or depolarization are positively
correlated, and is kept fixed or weakened in the presence of negative correlations.
Long-term potentiation (LTP) has been proposed as a cellular mechanism that might
underlie Hebbian learning [CM95, CPCD90]. In the model under consideration only
feedforward synapsesWc(x,ααα) between the LGN and the cortex are modified by Hebbian
learning, whereas intracortical synapses are kept fixed. One assumes that the change in
synaptic strength at timet is determined by the correlation between the postsynaptic local
potentialh(x, t) and the deviationac(ααα, t) of the presynaptic cell activity from the average
firing rate. We consider the mean change of synaptic efficacy within a learning window of
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time3 and find

dWc(x,ααα, t)

dt
= ηA(x−ααα) 1

3

∫ 3

0
ds h(x, t − s) ac(ααα, t − s), (4)

whereA(ααα −ααα) denotes an arbor function that restricts the possible synaptic wiring that
might emerge from the learning process to a spatially convergent structure as shown in
figure 1. In particular, the arbor functionA(ααα −ααα) favours connections to a presynaptic
cell with the same retinotopic coordinate as the cortical cell and suppresses connections to
LGN cells further away; cf. equation (7) below.

By inserting (2) into (4) we obtain

dWc(x,ααα, t)

dt
= A(x−ααα)

∑
x′
I (x,x′)

∑
c′=ON,OFF

∑
ααα′
Cc,c

′
(ααα,ααα′)Wc′(x′,ααα′, t) (5)

where the correlation function between the activity of two cells in the LGN is given by

Cc,c
′
(ααα,ααα′) = η

3

∫ 3

0
ds ac(ααα, s) ac

′
(ααα′, s). (6)

In deriving (5) we have made two additional assumptions. First,Wc(x,ααα, t) changes
slowly on the time scale of the learning window3 and can be kept fixed during its duration.
Mathematically, this means that ‘0< η � 1’ so that we can perform a local averaging
[SV85] in (5). Second,ac(ααα, s) fluctuates fast as compared to3. Due to the averaging
over time and the random character of the input patternsac(ααα, t) which are drawn from a
given stationary distribution, the correlation functionCc,c

′
(ααα,ααα′) does not depend on the

time t . In short, we have performed a separation of time scales.
According to (5), the development of the synaptic weights is now determined by

three spatial functions, namely, the arbor functionA(x −ααα), the intracortical interaction
function I (x,x′) and the correlation functionCc,c

′
(ααα,ααα′). In the following the arbor

function is chosen to be the Gaussian

A(x−ααα) = exp

(
−|x−ααα|

2

2A

)
(7)

so that synapses will develop mainly for short distances|x − ααα|. Similarly, excitatory
coupling between neighbouring cortical neurons is modelled by a Gaussian intracortical
interaction function

I (x,x′) = I (x− x′) = exp

(
−|x− x

′|2
2I

)
. (8)

It has been suggested previously [Mil94] that the correlation function for the activity of two
cells at positionsααα andααα′ on the LGN grid should change sign at least once as a function
of the distance|ααα −ααα′| for orientation selectivity to develop. For this reason, we cannot
take a simple Gaussian but we have to somehow induce a change of sign. In this article we
use the following form for the correlation function,

CON,ON(ααα,ααα′) = COFF,OFF(ααα,ααα′) = exp

(
−|ααα−ααα

′|2
2C

)
− k

CON,OFF(ααα,ααα′) = COFF,ON(ααα,ααα′) = −ε CON,ON(ααα,ααα′)
(9)

with 0 6 k 6 1 and 06 ε 6 1. For k = 0, the correlation function (9)CON,ON is strictly
positive whereas fork > 0 there is a zero crossing at some finite distance.

The correlation function (9) can be motivated as follows. Before eye-opening, the
activity of the photo receptors fluctuates in a spatially and temporally uncorrelated way.
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Figure 2. The receptive fields of neurons in the LGN are of the centre-surround type. A
centre ON cell responds positively, if the centre of the receptive field is stimulated by a bright
dot, and negatively if the bright dot samples its surroundings (bright). We concentrate on the
correlation between two centre ON cells. (a) For small |ααα − ααα′| the receptive field centres
of both neurons overlap. Therefore, the cells will respond similarly to a stimulation, and their
activities are correlated. (b) For large|ααα −ααα′| the centre of one receptive field falls onto the
surroundings of the other one. Thus, a stimulation results in a response with opposite signs in
both cells and their activities are anti-correlated. The correlation function therefore has a zero
crossing at some intermediate distance. The behaviour of the correlation function between two
OFF or an ON and an OFF cell can be explained in a similar way.

Due to the wiring pattern between the retinal photo receptors and the cells in the LGN,
uncorrelated noise in the retina is transformed into a correlated activity of cells in the LGN
with a correlation function like the one given in (9); cf. figure 2. The above correlation
function is also in agreement with recent experimental findings [MLB95]; for a more detailed
discussion, see [Mil94]. The function (9) does not go to zero for|ααα −ααα′| → ∞, as one
might expect from a biological point of view. It should be noted, however, that the effect
of Cc,c

′
(ααα,ααα′) 6= 0 for large|ααα−ααα′| is suppressed in equation (5) by the arbor functionA,

which decreases rapidly for large distances. Thus, the error we make if we take (9) instead
of a more realistic correlation function will be negligible.

Since the Hebbian learning equation (5) is an ordinary linear differential equation, it
can be solved by expandingWc(x,ααα, t) into the eigenfunctionsWc

a (x,ααα) of the operator
on the right-hand side of (5). One obtains

Wc(x,ααα, t) =
∑
a

ja(0) exp(λat)W
c
a (x,ααα) (10)

whereλa is the eigenvalue corresponding to thea-th eigenfunction andja(0) the projection
of the random initial conditions onto the respective eigenfunction.

As will become obvious in the next section, positive eigenvaluesλa always exist and,
hence, synaptic weights would increase without bounds. To avoid such a biologically
implausible behaviour, an upper and a lower bound for the couplings are introduced
explicitly,

06 Wc(x,ααα, t) 6 WmaxA(x−ααα). (11)

The lower bound is zero since only positive (excitatory) synapses from the LGN to a cortical
simple cell can be observed experimentally [FL83, Fer88].

If the couplings are distributed randomly at the beginning, all eigenvectors start with
a similar amplitude. The components ofW belonging to the largest eigenvalues, however,
will grow fastest and reach the lower and upper bounds first, where the weights are frozen
as long asW wants to move outwards. Thus the eigenfunctions corresponding to the
largest eigenvalues determine the emerging receptive fields [MM90, MM94]. To predict
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the receptive fields that emerge from the Hebbian learning process, we therefore turn to an
analysis of the eigenvalue problem associated with equation (5).

3. Derivation of the eigenfunctions and eigenvalues of the learning equation

In this section we solve the eigenvalue problem corresponding to the learning equation (5),

λWc(x,ααα) = A(x−ααα)
∑
x′
I (x,x′)

∑
c′=ON,OFF

∑
ααα′
Cc,c

′
(ααα,ααα′)Wc′(x′,ααα′). (12)

In the following analysis we will proceed in several steps. In the first step we single out the
part of the eigenvalue problem that depends on the variablec only. It will become clear that
as a result of the development only one type of synapse, i.e. either ON or OFF synapses,
will link a cortical positionx and an LGN positionα. In the second step we consider
the dependence of the eigenfunction on the cortical variablex. We will show that the
dominating eigenfunction is a combination of Fourier modes corresponding to wave vectors
of the same length but with different directions. Hence a periodic change of receptive field
properties is observed along the cortical sheet. In the third step we investigate the shape
of the receptive field for one cortical cell. An exact solution of this part of the eigenvalue
problem can be found for the special case of a Gaussian correlation function. This solution
that is related to the well known problem of the quantum-mechanical harmonic oscillator
can then be used to approximately solve the problem for more general correlation functions.
As has been predicted by Miller [Mil94], it turns out that a sign change of the correlation
function is anecessaryprerequisite for the development of orientation-selective receptive
fields. We now turn to the details of the mathematical analysis.

Because of the symmetry of the correlation function (9) in the variablec, the eigenvalue
problem can be split into a part that depends onc only and another part that depends onααα
andx only,{
λγW

c
γ

}[
λχWχ(x,ααα)

]
=
{ ∑
c′=ON,OFF

Cc,c
′
Wc′
γ

}
×
[
A(x−ααα)

∑
x′
I (x,x′)

∑
ααα′
C(ααα,ααα′)Wχ(x

′,ααα′)
]
. (13)

Both parts can now be solved separately [MS90].
For theγ part of the eigenvalue problem

λγWγ =
(

1 −ε
−ε 1

)
Wγ (14)

one obtains the solution

W 1
γ =

(
1
−1

)
λ1
γ = 1+ ε

W 2
γ =

(
1
1

)
λ2
γ = 1− ε.

(15)

For ε > 0 the eigenfunction with opposite sign for the ON and OFF components dominates
the dynamics of the learning equation. That is, for fixed coordinatesααα and x, the ON
weight will grow and finally saturate at the upper bound, whereas the OFF weight will
fall to the lower boundWmin = 0, or vice versa. At the end of the developmental process
either ON or OFF weights will therefore exist between a cortical positionx and an LGN
positionααα, but not both. The question of whether ONor OFF synapses develop for a given
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coordinate, is determined by the sign of the dominating spatial eigenfunctionWχ(x,ααα). In
particular, ON weights will develop in regions withWχ(x,ααα) > 0 and OFF weights in
regions withWχ(x,ααα) < 0. This is the first important result of our analysis. We will make
use of the above considerations throughout the rest of the paper.

We now turn to the solution of theχ part of the eigenvalue problem. We will drop
the indexχ in the following. To simplify our analysis, the discrete variablesααα andx are
replaced by continuous ones. Using the expressions (7), (8) and (9) forA(x−ααα), I (x,x′)
andCON,ON(ααα,ααα′), we obtain

λW(x,ααα) = exp

(
−|x−ααα|

2

2A

)∫
dx′

∫
dααα′ exp

(
−|x− x

′|2
2I

)
×
[

exp

(
−|ααα−ααα

′|2
2C

)
− k

]
W(x′,ααα′). (16)

We introduce new variables in order to symmetrize the eigenvalue problem

SW(x,ααα− x) = exp

( |x−ααα|2
4A

)
W(x,ααα) (17)

and replaceααα by a new coordinate1ααα = ααα− x that denotes the position of an LGN cell
relative to the position of a cortical cell. This yields

λSW(x,1ααα) = exp

(
−|1ααα|

2

4A

)∫
dx′

∫
d1ααα′ exp

(
−|x− x

′|2
2I

)
×
[

exp

(
−
∣∣(x− x′)+ (1ααα−1ααα′)∣∣2

2C

)
− k

]
exp

(
−|1ααα

′|2
4A

)
SW(x′,1ααα′).

(18)

Because (18) is a symmetric eigenvalue problem, all eigenvalues are real.
The above problem of determining the eigenvalues can be simplified considerably if a

Fourier transformation of (18) is performed with respect to the cortical coordinatex. The
corresponding variable in Fourier space is the vectorl with componentsl andm. Then (18)
reads

λSWl,m(1ααα) = 2π exp
(
− |1ααα|

2

4A

) ∫
d1ααα′

×
[
DC exp

(
−1

2
DC|l|2

)
exp

(
−|1ααα−1ααα

′|2
2F

)
exp

[
iDl · (1ααα−1ααα′)]

−k I exp

(
−1

2
I |l|2

)]
exp

(
−|1ααα

′|2
4A

)
SWl,m(1ααα′). (19)

The purpose of a Fourier transformation is to convert a convolution in the variablex in (18)
into a product in Fourier space. It is clear from (19) that the Fourier modes with respect
to x are eigenfunctions of the developmental equation. This is expressed in (19) by the fact
there is no mixing between componentsSWl,m and SWl′,m′ ; cf. [MS90] for a similar result.

In (19) we have introduced new variables

D = I/(C + I ) and F = C + I. (20)

According to (19) the quantityF can be interpreted as the effective width of the correlation
function whose range of influenceC has been increased by the intracortical interaction
function.
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To obtain a solution of equation (19) we will proceed in two steps. First, we consider
the special casek = 0 which can be solved exactly. As a second step, we approximate
eigenfunctions and eigenvalues for the general casek 6= 0 by expandingSW in terms of
the eigenfunctions for the casek = 0. Eigenfunctions and eigenvalues fork = 0 will be
marked by a tilde aboveW andλ.

The eigenvalue problem for the special casek = 0 takes the form

λ̃W̃ l,m(1ααα) exp(−iDl ·1ααα) = 2πDC exp

(
−1

2
DC|l|2

)
exp

(
−|1ααα|

2

4A

)
×
∫

d1ααα′ exp

(
−|1ααα−1ααα

′|2
2F

)
exp

(
−|1ααα

′|2
4A

)
× exp

(−iDl ·1ααα′) W̃ l,m(1ααα′). (21)

Equation (21) factorizes into two parts that depend on1x or 1y only. To simplify the
notation we now introduce the one-dimensional integral operatorHint[.] defined by

Hint [f ] (ξ) = exp

(
− ξ

2

4A

)∫
dξ ′ exp

[
− (ξ − ξ

′)2

2F

]
exp

(
− ξ
′2

4A

)
f (ξ ′). (22)

Instead of (21) we consider the related one-dimensional problem

λ∗f (ξ) = Hint[f ](ξ). (23)

The eigenvalues and eigenfunctions of (23) are obtained easily sinceHint commuteswith
the Hamiltonian of the quantum-mechanical harmonic oscillator

Hosc= d2

dξ2
− ξ2

L2
. (24)

More precisely, it can be demonstrated by partial integration that

[Hint, Hosc] = 0 (25)

holds for

L = 2A/
√

1+ 4A/F . (26)

The eigenfunctions of the harmonic oscillator are given by [Sch68]

fn(ξ) = 1√
2nn!

(
1

πL

)1/4

Hn

(
ξ√
L

)
exp

(
− ξ

2

2L

)
(27)

where Hn denotes a Hermite polynomial of degreen. The functions (27) form a complete
orthonormal set [CH68]. Since the eigenvalues of the harmonic oscillator are non-
degenerate, we conclude from the commutator (25) that the complete set of eigenfunctions
of (23) is also given by (27).

Given the eigenfunctions, the eigenvalues can be determined in a straightforward
manner. For the eigenvalues of (23) we make the ansatz

λ∗n = 30 q
n for n = 0, 1, 2, . . . (28)

with parameters30 andq which are now derived. We use the generating function of the
Hermite polynomials [CH68]

exp

(
−t2+ 2t

ξ√
L

)
=
∞∑
n=0

1

n!
tnHn

(
ξ√
L

)
. (29)
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If the ansatz (28) is true, the following equation must hold:

Hint

[
exp

(
−t2+ 2t

ξ ′√
L

)
exp

(
− ξ
′2

2L

)]
(ξ) =

∞∑
n=0

1

n!
tnλ∗nHn

(
ξ√
L

)
exp

(
− ξ

2

2L

)
!=
∞∑
n=0

1

n!
30(qt)

nHn

(
ξ√
L

)
exp

(
− ξ

2

2L

)
= 30 exp

(
−(qt)2+ 2tq

ξ√
L

)
exp

(
− ξ

2

2L

)
(30)

where the generating function (29) has been used twice. On the other hand, we can directly
perform an integration in the first part of (30) which yields an expression of the same form
as in the final part of (30). Comparison of coefficients gives, after some algebra,

30 =
√√√√π F 2

A

(
1+ 2

A

F
−
√

1+ 4
A

F

)
(31)

q = F

2A

(
1+ 2

A

F
−
√

1+ 4
A

F

)
. (32)

Using (27) and (28), we obtain the eigenfunctions and eigenvalues of the two-dimensional
eigenvalue problem (21), namely,

W̃
l,m
c,d (1ααα) =

1√
π 2c+d c! d! L

Hc

(
1α√
L

)
Hd

(
1β√
L

)
exp

(
−|1ααα|

2

2L

)
exp(iD l ·1ααα) (33)

and

λ̃
l,m
c,d = 2πDC 32

0 q
c+d exp

(
−1

2
DC|l|2

)
. (34)

Thus we have found an analytic solution† in the casek = 0. We now turn to the general
problem.

In order to derive a solution for the problem withk 6= 0, we expand the eigenfunctions
SWl,m in terms of the eigenfunctions̃Wl,m

c.d of the simplified problem,

SWl,m(1ααα) =
∑

c>0, d>0

a
l,m
c,d W̃

l,m
c,d (1ααα). (35)

After this change of the basis, an eigenvalue problem in the coefficientsa
l,m
c,d has to be

solved

λ a
l,m
c,d =

∑
f>0,g>0

C
l,m
c,d;f,g a

l,m
f,g (36)

with a correlation matrix of the form

C
l,m
c,d;f,g = λ̃l,mc,d δc.f δd,g − k 2π I exp

(
−1

2
I |l|2

)
〈W̃ l,m

c,d |H1|W̃ l,m
f,g 〉. (37)

† K D Miller (private communication) independently noted the following closely related, but less general, result
for the casek = 0. LetWC(ααα) be an eigenfunction for an isolated postsynaptic cell (i.e. for the case whereI (x) is
a delta function) in the presence of a Gaussian correlation function (i.e. (9) withk = 0) and for some given arbor
function. Then, for a network with the same correlation and arbor functions, but with the Gaussian intracortical
interaction function (8), the eigenfunctions for the full network, parameterized by a real variablem, are given
by exp(im · x) exp(igm ·1ααα)WC+I (1ααα), with corresponding eigenvaluesλm = λC+I Ĩ (|m|

√
1− g), where the

tilde means Fourier transform,g ≡ I/(C + I ), and Ĩ (|m|√1− g) = C̃(|m|√g). This expression, along with the
solutions for the case of an isolated postsynaptic cell found in [MM90], gives a subset of the solutions given by
our general expression. See also Wimbaueret al [WGVH94]
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The ‘perturbation term’ is

〈W̃ l,m
c,d |H1|W̃ l,m

f,g 〉 =
1

πL

1√
2c+d+f+g c! d! f ! g!

Kl ∗
c K

m ∗
d Kl

fK
m
g (38)

whereKn
a with a = c, d, f, g andn = l, m stands for the one-dimensional integral

Kn
a =

∫
d1α exp

(
−1α

2

4A

)
exp(iD n1α)exp

(
−1α

2

2L

)
Ha

(
1α√
L

)
. (39)

The integral (39) can be computed and yields [Bat54]

Kn
a = p

√
4πAL

L+ 2A

(
2A− L
2A+ L

)(a/2)
exp

(
− AL

L+ 2A
D2n2

)
Ha

√ 8A2L

4A2− L2
D n

 (40)

with

p =
{
(−1)a/2 for a even

i(−1)(a−1)/2 for a odd.
(41)

It is clear from (37) and (38) that the correlation matrixCl,mc,d;f,g is Hermitian and, hence,
that all eigenvalues are real.

Equation (36) has to be solved numerically. To this end we assume that the
eigenfunctions corresponding to the leading eigenvalues can be approximated well by basis
functions with a few zero crossings, that is, with indicesc andd whose values are small.
This seems to be a reasonable approximation since we expect that the leading eigenfunctions
of (36) show only a few zero crossings too. Specifically, we restrict the expansion (35) to
basis functions with 06 c + d 6 6. In this case, for a fixed wave vectorl, a complex
28× 28 matrix has to be diagonalized; in our case by the routine cheevx of the LAPACK
package [ABB+95].

Since the matrix (37) is complex forl 6= 0, the coefficients of the expansion (35)
may assume complex values too. To simplify the notation, we introduce the following
expressions

Rel,m(1ααα) =
∞∑

c=0, d=0

<
(
a
l,m
c,d

) 1√
π 2c+d c! d! L

Hc

(
1α√
L

)
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(
1β√
L

)
exp

(
−|1ααα|

2

2L

)

Iml,m(1ααα) =
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c=0, d=0

=
(
a
l,m
c,d

) 1√
π 2c+d c! d! L
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(
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L

)
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(
1β√
L

)
exp

(
−|1ααα|

2

2L

) (42)

where<
(
a
l,m
c,d

)
and=

(
a
l,m
c,d

)
denote the real and imaginary part of the expansion coefficients.

In figure 3 the quantities defined by (42) and corresponding to the five leading
eigenvalues are displayed for a given set of parameters and for a fixed wave vectorl.
As we mentioned before, each Fourier mode in the cortical coordinatex represents an
eigenfunction of the developmental equation (18) in the form (19). Using (42) one obtains
expressions for the full eigenfunctions in dependence ofx and1ααα, namely,

SWl,m(x,1ααα) = < {[Rel,m(1ααα)+ i Iml,m(1ααα)
]

exp[i l(x+D1ααα)]}
= Rel,m(1ααα) cos[l(x+D1ααα)] − Iml,m(1ααα) sin[l(x+D1ααα)] (43)

and similarly, withlx = lx +my and l1ααα = l1α +m1β,

SWl,m(x,1ααα) = = {[Rel,m(1ααα)+ i Iml,m(1ααα)
]

exp[i l(x+D1ααα)]}
= Rel,m(1ααα) sin[l(x+D1ααα)] + Iml,m(1ααα) cos[l(x+D1ααα)] . (44)
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Figure 3. Eigenfunctions for a fixed wave vectorl = (l, 0) with l/(2π) = 0.078; cf. figure 5.
The quantities Rel,m(1ααα) and Iml,m(1ααα) as defined by (42) are displayed for the the five leading
eigenvaluesλ with parameter valuesA = 10.25, rc =

√
C/A = 0.65, ri =

√
I/A = 0.30,

k = 0.3 and for a wave vector with the componentsl/(2π) = 0.078 andm/(2π) = 0. The
expansion coefficients (35) have been derived numerically in terms of basis functions with
06 c+d 6 6. The imaginary part of the two degenerate eigenfunctions in the lower right-hand
corner vanishes.
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Figure 4. Full eigenfunction corresponding to the leading eigenvalue according to (44). Each
square in the second row shows the distribution of the synapses for a fixed cortical cell at
positionx. Two cortical cells are|1x| = 1 apart from each other, where thex axis shown in
the figure is parallel to the wave vectorl. Along the direction of the wave vectorl, an oscillation
of the receptive field properties evolves. Half an oscillation period is displayed approximately.
The wave vectorl and the parameters are the same as in figures 3 and 5.

The solutions (43) and (44) are identical except for a phase shift byπ/2 and we can
pick either one in order to discuss the nature of the solution. In figure 4, we show a two-
dimensional plot of the function (44) for the leading eigenvalue. Due to the phase factor in
the cortical coordinatex, an oscillation of the receptive field properties with a wave vectorl
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Figure 5. The first and second eigenvalues as a function of the wave vectorl. Due to the
rotational symmetry of the eigenvalue problem we consider the dependence of the eigenvalues
on one component of the wave vector (herel) only. The second component ism = 0. The
parameter values are chosen as in figure 3. A maximum of the leading eigenvalueλ0 is obtained
for l/(2π) = 0.078. This wave vector has also been chosen in figures 3 and 4 so that for a
common set of parameter values the dominating and, hence, relevant eigenfunctions are displayed
in these figures.

can be observed. In particular, a transition between an even and an odd weight profile occurs
that can be interpreted as a variation of the phase of the receptive field. The notion of a
phase stems from the modelling of receptive fields by Gabor functions [JP87, Mar80], that
is, by functions of the form

W(ααα) = exp

(
−|ααα|

2

2A

)
cos(kααα+ θ). (45)

For a phaseθ = 0 a positive or a negative subregion can be found in the centre of the
receptive field, whereas positive and negative subregions of the same size occupy the left
and right half of the receptive field for a phaseθ = π/2. A variation of the phase of the
receptive field from one cortical neuron to the next has also been observed experimentally
[HW62]. We would like to stress again that positive and negative regions of the leading
eigenfunction correspond to ON and OFF subfields of the receptive fields that emerge from
the developmental process, as was explained in more detail at the beginning of this section.

So far we have considered the eigenfunction corresponding to the leading eigenvalue
for a fixedwave vector only. We are interested, however, in the leading eigenfunction for an
arbitrary wave vector. We therefore have to diagonalize the matrix (37) for different wave
vectors and look for the leading eigenvalue. Since the eigenvalue problem is rotationally
symmetric, we can restrict our search to one dimension. In figure 5 the first and the second
eigenvalues that have been evaluated numerically have been plotted as a function ofl. The
second component of the wave vector has been taken to bem = 0. The parameter values
for the numerical evaluation in figure 5 correspond to those used in figure 3.

The maximum eigenvalue is obtained forl/(2π) = 0.078, a wave vector that has
also been used in figures 3 and 4. The basic structure of the eigenfunction corresponding
to λ0 is not sensitive to the wave vector indexl. Whateverl, the real part Rel,m(1ααα)
as given by (42) is a sum of Hermite polynomials multiplied by a Gaussian whose index
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sumc+ d is even. Similarly, the index sumc+ d of the non-vanishing coefficients of the
imaginary part Iml,m(1ααα) is always odd. The coefficients with indicesc, d whose values
are small (a0,0 for Rel,m(1ααα) anda1,0, a0,1 for Iml,m(1ααα)) dominate in the expansion of
the leading eigenfunction. The result is that the function Rel,m(1ααα) has a large central
region whereas Iml,m(1ααα) changes sign along the axis of the wave vectorl. Furthermore,
since the coefficient forc+ d = 6 of the leading eigenfunction is always less than 0.03 for
all wave vectorsl, it seems justified that only basis functions up toc + d = 6 have been
taken into account in the expansion (35).

It becomes obvious from figure 5 that within a range 06 l/(2π) 6 0.166 the
eigenvalueλ0 exceeds the maximum ofλ1 at l = 0. The eigenfunctions that correspond
to λ0 within this band of wave vectors are all of the same form; they grow fastest during
the development and, thus, determine the form of the emerging receptive fields.

It has been proposed [Mil94] that a sign change of the correlation function is crucial
to the emergence of orientation-selective receptive fields. We can test this hypothesis by
varying the constantk that determines the balance between positive and negative parts of
the correlation function (9). It turns out that a critical value ofk exists above which the
dominating eigenfunctions take a form as that shown in figure 4 (k > 0.1 with the remaining
parameters as in figure 3). Ifk is less than the critical value, the real part of the dominating
eigenfunction is given by a Gaussian, whereas the imaginary part is approximately zero.
The maximum eigenvalue is then atl = 0. Hence the developmental process will not result
in orientation-selective receptive fields, and no oscillation of the receptive field properties
can be observed in this case.

If the wave vector corresponding to the leading eigenvalue is non-zero, the dominating
eigenfunctions are always highly degenerate. The main reason for this degeneracy lies
in the rotational symmetry of the eigenvalue problem. Because of this symmetry the
eigenvalues for wave vectors with the same length but with different directions are all
identical and the corresponding eigenfunctions grow at the same rate during development.
The degeneracy has important consequences for the cortical map that emerges from the
Hebbian learning process. In particular, the receptive field properties will not only oscillate
in one direction from one cortical cell to the next; cf. figure 4. Rather, Fourier modes with
wave vectors of different directions but the same fixed length are superimposed within the
cortical map. This length corresponds to the maximum of the eigenvalueλ0 as a function
of l, as plotted in figure 5. Furthermore, as a consequence of the additional degeneracy of
the eigenfunctions (43) and (44) these Fourier modes may be equipped with an additional
and arbitrary phase factor.

4. Simulation of the developmental model

In this section the results of our mathematical analysis will be compared with simulations of
a slightly more involved model. The arbor, the intracortical interaction, and the correlation
function are chosen as introduced in section 2. Extensive simulations with slightly different
arbor and correlation functions can be found in [Mil94].

Cortical simple cells and ON and OFF inputs from the LGN are modelled by three
32× 32 grids where retinotopic positions on all grids correspond to each other. Each
cortical cell receives inputs from both types of LGN cells. These input neurons lie within
a circle centred at the retinotopic position of the cortical cell. The diameter of the circle
is set to 13 neurons. In other words, the Gaussian that is chosen for the arbor function is
cut at |x −ααα| = 6. This is mainly done for computational reasons, in particular, to save
computer time, and does not affect the simulation results.
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In order to be consistent with the simulations of [Mil94], the developmental equation (5)
is complemented by a constraint term that ensures that the sum of the synaptic weights
received by one cortical cell is kept fixed. In this way a competitive process between
afferent axons is modelled.

The full learning equation then takes the form

dWc(x,ααα, t)

dt
= ηA(x−ααα)

∑
x′
I (x,x′)

∑
c′=ON,OFF

∑
ααα′
Cc,c

′
(ααα,ααα′)Wc′(x′,ααα′, t)

−σ(x, t)A(x−ααα) (46)

where

σ(x, t) = 1

4
∑
ααα′ A(x−ααα′)

[ ∑
c=ON,OFF

∑
ααα′

d

dt

∣∣∣∣
un

Wc(x,ααα′, t)

]
(47)

and

06 Wc(x,ααα, t) 6 WmaxA(x−ααα). (48)

The expression d
dt

∣∣
un
Wc(x,ααα′, t) denotes the unconstrained developmental equation as

given by the first line of (46). The effects of the constraint on the dynamics of the learning
equation have been discussed in great detail in [MM94]. It turns out that the basic structure
of the emerging receptive fields is still determined by the leading eigenfunction of the
unconstrained learning equation, but that the receptive fields are sharpened as compared
to the unconstrained case. Furthermore, as in the unconstrained case, all weights saturate
either at the upper or at the lower bound given by (48).

The simulation algorithm proceeds along the same steps as the one used in [Mil94].
Both types of synapse have been assigned random initial values uniformly distributed over
[1± snoiseA(x−ααα))] with snoise= 0.2 . During each time step of the simulation the change
in synaptic strength is calculated according to (46), (47) and (48). The growth constantη

is adjusted in such a way that the standard deviation for the change in synaptic strength
becomes 0.01 for the first time step. The simulation is stopped if more than 90% of the
synapses have reached their upper or lower bounds.

Figure 6 shows the result of a simulation run with the parameter valuesA = 10.25,
rc =

√
C/A = 0.45, ri =

√
I/A = 0.2, k = 0.3 and ε = 1; cf. (7), (8) and (9). This

is the same set of parameters as used in figures 3, 4 and 5. Thus the simulation results
can be compared directly with the analytical predictions. In figure 6 an 8× 8 subregion of
the cortical grid is displayed. Each small square corresponds to the receptive field of one
cortical cell.

As was mentioned above, the fact thateither ON or OFF synapses exist between a
cortical cell at a positionx and a cell at positionααα in the LGN is due to the form of the
dominating eigenfunction for theγ -part of the eigenvalue problem (cf. (15)). This is also
true for the simulation run considered here. In figure 6 white and black dots denote those
ON and OFF synapses that have reached the upper bound.

We now turn to the question of how far the structure of the cortical map that has been
derived in our analysis of the eigenvalue problem in the last section coincides with the map
that emerges from a simulation of the developmental equation. To answer this question
we first consider the column on the left-hand side of figure 6. As can be seen clearly, the
phase of the receptive field varies from cell to cell. A comparison with figure 4 shows that
a similar periodic phase change occurs for an eigenfunction with a wave vectorl 6= 0. In
both cases a transition between a receptive field with an ON and an OFF subregion of equal
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Figure 6. Receptive fields. An 8× 8 detail from a grid of 32× 32 cortical neurons is displayed
for a simulation run with the parameter valuesA = 10.25, rc = 0.45, ri = 0.2, k = 0.3 and
ε = 1. Each small square corresponds to theWON(ααα,x)−WOFF(ααα,x) distribution for a fixed
cortical cell at positionx plotted as a function of1α, 1β. The cortical cells (and, hence,
the set of small squares) are arranged in anx, y coordinate system. White points correspond to
ON weights (positive values) and black points to OFF weights (negative values). The question of
how the weight distribution displayed here relates to the structure of the dominating eigenfunction
is discussed in the text.

size (phaseπ/2) and a receptive field with a central ON or OFF region (phase 0) takes
place.

As predicted from our analysis of the eigenvalue problem, oscillations of the receptive
field properties with different orientations are superimposed in figure 6. In this way one
gains the impression that the preferred orientation rotates from one cortical cell to the
next and that different preferred orientations are grouped around certain points, so-called
pinwheels. The above properties of the cortical map in our simulation model have also been
observed experimentally by the technique of optical imaging [BS86, BG91, BG93].
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5. Discussion

We have performed an analysis of a developmental model proposed in [Mil94] that describes
the emergence of orientation-selective receptive fields of simple cells. To this end we have
calculated the eigenfunctions and eigenvalues associated with the linear differential equation
that models the Hebbian mechanism of the developmental process. The eigenfunctions that
correspond to the leading eigenvalues grow fastest during the development and, hence,
determine the receptive fields and the map structure of cortical cells.

There are three central results that can be derived from the above eigenvalue analysis and
that can also be observed in simulations of the model. First, as hypothesized in [Mil94], zero
crossings of the correlation function are crucial for the emergence of orientation-selective
receptive fields. We have investigated the effect of zero crossings in section 3 by a variation
of the parameterk of the correlation function. Second, since all Fourier modes in the cortical
coordinateu are eigenfunctions of the learning equation, the receptive field properties, in
particular, the phase of the receptive field, varies periodically from one cortical cell to the
next. Since there is a broad maximum of nearly optimal wave vectors we expect local but no
long-range periodicity. Third, because of the rotational symmetry of the problem, Fourier
modes with wave vectors of a certain length but an arbitrary direction are superimposed in
the cortical map.

There is a large variety of models describing cortical orientation maps; for an overview
see [EOS95]. Central to most of these models is a spatial wavelength that characterizes the
periodic variation of the receptive field properties within the cortical map [WPG94]. This
wavelength is either due to an instability of a developmental learning equation with respect
to certain Fourier modes [Swi82, OBS92] or may be introduced by explicit wavelength
selection [RS90, NW93]. In the latter case one tries to reproduce the cortical map of a certain
receptive field property by simply filtering white noise with a spatially isotropic bandpass.

Our analysis of the eigenvalue problem provides a link between formal models
describingeffective, low-dimensional feature maps such as the orientation map and the
more microscopic picture of the development of synaptic wiring patterns. In particular,
the processes that take place during Hebbian development lead to orientation-selective
receptive fields with phase and orientation that vary along the cortical coordinates. In our
developmental model, the random initial conditions are projected onto the eigenfunctions
of the learning equation that grow according to the size of the respective eigenvalues. As
we have discussed above, the distribution of the eigenvalues in dependence upon the wave
vector l has a fairly broad maximum around an optimal length|l| of the wave vector
and is rotationally symmetric. The developmental process has therefore a similar effect as
filtering with a spatially isotropic bandpass and the functionλ0(l) as displayed in figure 5
can be interpreted as the corresponding filter profile. The location of the maximum of the
wavelength filter depends on the spatial correlations in the input and the typical length of
cortical connectivity.

We emphasize that, in the present correlation-based learning model, we did not
include inhibitory interactions between cortical neurons of, for example, different preferred
orientation. This shows that competitive processes are not necessary to achieve a map-
like organization of orientation tuning. As discussed by Wolfet al [WPG94], differences
between various models of cortical pattern formation may well show up only during the
saturation phase where nonlinearities become important. Our analysis is based on a linear
learning equation and therefore does not give an adequate picture of saturation. To study
nonlinear effects in cortical map formation, more elaborate mathematical techniques have
to be used.
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