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Abstract. A model for the development of spatiotemporal
receptive fields of simple cells in the visual cortex is pro-
posed. The model is based on the 1990 hypothesis of Saul
and Humphrey that the convergence of four types of input
onto a cortical cell, viz. non-lagged ON and OFF inputs and
lagged ON and OFF inputs, underlies the spatial and tem-
poral structure of the receptive fields. It therefore explains
both orientation and direction selectivity of simple cells. The
response properties of the four types of input are described
by the product of linear spatial and temporal response func-
tions. Extending the 1994 model of one of the authors (K.D.
Miller), we describe the development of spatiotemporal re-
ceptive fields as a Hebbian learning process taking into ac-
count not only spatial but also temporal correlations between
the different inputs. We derive the correlation functions that
drive the development both for the period before and after
eye-opening and demonstrate how the joint development of
orientation and direction selectivity can be understood in the
framework of correlation-based learning. Our investigation
is split into two parts that are presented in two papers. In
the first, the model for the response properties and for the
development of direction-selective receptive fields is pre-
sented. In the second paper we present simulation results
that are compared with experimental data, and also provide
a first analysis of our model.

1 Introduction

Simple cells in the visual cortex of cats and many other
mammals represent the first cortical processing stage of the
visual pathway. Unlike neurons in the lateral geniculate nu-
cleus (LGN) [27], which project to the visual cortex, most
simple cells respond selectively to spatial and temporal stim-
ulus parameters such as orientation [26] or the direction of
stimulus motion [28]. The combined spatial and temporal
response properties of cortical neurons are summarized by
the notion of a spatiotemporal receptive field; for a review
see [53].
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Since the first discovery of orientation selectivity by
Hubel and Wiesel [26], strong efforts have been made to
clarify by experimentation the physiological mechanisms
that underlie the receptive field properties of simple cells.
Much current evidence [7, 18, 21, 54] supports the classical
model of Hubel and Wiesel [28] for the origin of orienta-
tion selectivity: ON- and OFF-center LGN neurons converge
onto a simple cell, forming subregions within the receptive
field of the cortical neuron that are aligned along its preferred
orientation.

The physiological origins of direction selectivity and
other temporal receptive field properties are less clear. There
is an ongoing debate on the question of whether direction se-
lectivity is mainly caused by cortico-cortical connections (for
a review see [38]) or by geniculo-cortical connections [57].
In either case, direction selectivity might additionally be am-
plified [14,38] or suppressed [21] by intracortical feedback.

It has been proposed by several authors that alinear
spatiotemporal receptive field, as can be measured in re-
verse correlation experiments, might underlie cortical direc-
tion selectivity [1,10,12,25,64]. The discovery of non-lagged
and lagged cells in the LGN of cats [42, 43] has given sup-
port to this hypothesis. Non-lagged and lagged cells that
project to the cortex and are combined linearly at a sim-
ple cell could provide the temporal offset that is necessary
to create a direction-selective receptive field [20, 21, 57].
Experimental support for this hypothesis comes from sev-
eral sources. In extracellular measurements, an analysis of
the time structure of cortical responses shows mixtures of
lagged-like and non-lagged-like timing in the responses of
direction-selective cells [57]. In intracellular recordings of
direction-selective cells [32], analysis of the time structure of
excitatory postsynaptic potentials (EPSPs) [34] also demon-
strates two underlying temporal components that match the
temporal responses of lagged and non-lagged inputs, respec-
tively. Finally, in at least a few cells, direction selectivity
emerges in otherwise non-direction-tuned cells when intra-
cortical influences are suppressed, leaving only feed-forward
influences [21]. In Sect. 2 we will investigate in greater detail
a model of cortical direction selectivity based on convergent
lagged and non-lagged input from the LGN. This model will
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serve as a working hypothesis throughout this and the fol-
lowing paper.

It is a longstanding view that the development of spa-
tiotemporal receptive field properties of simple cells is gov-
erned by an activity-dependent learning process that deter-
mines how the synapses are modified during the critical pe-
riod shortly before and after birth. In the case of orientation
selectivity, there is only indirect evidence for this hypothesis.
Many simple cells of cats show both orientation and direc-
tion selectivity already before eye-opening [3, 5, 29, 52, 58],
and monkeys are born with mature orientation selectiv-
ity [30]. Thus, it has not been possible to test whether
the emergence of orientation selectivity in these species is
activity-dependent. In ferrets, the major development of ori-
entation selectivity depends on neural activity, but again
some orientation selectivity is present before experimental
manipulations of activity are possible [6]. It appears that
visual experience cannot substantially modify the preferred
orientations of cortical cells [23, 59, 60].1 In the case of di-
rection selectivity, the evidence for activity-dependent devel-
opment appears to be stronger: direction selectivity can be
abolished by strobe-rearing during the critical period, which
abolishes motion from the visual environment, while respon-
siveness and orientation tuning remain largely intact [4,31].
Both orientation and direction selectivity are sharpened by
normal visual experience; for reviews see [22, 47, 52, 58].

Numerous models have been formulated to describe
activity-dependent learning as a self-organization process in
accord with a Hebbian rule [16,17,35–37,47,51,63,65,67].
Most of these models have exclusively concentrated on the
development of spatial properties of the receptive field, such
as orientation selectivity. In particular, in the model of one of
the present authors [16, 47], orientation selectivity develops
through a competition between ON-center and OFF-center
inputs. The development of orientation selective simple cells
is determined mainly by the spatial correlations of the ON-
and OFF-cell inputs from the LGN that converge onto the
simple cell. The remaining authors of the present paper
have developed a framework [65] for extending the spatial
correlation-based approach [46, 48] to the learning of spa-
tiotemporal receptive field properties through spatiotemporal
correlations.

In this article, we combine the spatial models of [16,47]
with the spatiotemporal model of [65] to study the joint
emergence of directionand orientation selectivity through
a competition between lagged and non-lagged ON and OFF
inputs. A more abstract model that concentrates on the devel-
opment of direction selectivity alone has concurrently been
explored by Feidler et al. [17]. In the same way that the
spatial correlation of the input activity plays a key role dur-
ing the development of orientation selectivity, the temporal
correlation of the input activity proves crucial for the devel-
opment of direction selectivity.

1 Many early results suggested that a visual environment containing only
one orientation would lead to the conversion of all cortical cells to prefer
that orientation. However, later work showed that there did not appear to
be more than the normal number of cells responsive to that orientation.
What had changed was that the number of unresponsive cells increased,
presumably because cells that had preferred other orientations were not
stimulated and so became “sick” and lost responsiveness [59,60]. Reviews
and discussions of these results can be found in [22, 52, 58].

This paper is organized as follows. In Sect. 2 we intro-
duce the linear model that is used to describe the spatiotem-
poral response of a simple cell and investigate the context
in which such a simple model describes neuronal behavior
appropriately. The developmental model itself is then for-
mulated in Sect. 3 and the correlation functions that drive
the development are derived both for the period before and
after eye-opening.

In a subsequent paper [66] we will present simulation
results of our model for different scenarios and compare
them with experimental data. Furthermore, a simple analysis
of the developmental equation will be performed.

2 Spatiotemporal receptive field properties
of simple cells

One of the most accurate experimental methods to mea-
sure the structure of spatiotemporal receptive fields of sim-
ple cells is the reverse correlation technique [10, 15]. Small
bright and dark bars are presented on a dimly lit screen
within the receptive field of the cell one records from. From
this mesurement one obtains two three-dimensional response
profiles, corresponding to bright and dark stimuli, with two
spatial dimensionsx and y and one temporal dimensiont.
An (x, y, t) point of such a response profile represents the
probability that the cell firest ms after a small bright or
dark bar has been flashed into the cell’s receptive field at
a positionx = (x, y). The spatiotemporal receptive field is
obtained by subtracting the two response profiles. The under-
lying assumption of this subtraction will be discussed later.
In a spatiotemporal receptive field, positive values denote
bright-excitatory subregions, whereas dark-excitatory subre-
gions are characterized by negative values. In order to facil-
itate the display of these spatiotemporal receptive fields, one
normally integrates along the axis of preferred orientation.

Two types of spatiotemporal receptive fields can be ob-
served experimentally, viz. spatiotemporally separable and
non-separable receptive fields [10, 12]. In the first case the
response function can be written as the product of a spa-
tial and a temporal part, whereas in the second case this
is not possible; for a schematic drawing see Fig. 1a. As was
pointed out by Adelson and Bergen [1] and Watson and Ahu-
mada [64], spatiotemporallynon-separable receptive fields
may give rise to a direction-selective response of the cell.
An example is shown in Fig. 1b and c. If one assumes that
a simple cell acts as a linear spatiotemporal filter, its re-
sponse to rightward motion can be derived from Fig. 1. A
bar oriented along they-axis (that is perpendicular to the
image plane) will evoke its strongest positive response af-
ter a longer latency for smallx than for largex. If the bar
moves to the right at a speedv that corresponds to the slope
of the ON subregion in thex-t plane, the difference in la-
tency is compensated for and a short but strong response is
evoked at the cell so that the membrane potential will be
above the threshold level and the cell will fire. Formally,
the response of the cell at a particular time can be obtained
from Fig. 1 by integrating along a line of slopev that has its
starting point on the lower edge of the receptive field (i.e.,
where t = 0) at the current position of the stimulus. For
rightward motion this integration line is parallel to the ON
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Fig. 1a–c.Spatiotemporal receptive fields for one spatial dimension (axis of
motion) and the temporal dimension are displayed schematically. A larger
value oft corresponds to a larger time difference between the stimulus and
the response, that is, to looking further into the past; cf. the argument ofLτ

in (1). a A spatiotemporallyseparablereceptive field can be described by
the product of a spatial and a temporal response function. It responds in the
same way to rightward and leftward motion.b and c A spatiotemporally
non-separablereceptive field that is most sensitive to rightward motion is
shown. If a narrow bar oriented perpendicular to the image plane moves
along thex-axis at a speedv, the response of the cell at a particular moment
can be obtained from the figure by integrating along a line (the thick one)
with slopev (towards thet-axis) that cuts thex-axis (wheret = 0) at the
current position of the stimulus. For a bar moving to the right, the cell
response is best if the (thick) integration line runs through the central ON
subregion of the spatiotemporal receptive field corresponding to a current
position of the stimulus on the right-hand side of the receptive field (cf.b).
In c the stimulus moves to the left. In order to obtain the response of the
cell at a particular time one has to integrate along a line of opposite slope
to that of b. Since the (thick) line now crosses ON and OFF subregions
and the sign of the receptive field always varies along such a line, the cell
response is weak. For a similar plot cf. [25]

and OFF subregions of the spatiotemporal receptive field
and one obtains strong responses when the stimulus crosses
the receptive field; cf. Fig. 1b. If the stimulus moves to the
left, ON and OFF subregions cancel along the integration
line and the cell’s response will be weak.

What are the physiological mechanisms that underlie
such a spatiotemporal receptive field structure? As was al-
ready pointed out in the Introduction, we assume that the
convergence of four different types of spatiotemporal chan-
nels onto the cortical cell is responsible for the structure of
the receptive field. These are ON- and OFF-type channels
that come in two different temporal “flavors,” namely, non-
lagged and lagged. In contrast to the non-lagged channels,
the lagged ones show early inhibition rather than excitation.
The inhibition is followed by a delayed excitation that is
weaker but broader than the initial excitation of non-lagged
inputs [57]. The spatiotemporal channels are modeled by the
product of a spatial linear response functionRc(α,α′) and
a temporal one,Lτ (t − t′,α), where the indexc stands for
ON or OFF inputs, the indexτ for lagged or non-lagged
inputs, andα labels positions in the LGN. The product
Rc(α,α′)Lτ (t−t′,α) describes the response of a cell in the
LGN to the activity of the photoreceptors. Such a description
is in agreement with the experimental observation that LGN
receptive fields are approximately spatiotemporally separa-
ble (ignoring the slower temporal response of the surround
relative to center) [12]. A spatiotemporal channel charac-
terized by the two functionsRc(α,α′) and Lτ (t − t′,α)
captures LGN responses and thus summarizes processing
along the visual pathway from the photoreceptors up to the
thalamo-cortical synapse. At the level of the cortex, these
channels are summed and weighted by the feed-forward

synapsesJc,τ (x,α) from the LGN to a simple cell at site
x in the visual cortex. A simple cell also receives input
from other cortical cells, weighted by intracortical synapses
B(x,x′). For the sake of simplicity we assume that no ad-
ditional time structure is introduced by the intracortical con-
nections.

To summarize, we obtain the following functional form
for the local potential of a simple cell:

h(x, t) =
∑

c=ON,OFF

∑
τ=nl,l

∑
α

Jc,τ (x,α)

×
∫ ∞

−∞
dα′

∫ ∞

−∞
dt′Rc(α,α′)Lτ (t− t′,α)S(α′, t′)

+
∑
x′

B(x,x′)h(x′, t) . (1)

HereS(α′, t′) denotes either the deviation of the stimulus in-
tensity from a mean background luminance or the deviation
of the photoreceptor activity from a mean noise level at a
positionα′. Therefore,S can take both positive and negative
values. For example, during a reverse correlation experiment
positive values ofS denote a bright bar and negative values a
black bar. The coordinateα refers to the retinotopic position
of the center of the receptive field of an LGN cell. Finally,
x denotes the retinotopic position of a simple cell. It should
be noted that the temporal part of the response function may
also depend on the retinotopic position of the LGN cell. This
is due to our assumption that the main time structure of our
model is introduced by non-lagged and lagged cells in the
LGN.

Since (1) is linear it can be rewritten

h(x, t) =
∑
x′

I(x,x′)
∑

c=ON,OFF

∑
τ=nl,l

∑
α

Jc,τ (x′,α) (2)

×
∫ ∞

−∞
dα′

∫ ∞

−∞
dt′Rc(α,α′)Lτ (t− t′,α)S(α′, t′)

with

I(x,x′) = 1 +B(x,x′) +B2(x,x′) + . . .

= [1−B(x,x′)]−1. (3)

For the last equation to hold, the eigenvalues ofB must
have an absolute value of less than one. The spatial ker-
nel Rc(α,α′) is supposed to be shift invariant, that is
Rc(α,α′) = Rc(α − α′). The functionRc(α − α′) mod-
els ON-center and OFF-center receptive fields, and will be
given by a Mexican hat function modeled as the difference
of two Gaussians [56].

The functional form we have chosen for the temporal
linear response functionLτ (t−t′) for a non-lagged or lagged
input is based on theoretical considerations due to Dong
and Attick [13]. From information-theoretic arguments they
were able to derive the following power spectrum of the cell
response,

Lτ (ω)Lτ (ω)∗ =
ω2

[1 + (ω/ωc)2]3
, (4)

that agrees well with measurements of Saul and Humphrey
[57] for a critical frequencyfc = ωc/(2π) ≈ 6 Hz for non-
lagged andfc ≈ 4 Hz for lagged cells. Because the power
spectrum in (4) does not specify the phase of the Fourier
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Fig. 2. The non-lagged temporal response functionLnl(t), and lagged re-
sponse functionsLl (t) for the three valuesfs = 5.8, 9.2, and 15.3 Hz, are
plotted. The other parameter values arefc = 6 Hz for non-lagged cells and
fc = 4 Hz for lagged cells. These values have been kept fixed throughout
this paper

transform of the response function, it does not determine
a unique response function. However, if one imposes the
additional constraint that the delay2 introduced by the filter
is minimal [39], one obtains a unique form for the Fourier
transform of the temporal response function of non-lagged
cells,

Lnl(ω) =
iω

(1 + iω/ωc)3
. (5)

For non-lagged cells the requirement of a minimal tempo-
ral delay seems to be a plausible assumption on biological
grounds. After an inverse Fourier transform the linear re-
sponse of a non-lagged cell takes the form

Lnl(t) =

{
1
Nnl

t(1− 1
2ωct)e

−ωct for t ≥ 0
0 for t < 0

(6)

where the total power of the functionLnl is normalized to 1
by the pre-factor 1/Nnl. Figure 2 shows the response func-
tion, which is in good agreement with the linear response
function derived experimentally by Saul and Humphrey [57].
The cell fires strongly during the first 50 ms and falls below
the mean firing rate for about 300 ms thereafter.

According to measurements recorded by Saul and
Humphrey, the response of a lagged channel shows a
markedly different form. A short drop in activity is fol-
lowed by a more delayed and broader peak of the firing
rate, as compared to the non-lagged case. The cell activ-
ity then falls below the mean firing rate again for another
300 ms. However, the power spectrum of a lagged cell’s
temporal response is well described by the same function as
was found for the non-lagged case.

To obtain the lagged response function, we now, using a
purely heuristic approach, multiply the Fourier transform of
the non-lagged response function by (1−iω/ωs)/(1+iω/ωs),
to arrive at

2 By delay we mean the group delay of the filter, that is,∂Φ(ω)/∂ω|ω=ω0

with Φ(ω) being the phase of the Fourier transform of the filter andω0
being the peak frequency of the Fourier transform of a typical signal. The
group delay is a measure for the temporal shift of the envelope of the
signal that is introduced by the filter. Besides the requirement of a minimal
group delay there are two additional formal requirements so thatLnl(ω)
is defined uniquely by its power spectrum. First, the filter function has to
be stable, i.e.,

∫ +∞
−∞ |Lnl(t)| exp(−ε|t|)dt < ∞, and second, it has to be

causal, i.e.,Lnl(t) = 0 for t < 0. These two requirements are fulfilled for
every “reasonable” filter function

Ll (ω) =
iω (1− iω/ωs)

(1 + iω/ωc)3(1 + iω/ωs)
. (7)

In this way the form of the power spectrum (4) that is valid
for both non-lagged and lagged cells remains unchanged.3

The group delay of the response function, however, is in-
creased as compared to the non-lagged one. By varying the
shift frequencyωs, the delay between the lagged and non-
lagged response can be tuned. Performing the inverse Fourier
transform, one obtains fort ≥ 0:

Ll (t) = sgn(ωs − ωc)
1
Nl

{
2ω2

s(e−ωst − e−ωct)

+ e−ωct
[
t(ω3

s + ω3
c + ω2

sωc − 3ω2
cωs) (8)

− 1
2
t2ωc(ωc + ωs)(ωs − ωc)

2
]}

whenωs /= ωc, and

Ll (t) =
1
Nl

t(−6 + 9ωct− 2ω2
ct

2)e−ωct (9)

whenωs = ωc, while Ll (t) vanishes whent < 0.
The functionsLnl and Ll have been plotted in Fig. 2,

showing the form that is to be expected experimentally. The
only parameter that has been varied systematically during the
simulations isfs = ωs/(2π). By changingfs, the group delay
time of the system is modified. It turns out that our model
of linear response predicts that, for experimentally observed
delays, the correlation between a lagged and a non-lagged
channel is very weak.

The question of the degree to which a simple cell’s re-
sponses can be characterized by a linear spatiotemporal filter
has been subject to intense experimental investigation dur-
ing the last few years. To the degree to which it can be so
characterized, it should be possible to predict the response
of the cell to a complicated stimulus like a stationary or a
drifting sine wave grating from the reverse correlation mea-
surements by simply convolving the input pattern with the
spatiotemporal response function. As was shown by DeAn-
gelis et al. [11], tuning curves for spatial and temporal fre-
quency measured with sine-wave gratings agree well with
linear predictions from reverse correlation measurements.
Furthermore, experiments of Reid et al. [55], Albrecht and
Geisler [2] and DeAngelis et al. [11] demonstrate that such
a purely linear model accurately evaluates the preferred di-
rection of motion of a simple cell. However, the direction
selectivity index, which characterizes the difference in size
of the responses for the preferred and the non-preferred di-
rection, is underestimated by a linear model by a factor of
1/3 to 1/2.

It has been proposed by Heeger [25] and by Albrecht and
Geisler [2] that a non-linearity describing the spike genera-
tion mechanism can account for such discrepancies between
the linear model and the experimental results. Membrane po-
tentials are combined linearly in such a model, an idea that
is supported by the intracellular recordings of Jagadeesh et
al. [32].

One reason for the largely linear behavior of simple cells
is that a simple cell is not only excited by a bright stimulus

3 Furthermore,Ll (ω) is chosen in such a way that it is stable and causal;
cf. the previous footnote
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presented within the ON subregion of the receptive field, but
is also inhibited by a dark stimulus within the ON subregion
(and vice versa for OFF subregions) [19]. This makes it
reasonable to subtract the spatiotemporal response profiles
for a bright and a dark stimulus in a reverse correlation
measurement, as described above.

In general, a linear model is always particularly appro-
priate if only small deviations from a mean value are con-
sidered. This is the case in our present study. When we
describe the development of the receptive field structure be-
fore eye-opening, only small deviations from a mean synap-
tic strength level are considered, as will be outlined in the
next section. Furthermore, the emerging receptive fields are
compared with reverse correlation measurements. These pre-
dict responses to small deviations from a mean luminance,
again justifying the simplicity of our approach.

We now turn to a developmental model that aims to prop-
erly incorporate the effects oftime in the learning equations.

3 A developmental model
for spatiotemporal receptive fields

It is commonly assumed that activity-driven modifications
of synapses take place according to some sort of Hebbian
learning rule [24]. A Hebbian synapse is strengthened if
the pre- and postsynaptic activity or depolarization are posi-
tively correlated, and is kept fixed or weakened for negative
correlations.

A process of long-term potentiation involving NMDA
receptors has been proposed [8, 9] as a possible mechanism
that might underlie such development by correlated pre- and
postsynaptic activity. Sprouting and retraction of axons and
dendrites that are guided by neurotrophins could also follow
a Hebbian principle, if the amount of neurotrophins available
at a certain instant of time and the rate of cell growth are
influenced by cell activity [61, 62].

In our model only thalamo-cortical synapses are modi-
fied by Hebbian learning, whereas intracortical synapses are
kept fixed. Since we aim to describe the development of
spatiotemporal receptive fields we have to carefully con-
sider possible temporal effects in our model. We assume
that the change in synaptic strength at timet is determined
by the correlation between the postsynaptic membrane po-
tential h(x, t) according to (2) and the presynaptic cell’s
deviation from a mean firing rate. Then the correlation is
integrated over a learning window that lasts for a timeΛ so
that we find [65]

dJc,τ (x,α, t)
dt

=
λ

Λ

∫ Λ

0
dsA(x−α)h(x, t− s) (10)

×
[ ∫ ∞

−∞
dt′
∫ ∞

−∞
dα′Rc(α−α′)Lτ (t− s− t′,α)S(α′, t′)

]
.

HereA(x − α) denotes an arbor function that restricts the
possible synaptic wirings that might emerge from the learn-
ing process. In particular,A(x − α) indicates the number
of synapses between a positionα in the LGN and a corti-
cal positionx that are modified during development. This
mathematical framework can also embrace simple models
involving sprouting and retraction guided by a Hebbian prin-
ciple [50].

In (10) the presynaptic activity is characterized by the
full spatiotemporal response function of the channel (non-
lagged or lagged) that is linked to the cortical cell by the
respective synapse. So the functionLτ (t,α) that character-
izes the temporal behavior of the different channels appears
both in the presynaptic term and the postsynaptic membrane
potential. The temporal response properties of the differ-
ent channels therefore strongly influence the outcome of the
learning process.

By inserting (2) into (10) we obtain the following system
of differential equations:

dJc,τ (x,α, t)
dt

= λA(x−α)
∑
x′

I(x,x′) (11)

×
∑

c′=ON,OFF

∑
τ ′=nl,l

∑
α′

Cc,c′;τ,τ ′
(α,α′, t)Jc

′,τ ′
(x′,α′, t) ,

whereCc,c′;τ,τ ′
(α,α′, t) denotes the correlation function

Cc,c′;τ,τ ′
(α,α′, t) =∫ ∞

−∞
dα′′

∫ ∞

−∞
dα′′′Rc(α−α′′)Rc′ (α′ −α′′′)

×
∫ ∞

−∞
dt′
∫ ∞

−∞
dt′′Lτ ′

(t− t′,α)Lτ ′
(t− t′′,α′)

× 1
Λ

∫ Λ

0
dsS(α′′, t′ − s)S(α′′′, t′′ − s). (12)

In (11) and (12) we have made the additional assumption
thatJc,τ (x,α, t) changes slowly within the timescale of the
learning window. In particular, we setJc,τ (x,α, t) constant
within the learning window so that a separation of timescales
is performed.

The term 1/Λ
∫ Λ

0 dsS(α′′, t′−s)S(α′′′, t′′−s) describes
the correlation of the activity of the photoreceptors in space
and time, averaged over a learning periodΛ. We now con-
sider two possible cases that might be crucial for the de-
velopment of direction selectivity, and their corresponding
correlation functions. In the first case uncorrelated noise in
the photoreceptors drives the development, whereas in the
second case development in an environment of moving grat-
ings is considered.

Orientation and direction selectivity already develop be-
fore eye-opening [3,29,52,58]. Correlations within the input
activity S(α, t) during this period result from noise in the
photoreceptors. One plausible assumption, and also the sim-
plest one, is that a photoreceptor’s deviation from the mean
noise level is uncorrelated in space and time and fluctuates
fast as compared to the time periodΛ. This gives:

1
Λ

∫ Λ

0
dsS(α′′, t′− s)S(α′′′, t′′− s) = δ(α′′′−α′′, t′′− t′) .(13)

Using (13), the expression for the correlation function (12)
simplifies considerably, and we obtain

Cc,c′;τ,τ ′
(α,α′, t) = Cc,c′ (α,α′)Cτ,τ ′

(α,α′) (14)

with

Cc,c′ (α,α′) =
∫ ∞

−∞
dα′′Rc(α− α′′)Rc′ (α′ − α′′) , (15)

Cτ,τ ′
(α,α′) =

∫ ∞

−∞
dtLτ (t,α)Lτ ′

(t,α′) . (16)
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Fig. 3. The temporal correlation between non-lagged and lagged inputs
corr(fs) and the group delay time∂Φ(ω)/∂ω|ω=ωopt of the lagged response
function (in ms), forωopt ≈ 2π × 2.8 Hz (approximate peak of the power
spectrum), have been plotted as a function offs

The spatial part of the correlation functionCc,c′ (α,α′) is
given by the convolution of two center-surround receptive
fields and gives a Mexican-hat-type correlation function, as
has already been pointed out by Miller [47]. For the sake of
simplicity we model this correlation function as the differ-
ence of two Gaussians:

CON,ON(α,α′) = COFF,OFF(α,α′) = (17)

exp

(
−|α−α

′|2
σ2
c

)
− 1
γ2
c

exp

(
−|α−α

′|2
γ2
cσ

2
c

)
.

Furthermore, ifRON(α,α′) = −ROFF(α,α′) it follows that

CON,OFF(α,α′) = COFF,ON(α,α′) = −CON,ON(α,α′) . (18)

We have also performed simulations withCON,OFF =
COFF,ON = −0.5CON,ON, as used in most simulations of
Miller [47]. The structure of the simulation results, how-
ever, has not been affected by this change of the correlation
function.

According to (16), the temporal part of the correlation
functionCτ,τ ′

(α,α′) depends on the functional form of the
temporal response function. In most of the simulations de-
scribed in the following article [66] we make the simplifying
assumption thatLτ (t,α) does not depend on the positionα
of the LGN neuron. ThenCτ,τ ′

(α,α′) reduces to the 2× 2
matrix

Cτ,τ ′
=

(
Cnl,nl Cnl,l

C l,nl C l,l

)
=

(
1 corr

corr 1

)
. (19)

The diagonal elements are 1 because of the normalization of
the temporal response functions. The only parameter that
will be varied systematically during the simulations pre-
sented in [66] isfs. It determines the form of the lagged
response function and, in particular, the group delay time of
the filter. Hence we obtain

corr(fs) =
∫ ∞

−∞
dtLnl(t)Ll (t, fs) . (20)

The dependence of the function corr(fs) upon fs and the
group delay time of a lagged response function have been
plotted in Fig. 3. The group delay time is given by

Fig. 4. The four correlation functions corresponding to different combina-
tions of non-lagged and lagged inputs are displayed for the case of a narrow
bar of light moving from left to right across the retina at a speed of 15◦/s.
The whole receptive field has a width of 3◦. It should be noted that the
correlation function is no longer rotationally symmetric as in the case of
unstructured input; cf. (17). Along theα-axis one finds strong oscillations,
as shown; these oscillations are smoother along theβ-axis, perpendicu-
lar to the picture plane, so that excursions to negative values are small
or totally missing along that axis. Note that the peaks ofC l,nl(α − α′)
andCnl,l (α− α′) are shifted in or opposite to the direction of motion, in
contrast to the central peaks ofCnl,nl(α− α′) andC l,l (α− α′)

∂Φ(ω)/∂ω|ω=ωopt where Φ(ω) is the phase of the Fourier
transform of the lagged response functionLl (ω) andωopt ≈
2π×2.8 Hz denotes the frequency where the power spectrum
of the response of a lagged cell has its maximum.

If we vary fs between 5 and 15 Hz, the passage time
varies between 130 and 100 ms, which are typical delays
for lagged cells according to Saul and Humphrey [57]. The
function corr(fs), on the other hand, increases from−0.4 to
0.3 and vanishes whenfs = 9.2 Hz.

It will turn out that for corr(fs) near zero, that is, for
weak correlations between lagged and non-lagged cells,
strongly direction-selective receptive fields emerge, as ob-
served experimentally.

We now turn to a second case and derive the correla-
tion function that corresponds to an environment of moving
gratings. Such a structured input might arise either from
patterned vision after eye-opening or from spindle waves
traversing the LGN during sleep [33, 44].

For simplicity we consider an infinitely narrow line/bar
that moves into theα-direction at a speedv. For this case
the activity of a photoreceptor at timet′ and at pointα′′ is
correlated with the activity of the photoreceptor at timet′′
and at pointα′′′ = α′′ + (t′′ − t′)v, since the bar has moved
from α′′ to α′′′ during the time intervalt′′ − t′. Hence, the
correlation of the activity of the photoreceptors takes the
form

1
Λ

∫ Λ

0
dsS(α′′, t′−s)S(α′′′, t′′−s) = δ(α′′′−α′′−(t′′−t′)v)(21)

whereα = (α, β).
Inserting (21) into (12) and performing the integration in

(12) one obtains complicated functional forms for the four
spatial correlation functions corresponding to the different
combinations of non-lagged and lagged inputs. We do not
describe these functions explicitly but display them in Fig. 4
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for the case ofv = 15◦/s and a width of a receptive field of
about 3◦. While Cnl,nl(α,α′) andC l,l (α,α′) have a central
peak, the maximum ofCnl,l (α,α′) andC l,nl(α,α′) is shifted
in or opposite to the direction of motion.

The general case of bars with different directions of mo-
tion is either modeled by averaging the correlation function
in Fig. 4 over different directions of motion or by rotating
the correlation function during a simulation run.

We would like to stress that our approach of deriving
the correlation functions from a model of linear response
for the different channels can only serve as a kind of plau-
sible argument for the form of the correlation functions. It
would be more desirable to obtain these functions directly
from cross-correlation measurements in the LGN. There ex-
ist some experimental data about the correlations in activity
between retinal ganglion cells [40,41,45] that are consistent
with the form of the spatial correlation function as given in
(17). However, data on temporal correlations between non-
lagged and lagged cells in the LGN are not available yet.

The arbor functionA(x−α) and the intracortical interac-
tion functionI(x−x′) have been chosen in agreement with
Miller [47]. HereA(x−α) is proportional to the overlap in
area of a circle of radiusrA and a circle of radiuscArA with
centers separated by|x−α|. It is zero for|x−α| > DA/2,
whereDA is the arbor diameter, withrA = (DA− 1)/2 and
cA = 0.5. The functionI(x − x′) is a Mexican hat of the
form

I(x) = a(x)

[
exp

(
−|x|

2

σ2
I

)
− 1
γ2
I

exp

(
− |x|2
γ2
Iσ

2
I

)]
. (22)

As mentioned above only the parameterfs that determines
the form of the lagged response is varied systematically in
the simulations described in the second paper [66]. The other
parameters have been chosen in such a way [47] that stable
orientation selectivity emerges for the purely spatial case.
In particular, for the case of a noise-driven development
we assign the valuesσc = rcDA/2 with rc = 0.25 and
γc = 3 to the parameters of the spatial correlation function.
For the scenario in which moving gratings determine the
development we choose a speed ofv = 15◦/s for the patterns
moving across the retina. Furthermore, we have taken for
the parameters of the intracortical interaction function the
valuesσI = rIDA/2 with rI = 0.25 orrI = 0.4, γI = 3, and
a(0)=1 forx = 0 anda(x) = 0.5 otherwise. So the width of
both the correlation function and the intracortical interaction
function scale with the diameter of the arbor function. For
a more detailed discussion of the different parameter values
see Miller [47].

If synapses are modified according to (11), they will
grow or decrease boundlessly [49]. To avoid such biolog-
ically implausible behavior, upper and lower limits of the
couplings have been introduced. Since all afferent thalamo-
cortical couplings are assumed to be excitatory, we set

0≤ Jc,τ (x,α) ≤ JmaxA(x−α) (23)

with a default valueJmax = 4. Moreover, (11) is completed
by a constraint that ensures that the sum of the synaptic
weights received by one cortical cell is kept fixed. In this
way a competitive process between afferent axons is mod-
eled.

The full learning equation then takes the form

dJc,τ (x,α, t)
dt

= λA(x−α)
∑
x′

I(x,x′)

×
∑
c′

∑
τ ′

∑
α′′

Cc,c′;τ,τ ′
(α,α′′)Jc

′,τ ′
(x′,α′′, t)

− ε(x)A(x−α), (24)

where

ε(x) =

[∑
α′
∑

c=ON,OFF

∑
τ=nl,l

d
dt

∣∣
u J

c,τ (x,α′, t)
]

∑
α′,c,τ A

c,τ (x−α′) (25)

and d
dt

∣∣
u J

c,τ (x,α′) is given by (11). HereAc′,τ ′
(x−α′′) =

A(x − α) for all c′ and τ ′ (the arbor function is identical
for all input types); explicitly noting the input type will be
useful when we consider inactivation of synapses that reach
the maximum or minimum allowed values. The effects of
the constraint on the dynamics of the learning equation have
been discussed in detail elsewhere [49].

4 Outlook

In a subsequent paper [66] we study the developmental
model derived above in numerical simulations and present
a first analysis of the model. We consider different scenar-
ios that cover the development both before and after eye-
opening. A thorough discussion of our model and a compar-
ison with experimental data will also be presented there.
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