
Biol Cybern (2005)
DOI 10.1007/s00422-005-0006-z

ORIGINAL PAPER

Oliver G. Wenisch · Joachim Noll
J. Leo van Hemmen

Spontaneously emerging direction selectivity maps in visual cortex
through STDP

Received: 14 March 2005 / Accepted: 1 July 2005
© Springer-Verlag 2005

Abstract It is still an open question as to whether, and how,
direction-selective neuronal responses in primary visual cor-
tex are generated by feedforward thalamocortical or recurrent
intracortical connections, or a combination of both. Here we
present an investigation that concentrates on and, only for
the sake of simplicity, restricts itself to intracortical circuits,
in particular, with respect to the developmental aspects of
direction selectivity through spike-timing-dependent synap-
tic plasticity. We show that directional responses can emerge
in a recurrent network model of visual cortex with spiking
neurons that integrate inputs mainly from a particular direc-
tion, thus giving rise to an asymmetrically shaped receptive
field. A moving stimulus that enters the receptive field from
this (preferred) direction will activate a neuron most strongly
because of the increased number and/or strength of inputs
from this direction and since delayed isotropic inhibition
will neither overlap with, nor cancel excitation, as would
be the case for other stimulus directions. It is demonstrated
how direction-selective responses result from spatial asym-
metries in the distribution of synaptic contacts or weights of
inputs delivered to a neuron by slowly conducting intracorti-
cal axonal delay lines. By means of spike-timing-dependent
synaptic plasticity with an asymmetric learning window this
kind of coupling asymmetry develops naturally in a recur-
rent network of stochastically spiking neurons in a scenario
where the neurons are activated by unidirectionally moving
bar stimuli and even when only intrinsic spontaneous activ-
ity drives the learning process. We also present simulation
results to show the ability of this model to produce direction
preference maps similar to experimental findings.
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1 Introduction

The development of direction-selective neuronal responses
in visual cortex is widely believed to be based on activity-
dependent Hebbian learning (Wimbauer et al. 1997; Feidler
et al. 1997; Senn et al. 2002) early in an animal’s life. It is,
however, still much debated (Livingstone 1998; Clifford and
Ibbotson 2003) what kind of neuronal circuit underlies the
generation of directional responses and where it is located.
With the primary visual cortex being the first level at which
these selectivities are found, it is evident that either thalamo-
cortical and/or intracortical processing must be responsible
for direction selectivity. In addition, the realization through
feedforward or recurrent circuits, the role of inhibition, the
spatiotemporal summation of channels of different temporal
response characteristics, and contributions of short- and long-
term plasticity have been considered in a multitude of exper-
imental and theoretical investigations (Suarez et al. 1995;
Wimbauer et al. 1997; Mineiro and Zipser 1998; Livingstone
1998; Sabatini and Solari 1999; Rao and Sejnowski 2001;
Senn et al. 2002; Roerig et al. 2003; Shon et al. 2004).

A mechanism suggested by Mehta and Wilson (2000)
attributes direction selectivity to a simple asymmetrical tha-
lamocortical connection scheme that had originally been pro-
posed for hippocampal place cells in rats. The latter encode
the position of a rat in its environment in an experience-
dependent fashion. When the rat traverses a region of space
several times in the same direction the synaptic connections
to a neuron with a corresponding place field will shift in a
direction opposite to the direction of motion and thus polarize
the initally isotropic synaptic input pattern. This has the effect
that, after learning, the neurons show anticipatory responses
for the future location of the rat. Mehta suggests that the same
principle of asymmetric integration fields might be utilized in
visual cortex neurons which could then ‘anticipate a moving
stimulus’. The underlying asymmetry, as in the hippocam-
pus, could be achieved by spike-timing-dependent learning
with an asymmetric learning window.
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Here we investigate the idea of learning an asymmetric
coupling structure for intracortical connections in a recurrent
network of stochastically spiking neurons. We have taken
into consideration the finding of Bringuier et al. (1999) that
the integration field of a cortical neuron is not homogeneous
with regard to the delay at which inputs are registered in
its membrane potential. Probably due to slow axonal propa-
gation the action potential of an input cell has to travel the
longer, the larger the distance between source and target cell
is. Accordingly, the delay of inputs increases with their dis-
tance resulting in an isotropic latency basin. As we will show,
this specific temporal structure within the integration field can
be utilized beneficially to extract spatiotemporal correlations
from activity in the network.

Only until recently theoretical models have been based al-
most exclusively on rate descriptions of the neuronal dynam-
ics and learning rules were assumed to be sensitive only to
rate correlations.With the experimental finding that the learn-
ing process in a synapse depends on the relative timing of the
spiking activity of its pre- and postsynaptic neuron (Markram
et al. 1997; Bi and Poo 1998; Zhang et al. 1998; Feldman
2000; Froemke and Dan 2002), models were quickly adapted
to incorporate the so-called spike-timing-dependent plastic-
ity (STDP): Only neuronal connections from inputs that have
emitted a spike shortly before their postsynaptic target are
strengthened whereas all input neurons that send a spike af-
ter their target cell get weakened resulting in a temporally
asymmetric learning rule. Because synaptic changes occur
only within a short period of time centered around the post-
synaptic spike (ca. ±50 ms) it is often referred to as a ‘learn-
ing window’(Gerstner et al. 1996). Kempter et al. (1999) have
analyzed the main differences between STDP and rate-based
models.

Bartsch and van Hemmen (2001) and also Yao et al.
(2004) have indicated how orientation selectivity can de-
velop in a recurrent network model of primary visual cortex
by STDP forming smooth maps of orientation preferences.
Extending the purely spatial to spatio-temporal fine-tuning
of synapses by an asymmetrical learning window we show
how maps of direction preference may emerge in a similar
scenario, much like the maps found experimentally in opti-
cal-imaging studies (Weliky et al. 1996; Shmuel and Grinvald
1996).

By considering two activity scenarios we demonstrate
that both highly correlated, structured visual input and cortex-
intrinsic spontaneous activity is able to drive the learning of
synapses with an asymmetrical learning window to produce
direction selective neurons. Whereas spatiotemporal correla-
tions in visual input arise from, e.g., moving contrast edges
within the sensory input relayed from the retina, the correla-
tions in the cortical network’s spontaneous activity without
external input are generated solely by the processing through
its already existing connections. The simulation results show
that even without structured input the formation of typical
direction preference maps is possible.

Part of this work has already been presented in Noll et al.
(2002).

2 Model Description

As already pointed out, the learning processes in a neural net-
work depend on the exact timing of the spiking of its neurons.
We therefore start with a network of neurons described by the
Spike-Response Model (SRM, Gerstner and van Hemmen
1994), a stochastic spiking neuron model which is similar
to the common integrate-and-fire models and well suited to
investigate large network simulations but can still capture
many biological details. In this ansatz the state of a neuron i
is determined by its instantaneous membrane potential hi(t)

where inputs from other neurons j at times t
f

j are summed
up as postsynaptic response functions ε(t) weighted by the
momentary synaptic coupling strength Jij (t). In addition, the
neuron’s refractoriness due to its own spike emission is taken
into account by an exponentially decaying kernel η(t), which
artificially reduces a neuron’s membrane potential for a cer-
tain period of time after a spike, making it less likely to spike
again in short succession,
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For simplicity we chose ε(t) = exp(−t/τEPSP/IPSP)θ(t) for
excitatory and inhibitory inputs, respectively, and η(t) =
η0 exp(−t/τref)θ(t), where θ(t) refers to the Heaviside step
function. After transforming the membrane potential by a
rectifying activation function we use the resulting value as
the instantaneous rate function of an inhomogeneous Pois-
son process to compute the spike times tf of the neuron as
the simulation goes along. Accordingly, the spiking proba-
bility of a neuron during the interval [t, t + dt) with dt =
1 ms is given by the sigmoidal P

f

i (t)dt = dt/{1 + exp
[−β(V (t) − θ)]} with a noise parameter β and θ the sig-
moid’s threshold. Following each spike a new refractory ker-
nelη(t) is subtracted from the membrane potential. For param-
eter values used in the simulations see Table 1.

The asymmetrical learning window has been chosen as
shown in Fig. 1. It consists of an exponentially decaying half
for long-term potentiation (LTP) and an α-function shaped
half for depression (LTD). The width of the depressing part
has been chosen considerably longer than that of potentia-
tion to weaken connections from massively delayed inputs.
We have assumed plasticity only for excitatory synapses and
kept inhibitory coupling strengths constant during the simu-
lation runs.

Table 1 Parameters used in simulations

Spike Generation Synaptic Response
β 0.5 τEPSP 6 ms
θexc 2.0 τIPSP 30 ms
θinh 3.0 τref 10 ms
Learning Window η0 +40.0
τLTP 11 ms synapse growth limits
τLTD 20 ms 0 ≤ Jij ≤ 0.8
�tmax

ij in integr. field 20 ms vaxon 0.2 m/s
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Fig. 1 Asymmetric learning window with an exponentially decaying
part for LTP and a longer-lasting half for LTD . The horizontal axis rep-
resents the delay between pre- and postsynaptic spike �t = tpre−tpost
in ms. Vertical axis with arbitrary units

To model the primary visual cortex we take a two-dimen-
sional network (Fig. 2) consisting of one layer of excitatory
and another layer of inhibitory neurons. Neurons are arranged
in a grid, e.g., 64x64 in size, where each neuron receives
recurrent inputs from neighboring neurons of both polarities
up to a certain radius (typically 7 grid positions).We will refer
to this area of inputs as the neuron’s integration field. The
inputs from positions within the integration field are attenu-
ated by an arbor function of Gaussian shape which is used to
account for a reduced number of synaptic contacts at larger
distances. By choosing σexc = 1.0, σinh = 2.24 inhibitory
inputs are stronger than excitatory ones in the peripheral part
of the input fields.

As has been found by Bringuier et al. (1999), the transmis-
sion delay �tij between two synaptically connected neurons
can be described by an isotropic function of their separa-
tion dij = |xi − xj|, .i.e., �tij = dij/v with v on the order
of 0.2 m/s for thin (and thus slowly conducting) axons. We
have therefore delayed inputs from the integration field from
0 ms at the same grid position to 20 ms for the most distant

Fig. 2 Scheme representing a 1D slice through the two-dimensional
recurrent network built from excitatory and inhibitory neuron layers
that are used to model the primary visual cortex. Excitatory neurons
are depicted by templates of pyramidal shape in light gray, inhibitory
cells as discs in darker gray. For the excitatory neuron in the center
the excitatory (+) and inhibitory (-) inputs from neighboring cells are
shown to illustrate the spatially restricted range of connections between
neurons in the network, which also represents the area of the neuron’s
integration field. One has to keep in mind that longer connections also
imply a larger delay due to slow action potential propagation along
the underlying axons. This connection scheme is to be imagined for
every neuron, supplemented with periodic boundary conditions in two
dimensions

neurons. This corresponds to an axonal propagation
velocity of about 500/s for an integration field extending
over 2 mm in cortex, equivalent to roughly 20 in the visual
field. In our setup we make the simplifying assumption that
the whole integration field is able to drive the target cell to
spiking, whereas in reality the integration field consists of
a central discharge field and a surrounding area from which
only subthreshold responses can be elicited. Furthermore, we
assume dendritic latencies, synaptic delay and EPSP rise time
to contribute only a small additional constant delay offset of
3 ms. Although this value, in some cases, may be signifi-
cantly higher (cf. Senn et al. 2002), we focus for the moment
on axonal delay selection in this study and therefore treat
dendritic influences as constant and small as compared to
axonal propagation times; see also Anderson et al. (1999)
for evidence that dendritic asymmetry cannot account for
directional responses.

In Fig. 3 the principle of direction selective neuronal re-
sponses based on asymmetric coupling of inputs within a neu-
ron’s integration field is illustrated in terms of the membrane
potential of a cell with strong synapses for inputs from its left
half of the integration field. The cell therefore responds pref-
erentially, i.e., most strongly to rightward-moving activity
waves.

Given the ability of asymmetric integration fields to pro-
duce directionality, how can it be “learned” by spike-timing-
dependent plasticity? Looking at Fig. 4 we can see how the
asymmetric learning window changes the coupling strengths
within the integration field when learning is driven by an
activity wave. It is evident that repeated stimulation by a
wave coming from the same direction will increase weights
more and more in that half of the input field pointing to the
approaching wave. Eventually, only these synapses will re-
main whereas all others will have become silent or have dis-
appeared.

3 Results

As a proof of concept we show in a first scenario how direc-
tion-selective weight profiles within the integration fields of
the neurons can develop through STDP when spiking activ-
ity in the recurrent network is mainly driven by an external
stimulus, namely, a bar moving unidirectionally from left to
right over the cortical network.

3.1 Scenario 1–Learning driven by structured input
with unidirectional motion

To simplify and speed up the simulations the lateral genic-
ulate nucleus (LGN) cells relaying retinal input to the cor-
tex have not been explicitely modeled but an appropriately
preprocessed stimulus is added directly to the cortical cells’
membrane potential. In Fig. 5 one can get an impression of
the excitatory and inhibitory spiking activity in the network
caused, on the one hand, by the bar stimulus and, on the other
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Fig. 3 Principle of direction-selective neuron responses based on a spatially asymmetric arrangement/weighting of axonal delay lines. The two
schemes show the time course of the membrane potential (bottom graphs) of a target cell with strong synapses from inputs within the left half
of its integration field for the case of stimulation by an acitivty wave moving through the input field (a) from left to right and (b) moving in the
opposite direction. Only excitatory contributions are shown. The neurons depicted in dark gray in the centers of the two figures represent the
target neurons onto which inputs from laterally displaced neighbors converge via slowly conducting axons. The latter are depicted as lines of
different thickness to visualize strong and weak coupling strengths at the corresponding synapses. When the activity wave enters the integration
field from the left where strong synapses are delivering their signals to the target with shorter and shorter delays, the input EPSPs arrive very
closely in time and thus sum synergistically. This will lead the neuron to fire because the decreasing axonal delays from distant to closer inputs
provide highly coincident input for the target cell. For movement from right to left, however, the weaker synapses cannot sufficiently elevate the
membrane potential even though they arrive in rapid succession. The stronger inputs arrive too late and do not overlap much due to the more
and more increasing delays which disperse the incoming signals. In this way, a cell with an asymmetric weight structure responds with different
strength in the two cases of stimulus movement and is thus direction selective
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Fig. 4 How can spike-timing-dependent learning account for the emergence of spatially asymmetric input weights to form a direction-selective
neuron? Here a snapshot of a neuron is depicted that sums input from a wave of elevated spike activity produced, e.g., by a bar stimulus moving
through the neuron’s input field. The axonally delayed inputs are registered (black vertical arrows at EPSP onsets) in the membrane potential of
the target cell, which will spike when the membrane potential crosses the spike threshold. The temporally asymmetric learning window W(�t)

with �t = tpresyn − tpostsyn (Fig. 1) can now be imagined to be centered at the spiking time of the postsynaptic target cell and all input lines
that participated in bringing the neuron to fire get potentiated (red arrows for ‘early’ or ‘driving’ inputs) according to the value of the learning
window for the time difference of the corresponding pre- and postsynaptic spike. Further inputs that are activated by the activity wave but after the
postsynaptic spike (’late inputs’) will get depressed by the negative part of the learning window (blue arrows). If this process is repeated several
times, the weights of inputs coming from the direction of the moving wave will get strengthened and those on the opposite side will decrease
even further. Ultimately, this leads to an asymmetric and thus direction-selective weight profile

hand, by spontaneous spiking due to the stochasticity of the
neuron model.

Starting with a rotationally isotropic connection pattern
between neighboring neurons in the recurrent network the

cells respond equally strongly to all stimulus directions. In
what follows, the stimulation will be restricted to a bar mov-
ing repeatedly from left to right over the simulated cortex.
As soon as a neuron is activated to spike the symmetry in
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Fig. 5 In this series of pictures the evolution of the spiking activity within the two-dimensional recurrent network (64x64 cells) is depicted for
a period of 200 ms simulated real time with the activity wave due to the cortical representation of a bar stimulus moving from left to right and
several spontaneous spike events distributed over the cortex. Spikes are coded in red for excitatory and in blue for inhibitory cells, black is used
when both types of cell are active simultaneously

Fig. 6 This figure shows the changing of lateral synaptic coupling patterns for 5 by 5 cells when stimulated by a bar moving repeatedly from left
to right over the integration fields while learning with an asymmetric learning window. The neurons’ coupling strengths to their neighbors are
shown as circular profiles in which weight values are coded by a grey scale with white representing maximal weight. At the beginning, the weight
profiles are initialized as rotationally symmetric with attenuated coupling strengths for distant inputs. During persistent periods of stimulation and
synaptic plasticity (the picture series shows snapshots every 250 seconds of computed realtime), the learning rule selects appropriately delayed
inputs to best activate each cell by the stimulus and thus grows a more and more asymmetric spatial distribution of synaptic couplings. It is
evident that exactly those weights are strengthened that couple a neuron to its neighbors in the direction into which the stimulus moves over the
network. At the end, the initially rotation-symmetric weight profile has turned into a highly asymmetric one, which we have seen to allow for
direction-selective responses

the connection pattern will be broken up by the learning win-
dow, i.e., a small seed of asymmetry will be introduced in the
weighting of inputs pointing in the direction the bar has come
from. As can be seen in figure 6 the repetition of learning
events stimulated by the moving bar more and more polar-
izes the connection pattern until only a restricted range of
inputs within the receptive field remains. This arrangement
of inputs represents a direction-selective neuron (Fig. 3).

3.2 Ongoing spontaneous activity in a recurrent network

Next we consider a cortical activity scenario without external
input to the network. By adjusting the strength, balance, and
time constants of synaptic potentials for excitatory and inhib-
itory recurrent inputs a configuration can be found where neu-
rons fire at a low rate of only a few spikes per second most of
the time. Because of fluctuations due to the stochastic activa-
tion of neurons this ongoing baseline activity is occasionally
intermitted by short excursions of excitation which appear
at random locations in the network. They start out as small
excitation seeds gaining size rapidly and, after a short period,
fade out as soon as inhibition catches up with the excitatory
activity. As the return to baseline usually takes several tens
of milliseconds this allows the rise in activity to spread out

in a random direction and move over the cortex in the form
of small activity wavelets or bubbles. A typical example of
this kind of activity fluctuation is given in Fig. 7 below.

3.3 Scenario 2 — Learning driven by spontaneous
network-intrinsic activity

The spontaneous bubble- or wavelet-like network activity
seems intriguingly well-suited to drive synaptic plasticity
with an asymmetric learning window in a way similar to
the external bar stimulus (section 3.1). One might there-
fore wonder whether it could serve an instructive role for
the development of direction-selective weight patterns when
spike-timing-dependent learning is ‘switched on’.

Small waves of activation break the symmetry of the ini-
tial coupling patterns introducing a slight asymmetry through
the learning window. It turns out that this asymmetry in itself
is not strong enough to withstand synaptic changes elicited by
other waves moving in different directions. By introducing,
however, a sliding learning threshold dependent on the recent
activity of the neuron, it is possible to stabilize asymmetries
that have already been learned. Due to the learning threshold
only strong activations that drive the activity of the neuron
across a certain level determined by the recent activation of
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Fig. 7 In this series of pictures the evolution of the membrane potential and the spiking activity within the two-dimensional recurrent network is
depicted for cortical spontaneous activity during a period of 50 ms simulated real time. In the top row the excitatory cells’ membrane potential is
shown with blue representing cells having hyperpolarized and red cells having depolarized membrane potential; white areas stand for cells near
their resting potential. Given the membrane potential the probability of spiking has been computed — the corresponding distribution of spikes
is shown in the second row. Here spikes are coded in red for excitatory and in blue for inhibitory cells; black is used when both types of cell
are active simultaneously. The fading out of the colors of some of the spikes represents that these action potentials are older with respect to the
interval between the activity snapshots than the ones that are more saturated. In the bottom row the membrane potential of the inhibitory cells is
shown; the same color scheme as for the excitatory neurons’ potential applies. As can be seen clearly, a small excitatory activity fluctuation at T0
entrains more and more neighboring neurons forming a small wave (wavelet) which propagates over the cortex until it is canceled by inhibitory
activity. The unstructured spontaneous background spiking has been adjusted to about 2-3 Hz

Fig. 8 These color-coded maps depict the arrangement of direction preferences as developed by spike-timing-dependent learning driven by
cortex-intrinsic spontaneous wavelet activity. The colors correspond to the direction preferences as represented by the colors of the arrows in the
legend above the maps. Starting from an unselective random map at T = 0 the spontaneous activity drives development of direction-selective
synaptic coupling patterns building small patches of cells with similar preferences. The final map (T = 107 ms) resembles smoothly changing
direction preference maps as found experimentally, e.g., by Weliky et al. (1996) and Shmuel and Grinvald (1996)

the cell can still alter the synaptic inputs’ coupling strengths
(Ngezahayo et al. 2000).

Starting with an isotropic rotationally symmetric lateral
coupling pattern in the synapses on a neuron (without self-
couplings) the wavelet activity in the network can drive a
learning process that yields smoothly changing asymmetric

coupling patterns and stable direction preference maps. The
final outcome of this kind of simulation is shown in Fig. 8.

To verify that the developing map arises from the par-
ticular composition of wavelet directions in which activity
waves have run over the network we show in Fig. 9 a se-
ries of snapshots of the spatial distribution of the statistics of
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Fig. 9 In these direction statistics maps the color at each pixel corresponds to the most common direction in which wavelets have moved over
the corresponding network location during the simulation run (colors as in Fig. 8). The statistics of wavelet motion in each frame have been
collected over a period of 1 second simulated real time. In the beginning, the spatial distribution of the statistics of wavelet motion is randomly
distributed. As learning proceeds and weight profiles get increasingly polarized, patches with similar preferences start to grow and the learned
direction preference maps (Fig. 8) more and more resemble the corresponding direction statistics map

wavelet directions. By averaging over 1 second real time of
spiking network activity we have computed statistics maps
at several instances. Obviously, the statistics of the direction
ensemble of wavelets within the first second of the simulation
run does not have a structured distribution of direction pref-
erence, i.e., the initial spontaneous wavelets are directionally
unbiased. From the sequence of direction-statistics maps one
can clearly see that the wavelets become increasingly de-
flected into directions that have been learned by STDP polar-
izing the lateral synaptic connection patterns. To be more
precise, the propagation of activity waves into directions that
have passed a given region within the map not so often will
die out faster than for directions that have passed more fre-
quently already. In this way, a once-established directional
asymmetry at one location will continue to be potentiated
and, in just the same way, also influence its neighborhood
(and direction statistics) accordingly.

The above result demonstrates that the correlations in the
network-generated wave-like activities are sufficient to drive
the learning process of spike-timing-dependent plasticity in
such a way as to select those inputs to a neuron that increase
the synchronicity of the cell’s activation by these wavelets
and thus produce synaptic coupling patterns that render the
cells direction selective.

In a simulation study Bartsch and van Hemmen (2001)
have shown that under conditions similar to the ones in the
present investigation maps of orientation selectivity could
emerge. These may start as asymmetrically deformed intra-
cortical connection patterns that afterwards (or even simul-
taneously) impose an orientation seed in their structure onto
the developing thalamocortical synapses. That is to say, the
lateral connection pattern is able to influence the feed-for-
ward connections, which could also be true with regard to
direction selectivity.

4 Discussion

We have shown how direction-selective neuronal responses
can develop by means of spike-timing-dependent plasticity
with an asymmetric learning window. It is possible to drive

the learning process not only by structured (i.e., explicite-
ly spatio-temporally correlated) external stimulation like a
moving bar but also by a special activity scenario of corre-
lated intrinsic spontaneous activity in a recurrent network of
spiking neurons. In the optic tectum of Xenopus, for exam-
ple, an asymmetric modification of receptive fields consistent
with spike-timing-dependent learning has already been dem-
onstrated for moving visual stimuli (Engert et al. 2002). A
series of other studies also recognized and attributes phe-
nomena like predictive coding, anticipatory activation and
motion-induced mislocalization to asymmetric coupling pat-
terns; cf. Mineiro and Zipser (1998); Fu et al. (2004). Further-
more, because with the kind of asymmetric connectivity that,
as we have shown, emerges under the learning paradigm, the
excitatory inputs to a neuron will preferentially come from
cells with similar direction preferences, i.e., inputs will be
iso-direction-tuned. This has also been confirmed by experi-
ment (Roerig and Kao 1999).

Recently, Shon et al. (2004) have suggested a related ap-
proach regarding the emergence of direction selectivity in a
feedforward architecture which is supplemented by intracor-
tical connections. In their model, however, the intracortical
asymmetry in the pattern of connectivity is more supportive
rather than generative to direction selectivity as we propose
here.

Taking into account the temporal structure of a cell’s inte-
gration field due to delayed axonal inputs the learning process
enhances those inputs that contribute to the cell’s firing. This
increases the synchronicity of activation by future stimuli
because input delays are selected in such a way that the sig-
nals evoked by an approaching wave of activity arrive coin-
cidently. As has been shown in Shon et al. (2004) and also
corresponding to our simulations (data not shown), axonal
delays are not essential to the development of the directional
asymmetries of the coupling pattern. It is straightforward to
see, however, that a neuron sensing a moving activity wave
(such as from a bar stimulus) can be improved by delayed
inputs because the approaching wave is temporally squeezed
(and, conversely, spread out when having passed the target)
and coincident input at the integrating neuron is enhanced and
thus easier and more certain to be detected. Hereby a delay
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in transmission, which might normally be interpreted as a
limiting aspect of processing, can be used in a positive way.

As already stated, the symmetry breaking of the initial
synaptic coupling patterns is not stable enough to withstand
repeated learning influences opposing the patterns “seen” so
far if not supplemented by a learning threshold. In contrast to
Buchs and Senn (2002) who have also pointed out the need
for a (fixed) threshold nonlinearity to stabilize development,
we have assumed a sliding learning threshold that averages
recent postsynaptic activation and thus automatically adapts
to the rise in mean network activity from about 1 Hz to 3 Hz
during the simulation. Especially in view of the experimen-
tal finding of activation-dependent plasticity by Ngezahayo
et al. (2000) a dynamic threshold seems generally applicable.

Finally, the connection pattern of nearby cells in a net-
work driven by intrinsic activity turns out to differ only slightly
within a small patch of cortex, in this way giving rise to
smooth changes of direction preference. This results in direc-
tion maps that resemble maps found in optical imaging exper-
iments. Schütt et al. (2001) have found evidence that the
change of the map structure by artificial stimulation is also
guided by a learning rule similar to spike-timing-dependent
learning and may directly result from the learning rule at the
cellular level.

Trying to explain the emergence of direction selectiv-
ity with purely lateral intracortical connection schemes (or
pure thalamocortical feed-forward architectures) would be
an oversimplification. Presumably circuits and mechanisms
at both levels contribute to cortical direction selectivity (see
also Mineiro and Zipser 1998; Bartsch and van Hemmen
2001;Yao et al. 2004; Shon et al. 2004) and our approach is to
be understood as a hypothesis for and crude approximation of
the intracortical part of a more complex mechanism. The find-
ing of orientation selectivity being already present in new-
born and thus visually inexperienced animals (Banton et al.
1999; Issa et al. 1999; Crair et al. 1998; Katz and Shatz 1996;
Chapman et al. 1996; Sur and Leamey 2001; Ferster and
Miller 2000) renders the scenario of cortex-intrinsic spon-
taneous activity (section 3.3) an imaginable model for the
formation of direction selectivity and its corresponding map
by spike-timing-dependent synaptic plasticity in early post-
natal animals, possibly even before eye-opening.
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