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Abstract

A general theory of synaptic plasticity is developed that is based on a
precise timing of pre- and postsynaptic action potentials. As for long-term
plasticity, the key notions are Hebbian learning and a ‘learning window’
through which presynaptic input and postsynaptic output of a neuron are
related to each other and, hence, to the plasticity change they induce,
viz., potentiation or depression. Short-term plasticity is treated on the
basis of available presynaptic resources. The paper starts by analyzing
formal neurons at various levels of activity and the way in which they
allow storage and retrieval of spatiotemporal patterns. Wherever possible,
the underlying neurobiology is indicated.

1 Introduction

What is synaptic plasticity? If something changes, the first question is: what
changes, where, and how? Apparently, we have to focus on ‘synapses’ [1, 2, 3]
but what happens there and why? These questions, though natural and, as we
will see, fascinating, do not have simple answers and they need some biophysical
background to be fully understood. They are important since in general a neu-
ronal network stores its information in the synapses. In the present chapter we
first provide the necessary background, then turn to the theory of information
storage, ranging from simple activity patterns of formal neurons to long-term
processes involving spatiotemporal patterns of realistic neurons, and finish the
argument with a detailed account of short-term plasticity. References will be pro-
vided as we go along. Since we concentrate on storage of spatiotemporal patterns
the reader has to consult the literature [4, Ch. 13][5] for other learning rules and
related results such as Sejnowski’s seminal work [6].

First of all, what is synaptic plasticity and where precisely does it occur? Since
we are concerned with biological neural nets we will now review the essentials
of neuronal anatomy as far as they are relevant to our present purpose, viz.,
developing learning theory; see Koch [4, Chs. 4 & 13] for biological details that



are skipped here. Stated simply, a neuron consists of three parts: the dendritic
tree gathers the input, the soma with the axon hillock is the “CPU” generating
action potentials or spikes (Fig. 1) on the basis of the input provided, and the axon
conveys this output to other neurons. It is important to realize that spikes are
the only output of a cortical neuron. A spike lasts typically about one millisecond
(1 ms). Synapses are the axonal terminals on the dendritic tree of other neurons.
When an axon bifurcates, the amplitude of a spike does not decrease but remains
constant, about 0.1 V. This is due to an active propagation process.

Figure 1: Synaptic transmission at a chemical synapse in a neuromuscular junction. An
action potential (upper left) arrives at the presynaptic terminal (A), induces an influx of Ca2?™
ions that cause the vesicles, round and filled with neurotransmitter molecules, to fuse with
the membrane (B, exocytosis) and release their contents into the synaptic cleft separating
the presynaptic membrane from the postsynaptic one. The neurotransmitter molecules diffuse
across the cleft and bind to the receptors at the postsynaptic side. In this figure of an excitatory
synapse, they induce the opening (C) of Na™ channels, leading to an excitatory postsynaptic
potential at the axon hillock of the soma (lower left); see also Fig. 2. In cortical synapses a
similar process occurs, though it is more stochastic — cf. Eq. (1) — and the EPSPs have a smaller
amplitude. Reprinted by permission [7].

Figure 2 is a picture of a pyramidal cell, a typical cortical neuron. An axon in
general bifurcates several times but, as we have seen, spikes look the same every-
where. At the axonal ends one has synapses, which contact the dendritic trees of
other neurons. It is here that neuronal information is stored. Most of the postsy-
naptic potentials (Fig. 1) rely on chemical transmission from a presynaptic axonal
terminal to a postsynaptic dendritic spine. A cleft, 20-40 nm wide, separates the
two parts. When a spike arrives, calcium ions enter the axonal terminal, where
vesicles with 3040 nm diameter and filled with a few thousand neurotransmitter
molecules are waiting. As a consequence of the Ca?* influx, these then move to
the membrane bordering the synaptic cleft. In cortical synapses at most a few
of them will fuse with the membrane at one of a small number n (say, 1, 2, or
3) of fixed release sites and emit their contents into the cleft, a process called



exocytosis [13, 14]. Because of the transmitter-mediated opening of postsynaptic
ion channels this kind of synapse is called ‘chemical’. In contrast, some synapses
have electrical transmission; e.g. that of the Mauthner cell [15, 16, 17].
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Figure 2: This wonderful picture of a pyramidal cell from the motor cortex of a 30-year-old
man stems from Ramén y Cajal [10], who drew it more than a century ago; whole-cell staining
after Golgi. (a) Axon via which action potentials (spikes) leave the “pyramidal” soma of the
neuron (hence its name) to synapses on dendritic trees of other neurons, (c) dendrites that
gather the postsynaptic currents from synapses, terminals of axons coming from elsewhere, (d)
axonal collaterals that branch off.

The released neurotransmitter molecules diffuse across the synaptic cleft,
which takes about 10us, and dock into receptors of ion channels, which are then
opened so that ions enter the postsynaptic dendritic spine, if any. If the ions are
positive, e.g., Na™, then the dendritic tree of the receiving neuron experiences a
positive influx, which reappears as an excitatory postsynaptic potential (EPSP)
at the soma; see Fig. 1. This is what we will concentrate on, though most of
the considerations below are much more general. For the sake of simplicity we
describe an EPSP stemming from a spike arriving at a synapse connecting an
axon from neuron j to the dendritic tree of neuron ¢ by J;;e(t). Here £(t) > 0 is
a fixed response function with maximum 1, ¢ denotes time, and .J;; is called the
“strength” or efficacy of a synapse connecting neuron j to neuron 7. In cortex we



typically have one, at most two connections [4, §4.2], [9, Sects. 20 & 33]. To sim-
plify the notation and without loss of generality we therefore assume that for each
pair {4, j} there is at most one synaptic connection. Synaptic plasticity refers to
changes of .J;; as time proceeds. All this looks simple and straightforward but
there is a stochastic complication, which can be eliminated.

We have three ingredients of a synaptic response [4, 8]:

e n presynaptic release sites (or active zones); for cortical synapses, n is a
small number near to 1.

e the probability 0 < p < 1 that a vesicle will fuse with the membrane at a
specific release site and emit a neurotransmitter ‘quantum’ into the synaptic
cleft; there is strong evidence [8] that the probability of getting more than
one vesicle is negligibly small. For a cortical synapse p = 0.3 is not excep-
tional so that with n = 1 the number of neurotransmitter quanta present
after a spike has arrived is a mere, though fairly well-educated, guess. The
release processes at different sites can be taken to be independent so that a
binomial distribution governs the probability p(n, k) of getting the release
of 0 < k < n quanta,

plock) = () -pr )

One can verify that the mean number of quanta is
(k) = Z kp(n, k) =np . (2)
k=0

Consequently, J;; as determined by (1) is a stochastic variable itself.

e A quantum induces a postsynaptic response. A succinct notation is (). We
take @ to be the maximum of an excitatory postsynaptic potential (EPSP)
generated by a single quantum, i.e., we look for the maximal response as
a function of time. For inhibitory synapses the learning ability is at the
moment less clear but it seems that, if they can change their efficacy, they
do so in a way analogous to their excitatory counterparts so that their effect
can be measured by the minimum of an inhibitory postsynaptic potential
(IPSP). Throughout what follows we will focus on excitatory synapses,
leaving the realization of mutatis mutandis for the inhibitory ones to the
reader.

Altogether the mean postsynaptic response induced by a spike is R = npQ
but this is of no help when a specific spike arrives since its effect is in general
never the mean. Why then compute the mean response? The input of a cortical
neuron is provided by many synapses; a typical number is 10%. As for the simple
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stochastic process (1), it can be taken to be independent for different synapses.
At time ¢ the potential v;(¢) at the axon hillock, the “CPU” of neuron i, is to
first approximation a sum of the different postsynaptic potentials,

u(t) = Y Jye(t—t)) (3)

3. f

where f in t;-c labels all spikes of neuron j; the postsynaptic potential £(t) is causal
in that it vanishes for ¢ < 0 so that future events do not influence the present.
For the time being axonal delays are incorporated in the £. Let us suppose that
neuron ¢ has N ‘synaptic’ neighbors j and let us consider v;(¢)/N for a moment,

vit)/N =N Jye(t —t]) m N7 “(T)e(t —t]) (4)
7(#9) j(#1)

where the synaptic strengths J;; are independent stochastic variables and the
interspike intervals are assumed to be in the millisecond range, an every-day fact.
The last equality is exact in the limit N — oo and, as such, a consequence of the
strong law of large numbers [11, 12]. A sum that can be replaced by its average
is called self-averaging — a most valuable property.

In our case N is large so that, by the central limit theorem in conjunction with
the law of the iterated logarithm (see Appendix A), the approximate equality in
(4) is an equality up to an error of order O(1/v/N) that is the deviation from the
mean and has a Gaussian distribution; the contents of the “laws of large numbers”
as referred to above have been listed in Appendix A. In fact, we can allow ¢ to
depend on both ¢ and j while the .J;; may have any distribution with finite second
moment. Then we have that, for ¢ fixed, the f; := Jj;e;; are independent but
not identically distributed random variables. Nevertheless the strong law of large
numbers and the central limit theorem still hold [11, 12]. They even do so, when
the f; are weakly dependent in the sense that, given two positions j and k, their
correlation functions ((f; — (f;))(fx — (fx))) decrease fast enough as a function
of |7 — k|. For (3) the above statements hold as well, provided one multiplies
everything in sight by NV and realizes that the deviation from the (nonzero) mean
can be estimated by the law of the iterated logarithm [11, 12]; cf. Appendix A.

At a first sight one might object that the .J;; govern the dynamics of the
system as a whole and, therefore, in the long run the latter induces dependencies
among the former. That may well be but is completely irrelevant since the local
‘gambling’ we are considering here is that of vesicles fusing with the cellular
membrane, i.e., exocytosis, a process lasting for a millisecond or less [13, 14].
On this time scale fusion processes are independent both inside and outside a
synapse.

Despite the randomness, we arrive at the pleasant result that the leading



contribution to v;(t) is deterministic and given by

vui(t) =) (Ji)e(t — 1)) (5)
3(#4)

as long as most of the expectation values (.J;;) are nonzero. That is to say,
(Jij) = nijpijQij # 0 where {ij} labels the synapse; a generic one will carry no
label. If nonzero, we can stick to studying synaptic plasticity in its dependence
upon np@). If a synaptic strength vanishes, the synapse can, and will, be dropped.
According to the present state of the art [4], long-term synaptic plasticity lasting
for hours means that both p and ) change, whereas short-term synaptic plasticity
lasting for seconds is equivalent to saying that p alone changes. In both cases, n
seems to be fixed, though Bonhoeffer et al. [18] have found that in LTP n may
change as well. We will present a theory of synaptic plasticity that incorporates
both long- and short-term effects. As a side remark we note there is also channel
noise, which is generated by random gating of voltage-gated ion channels. It is
different from synaptic noise, as has been explained in detail elsewhere [20], and
can in principle be handled similarly to (4).

The synaptic action considered so far is called ionotropic as it is governed by
postsynaptic ionic channels. It is fast and implements computations underlying,
for example, rapid perception and motor control. Here, then, are two classes
of (glutamate) receptors determining the state (open/closed) of their underly-
ing ionic channels: NMDA (N-methyl-D-aspartate) and non-NMDA. The name
NMDA is that of an agonist absent from the brain itself but used by neurobiolo-
gists to discern them. The NMDA receptors do need a strong depolarization to
become active, e.g., through a positive potential change stemming from a post-
synaptic spike [21] [4, Ch. 19]. NMDA receptors are 10 times slower than their
neighboring non-NMDA counterparts. Furthermore, they are important to long-
term potentiation (LTP) since they allow Ca*" ions to enter the cell - in addition
to Na* and K. On the other hand, the non-NMDA receptors convey the fast
excitatory traffic that has to pass in a few milliseconds. Their typical EPSP is
that of an alpha function,

e(t) := (/) exp(1 - t/7) (6)

having its maximum 1 at ¢t = 7, and 7 &~ 5ms. Of course ¢ is causal in that it
vanishes for ¢ < 0. For an extensive discussion of this and other types of response
function the reader is referred to Gerstner’s chapter in this book [27].

In addition to ionotropic receptors, which open ionic channels that permit a
certain type of ion to cross the postsynaptic membrane, there are also metabotropic
receptors where binding of a neurotransmitter leads to the activation of a sec-
ond messenger such as Ca?* ions. The messenger molecules then have to diffuse
to particular ionic channels, which is a relatively slow process. The action of
metabotropic receptors can, and usually will, extend over a long distance both



in space and in time. We will not treat them here but refer to the literature
[4, 22] for further details concerning both types of receptor. Instead we turn to
a simplification of the mathematical description of spike generation, the Spike
Response Model (SRM).

2 Spike Response Model

Spikes require a mathematically intricate description that can be summarized by
the following system of equations (7) - (9). The key variable is is the membrane
potential V', which can be measured,

d
[m - OmEV + Ichannel + Iext . (7)
Here I, is the total current, C,, is a membrane capacitance, I is an externally
applied current, e.g., due to synaptic input, while currents I, through the 1 <
¢ < n ionic channels give

]channel = Z Ié with ]E = gﬁ(m)(v - EE) : (8)
/=1

The conductances g, = g,(m) depend on a vector m. The heart of nearly any
differential-equation model producing spikes is a set of auwxiliary variables m
= (mo), each of the components me satisfying an ordinary differential equation

of the form 1
30 = [Moe(V) = mol/mo(V) . (9)

For constant V', the variable mo relaxes to mo (V) at the rate 1/70(V). In
general the functions mo (V') and 7o(V'), which both depend on the membrane
potential V', are the result of an extensive fitting procedure, the most famous
one being that of Hodgkin and Huxley (1952), who got the Nobel price for their
ingenious fit [4, 23, 24] for function sets {g,(m), mo (V), 70(V)} describing two
active ionic channels (Na™ and K*) and three auxiliary variables. In their no-
tation, m = (m,n, h) and gx.(m) = gnam®h, gx(m) = ggn?, where gn, and gi
are constants, as is the third conductance describing a ‘leak’ current. It is good
to realize that only V', I annel, and Ioy are accessible to experiment whereas the
auxiliary variables mo are not.

It is typical to real neurons and also to all these auxiliary-variable models that
they produce spikes when, to excellent approximation, the potential V' exceeds
a threshold 9. A glance at the equations suffices to convince any reader that
this statement is not evident. In fact, it is the result of the careful fit alluded
to in the previous paragraph. A second glance at the upshot of what a spike
with a 1 ms width induces at a postsynaptic neuron, viz., an EPSP such as the



alpha function in (6) with a several ms width, may then suffice to let the beholder
wonder whether the precise form of a spike is really important to what it induces.
Most of the time it is not and one can stick to a simplification, the Spike Response
Model [25, 26, 27]. This is what we now focus on.

Let us discretize time and break the continuous time axis into parts of length
At = 1ms. We then write ¢t = 1,2,... and specify the state of neuron i by a
Boolean variable n;(t) € {0,1}: n;(t) = 1 when the neuron fires, n;(t) = 0 when
it does not. Looking at synapse {i,j} with synaptic strength J;;, we note that it
induces an EPSP Jijs(t—t{—A%’-‘) at neuron 7 for a spike that arose at neuron j at

time tf and was delayed by A%“ms, the axonal delay that occurs when the spike
travels along the axon from neuron j to the synaptic terminal {i, j}. Throughout
what follows we write .J;; instead of (J;;) since the membrane potential v;(¢) at
the axon hillock (our “CPU”) is given by (5), a sum of many terms.

Once a neuron has fired it, so to speak, refuses to do so directly afterwards;
this is the absolute refractory period. Furthermore, it takes some time to recover.
Then it is rather reluctant to fire; this is the relative refractory period. It may
fire but needs some extra input as compared to the original threshold . All this
is taken into account by a refractory potential n that is added to v once a neuron
has fired; it is taken to be causal so that n(t) = 0 for ¢t < 0. If n(t) < 0 for ¢t > 0,
then we need, so to speak, more v to let a neuron fire. In this way we can keep
the threshold ¥ fixed and arrive at the simple dynamics

ni(t + At) = Ofwi(t) — 0] (10)

with

vi(t) = St =) + 3 Jyet — ] — AF) (11)
! J

Here O is the Heaviside step function with ©(z) =1 for > 0 and ©(z) = 0 for
x < 0. A sum over f is always a sum over firing times ¢/ of whatever neuron, here
neuron ¢ and its ‘neighbors’ j. Neuron ¢ ‘fires’ as soon as its membrane potential
v; reaches the firing threshold ¥ from below,

dv;(t
lim v;(t) = o and lim ®)

> 0. 12
t ! i dE (12)

The potential v; being in general a continuous function, the second condition is
a mathematical formulation of the fact that there is no spike appearing when v;
returns from being above 9. In passing we note that the dynamics (10) need not
be based on discrete time. With a few, trivial, modifications it works equally well
for continuous time.

Throughout what follows we will work with the above dynamics where during
each time step all neurons are updated. This is the so-called parallel dynamics,
for biological neurons the natural one. Absolute refractory behavior means n



assuming the value —oo while relative refractory behavior is equivalent to saying
1 is negative but finite. Though bursts can be described easily by allowing n to
be positive during an appropriate period of time, we will not study this explicitly.
For arbitrary axonal delays A% there is no hope for obtaining an exact solution of
the network dynamics. As Eqs. (10) and (11) show explicitly, the Spike Response
Model incorporates the three essential ingredients of neuronal spike generation,
viz., a variable threshold, spikes, and their effect, the postsynaptic potentials.
All three are a response to external input — hence the name of the model. It
incorporates the integrate-and-fire model as a special case [27].

To finish this section, it may be well to face the question: Why does a time-
discrete dynamics such as (10) make sense? After all, it treats the effect of a spike
as a Kronecker delta. The answer is that, as we have already seen, the width of
a postsynaptic potential in general greatly exceeds that of a spike so that we can
treat the latter as an approzrimate delta function. Discretizing time we then end
up with a simple Kronecker delta, as advertised.

3 Hebbian Learning in a Network of Formal Neu-
rons

Encoding and decoding are two sides of the same medal. Encoding means asking
a two-fold question: how do we represent the neurons’ activity and how do we
store spatiotemporal activity patterns in the synapses connecting the neurons?
Hebbian learning is a prominent, and very efficient, way of information storage.
Decoding means reading out stored information. We will treat both.

3.1 Representation of Neuronal Activity

Formal neurons are described by a Boolean variable indicating their activity. (A
Boolean variable assumes only two values.) We have already met n,(t) € {0,1}.
Neuron i is active at time ¢ € ZAt when n;(t) = 1 and it is quiescent when
n;(t) = 0. Here Z represents the integers. It is convenient to take At = 1ms
as the duration of a spike. For what follows we also introduce a pseudo-spin
S; =2n; —1 € {—1,1}. Now S;(t) = 1 when neuron i fires a spike at time ¢ and
S;(t) = —1 when it does not. The above distinction leads to two ways of encoding
neuronal activity, viz., the 0/1 and the +1 representation (coding). Each of them
needs a specific context, to which we now turn.

Apparently there are at least two ways of coding a neuron’s activity: through
{0, 1} and through +1. Their choice is dictated by the global activity of a network.
In a theoretical analysis, an activity pattern is a set of independent, identically
distributed (iid) random variables. Different patterns are also taken to be inde-
pendent. There are at least three reasons for doing so. First, in this way we
avoid any special assumption concerning the state of the network. Second, iid



random variables are easy to generate on a computer by means of a random num-
ber generator [19]. Third, one can use laws of large numbers from the theory of
probability [11, 12] to analyze collective behavior. This is what we are going to
do.

Suppose about half of the neurons in a network are active during each time
step. Then a pattern yu is a set of iid random variables {£/;1 < i < N} where
¢! = +1 with probability p = 1/2 and N is the size of the network. The two states
of the neuron are practically equivalent. Let us imagine that +1 corresponds to
black and white (you can make a choice yourself). It is, so to speak, immaterial
whether we have black and white or white and black pixels in that one can
interchange black and white but all these patterns “look” the same. If we now
require that the spatial average of the activity as defined below in (13) be zero,
then the pseudo-spin representation S; € {—1,1} is the appropriate one.

There is a convenient way of characterizing the activity of a pattern, say pu.
We have, as N — o0,

N
a, = lim N_IZSf:pu—(l—pu):2pu_1 (13)
i=1

N—oo

by the strong law of large numbers [11] applied to the iid random variables
{&f1 < i < N} equipped with a probability distribution assigning a proba-
bility p,, to £ = +1 and 1 — p, to &' = —1. Hence for p, = 1/2 the parameter
a, is bound to vanish.

On the other hand, when the global activity in a network is low, i.e., only a few
neurons are active during each time step, then p, ~ 0 and a, ~ —1. What, then,
should be the right mathematical representation of a neuron’s activity? Clearly,
activity is the exception and inactivity is the rule so that n;(t) € {0,1} is just
what we are looking for since the active sites with n;(¢) = 1 carry the information.
Though inactive neurons are the majority, they carry the label n;(t) = 0 and,
thus, do not count — as they should. We will see that mathematically all this fits
together quite nicely in decoding neuronal information.

3.2 Hebbian Learning

Donald Hebb’s classic The Organization of Behavior — A Neurophysiological The-
ory [28, 29] appeared in 1949. On p. 62 of this book one can find the now famous
“neurophysiological postulate”: When an axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part in firing it, some growth pro-
cess or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.

One may then wonder, of course, where the above “metabolic change” might
take place. Hebb directly continued by suggesting that “synaptic knobs develop”
and on p. 65 he states very explicitly: “I have chosen to assume that the growth
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of synaptic knobs, with or without neurobiotaxis, is the basis of the change of
facilitation® from one cell on another, and this is not altogether implausible”. No,
as we now know, it is not. It is just a bit more complicated.

Sloppily formulated, Hebbian learning is learning by repetition: “Practice
makes perfect”. The organism repeats the very same pattern or sequence of
patterns several times and in so doing trains the synapses. (A nice example is
the barn owl learning to perform azimuthal sound localization, an example we
will consider later on.) It has turned out that Hebbian learning is robust, faithful,
and a key to understanding map formation in the cortex.

Hebb also formulated a second idea having nearly an equally big impact as
his learning rule, viz., that of an assembly (or ensemble) of neurons. If neuronal
behavior should code a synapse, then a postsynaptic neuron should fire at the
right moment. To attain its firing threshold, a neuron needs well-timed input
in a narrow time window from many other neurons. The ‘assembly’ should then
fire more or less simultaneously. This is its distinguishing feature. The activity
patterns we will be analyzing in learning theory are often concrete examples of
Hebbian assemblies.

Hebb’s postulate has been formulated in plain English — but not more than
that — and the main question we are facing here is how to implement it mathe-
matically. From a higher point of view, one might define Hebbian learning to be
long-term synaptic plasticity induced by pre- and/or postsynaptic activity and
local in space and time. Most of the information which is presented to a network,
then, varies in space and time. So what is needed is a common representation
of both the spatial and the temporal aspects. As a pattern changes, the system
should be able to measure and store this change. How can it do that?

3.3 Spatiotemporal Patterns and +1 Coding

As in real life, a network may, but need not, learn. Suppose then it does and let
us imagine a spatiotemporal pattern of duration Ty, i.e., a sequence of patterns
{€51 < i < N, 0 <t < Typ}; for fixed i but different times ¢ the patterns &
may be identical. We simply describe such a pattern by {S;(¢);1 <i < N, 0 <
t < Typ} :={S(t);0 <t < Ty,} where S is now a given vector function of time.
In addition, we assume that our network is going to “learn” this pattern. The
question is: how?

Without further ado we first consider the answer [30, 31, 32| that specifies
how .J;; is to change after our pattern S has been taught the network during a
period of time starting at ¢ — 7; and ending at ¢,

T
ax 1 ax
ATy = GolA) 7 D St + A0St~ AF) (14)
t=1

'Webster’s Ninth New Collegiate Dictionary says (:to those who do not belong to the in-
crowd): facilitation = the increasing of the ease or intensity of response by repeated stimulation.
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which is to be added to the existing synaptic efficacy. Here T} is the learning time
that may, but need not, be identical with the duration T, of the spatiotemporal
pattern under consideration; for instance, because the pattern is repeated (“prac-
tice makes perfect”). The rationale of (14) is the following. We look at synapse
{ij} at time £. What we see there is the activity of neuron j at time ¢ — A%¥ since
the axonal delay lasts AZ¥ms. We correlate this with the activity of neuron i at
t+ At. It is important to realize that this is one time step later. With the benefit
of hindsight this is perfectly reasonable since the synapse at time ¢ should tell the
postsynaptic neuron what to do next. In technical terms, the retrograde effect of
a neuronal action potential as noticed by the synapse is taken to be instantaneous
so that a delta function is a fair approximation [21]. The prefactor (;;(Af) >0
is still at our disposal. For the sake of simplicity we assume no self-interaction is
present (J; = 0).

It seems plain that, in a +1 coding, Eq. (14) is not quite what Hebb [28] had
in mind: if neurons 7 and j are active, AJ;; > 0, but the same holds true, if ¢ and
j are inactive. The former would be fine to Hebb, the latter somewhat weird.
With hindsight this is, however, perfectly reasonable since the states ‘active’ and
‘inactive’ (p = 1/2) are equivalent: what’s in a name? (Representation is all.) On
the other hand, AJ;; <0 if one of the neurons is active and the other quiescent.

In (14) S; and S; are treated on an equal footing. Symmetry with respect to
an interchange of i and j reigns, if the pattern is a stationary one, i.e., S;(t) := &
for all 0 < ¢t < T;. Apart from the high activity, a condition that will soon
be relaxed, a constant firing might happen in neurons with negligible refractory
behavior; in view of our present choice of At = 1ms, it is equivalent to saying
that the maximal firing rate is 1000 Hz, which is not completely off.

Let us now study the effect of a stationary pattern in conjunction with ¢ > 1
similar patterns, the Hopfield model [33]. The network has no delays (A** = 0).
In practice this means that we have (¢+1)N independent, identically distributed
random variables £ which assume the values +1 with probabilities p for +1, 1—p
for —1, and mean a = 2p — 1. Furthermore, ;1 = 0 corresponds to the pattern &
we started with. Hopfield took a fully connected neural network with p = 1/2 so
that a = 0 — by good reason, as we will soon see. The patterns are presented to
the network one after the other and learned through (14). Altogether we obtain,
putting (;; = 1/N,

q
Ty =Ny et (15)
n=0
The dynamics being given by
Si(t + At) = sgnv;(t) — V] , (16)

the threshold is taken to vanish, i.e., ¥ = 0, and so is the average (.J;;) = 0; here
sgn is the sign function. The rationale of these two requirements, which belong
together, will soon become clear.
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Following Hopfield, we now imagine that EPSPs are also instantaneous, i.e.,
delta functions, while refractory behavior lasts as long as a spike (so that n = 0),
and compute the potential v; with the original pattern € as input to our neural
network. Using (15) and (16) in conjunction with (11) we then find, as N — oo,

v = N7y (Zfﬁ‘fﬁ-‘) G=&+NT" D g
J(#5)

W 3(#1)
w(#0)
= G4qa® + N7V (Eelg - db) (17)
et

By the central limit theorem in conjunction with the law of the iterated logarithm
(see Appendix A), the last sum on the right is Gaussian (with mean zero) and of
the order O(y/q/N). The above argument is a signal-to-noise ratio analysis with
& being the signal and the last sum representing the noise.

If, then, a # 0 but ¥ = 0 in (16), there is no hope for storing anything but
a few patterns since ga® will wash out the signal (|¢;| = 1) for ¢ large enough.
That is why Hopfield took p = 1/2 so that @ = 0. Then a faithful retrieval is
possible only if ¢/N < 0.138; for ¢/N beyond this fraction no pattern can be
retrieved. It is easy to see that an inequality of this kind must exist; determining
the precise number 0.138 is a completely different story [34, 35, 36]. We simply
return to (17) and note that the standard deviation of the sum is y/¢/N. When
it becomes too big, it will wash out the signal, as did qa® in the case a # 0. In
fact, according to the law of the iterated logarithm we get as an upper bound
Imax/N = 0.5; apparently it has to be less. Hopfield [33, pp. 2556/7] already
found 0.15 numerically, which was surprisingly close to 0.138. Of course one
could adapt the threshold, if @ # 0, and take ¥ = —ga® but what should tell a
synapse that ¢ patterns have been stored?

For spatiotemporal patterns with a = 0 the learning rule (14) in combination
with the dynamics (16) and ¥ = 0 works well, provided the system has a broad
distribution of delays. It is easy to see why,

Ul(t) = Z JZ]S](t — A?JX) . (18)

The J;; look back into the near past and tell neuron ¢ at time ¢ what to do next
— in agreement with (14) and (16). That is to say, the delay A% that has been
taken into account during learning plays the very same role during retrieval. If,
then, a certain activity pattern keeps constant during a time d,, there should be
delays A% > 4, to “throw” the system out of this state into the next. A ‘broad’
distribution then means Af* > ¢, for ‘enough’ j. Figure 3 illustrates the potency
of learning rule (14). For biased signals with a # 0 it has to be modified; see

§3.5.
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Figure 3: (A) Space warp. The overlaps m,(t) = N1 Y. £/S;(t) with patterns 1,2, 3, and 4
(from top to bottom, +1 representation with p,, = 1/2) have been plotted as a function of time.
The network with maximal delay Anyax = 40 has learned the cycle 1,2,3,4 (or BACH) where
each pattern lasts 10 time units; the network size is N = 512. After it has been presented
the faulty pattern sequence 1,4,3,4 (or BHCH) as initial condition (space warp) for —Aax <
t < 0, the correct order BACH is spontaneously retrieved. The initial conditions appear in
the boxes on the left of ¢ = 0. (B) Time warp. The same system as in (A) has (among other
things) again been taught the theme BACH, all ‘notes’ having a duration of 10 time units. The
overlaps with B, A, C, and H (from top to bottom) have been plotted as a function of time.
After the network has been shown a pattern sequence with the wrong timing (time warp) as
initial condition for —Ap,x <t <0 with A lasting much longer than B, C, and H, the correct
cycle (i.e., with its correct timing) is spontaneously retrieved. As in (A), the initial conditions
appear in the boxes on the left of ¢ = 0. Taken from [32]
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3.4 Hebbian Unlearning

In the +1 representation, we can define a spatial average a(t) = N~ 1>, S;(t)
a la (13) for each discrete pattern but in practice there is no hope that it will
vanish. If, however, it is small enough, viz., |a| < |a.| = 0.54, then unlearning [41]
removes the correlations, restores the patterns, and greatly increases the storage
capacity. Though at a first sight unlearning looks a bit weird, it is a very powerful
algorithm. Its motivation stems from neurobiology.

In the late seventies Hobson and McCarley [38] suggested that there exists
a dream state generator in the pons that, during REM sleep, produces a series
of pulses in the forebrain, the PGO (ponto-geniculo-occipital) bursts. These
pulses provide frequent and semi-random stimuli to the cortex and might thus
function as the driving force of rapid-eye-movement (REM) dreams. The Hobson-
McCarley idea was taken up by Crick and Mitchison [39], who assumed that
during REM sleep the cortical network, once it has been excited by a PGO
burst, relaxes to a parasitic or spurious state, which is then weakened or, as they
called it, ‘unlearned’. The proposal of Crick and Mitchison found an immediate
implementation as a three-step procedure for constant patterns in the work of
Hopfield et al. [40], while the present version for general, spatiotemporal, patterns
is due to van Hemmen et al. [41]:

(i) Random shooting, corresponding to a PGO burst in the brain and giving a
random initial state.
(ii) Relazation to a limit state x= (x%(¢); 1 < i < N), where we assume (in many
cases this can be proven) that the limit state x is either stationary or a limit
cycle.
(iii) Unlearning through

Jij — Ji]‘ — GAJl (19)

with 0 < € < 1 and AJ;;, pure Hebbian learning of x after (14) but now being
multiplied by —e. The minus sign in front of € has led to the name unlearning.
The unlearning parameter € must be small, say, two orders of magnitude smaller
that the available learning parameters in sight.

The three steps constitute a single loop, which in the present context is defined
to be a “dream”. It is repeated D times so that 0 < d < D labels the “dreams”.
For an extensive study of Eq. (19), its remarkable capabilities, the dependence
upon D, and appropriate references we refer to elsewhere [41]. Though the imple-
mentation is straightforward (—ex Hebbian learning), there is no detailed study
yet for low-activity patterns. To obtain results as solid as the ones for +1 coding
one has to perform very intricate programming for huge system sizes so as to get
good statistics. This still has to be done.
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3.5 Spatiotemporal Patterns and 0/1 Coding

As a rule, biological neural systems, i.e., neuronal networks, are characterized by
a low activity, meaning that a relatively low percentage of neurons per unit of
time is active. That is to say, a & —1 so that the above formalism breaks down
completely. Since stationary patterns are the exception and spatiotemporal ones
the rule, we are looking for an appropriate generalization of (14). There is an
evident one: replace £ by a random variable that also has mean zero and variance
one, & — (& —a)/v1—a? This looks reasonable but it is not. Already for
stationary patterns — cf. (15) — this symmetric rule is a lousy one since the storage
capacity goes to zero as a — —1. A way out [36, §1.6.5] is adding an extra +1
so as to restore the original storage capacity of the Hopfield model but there is a
smarter solution that has turned out to work for spatiotemporal patterns as well.
The ‘symmetric’ substitution by itself did not.

Though we now work with the 0/1 representation of neuronal activity we stick
to the pseudo-spin S for specifying our asymmetric learning rule for a synapse
with axonal delay A™ = A% [32],

1 7—11

7 > Silt + At)[S;(t — A™) —d] . (20)

Aldij = G (A™)
This is to be added to the existing synaptic efficacy. It reduces to (14) for
a = 0. The rationale of (20) is as before, but modified since we now have
[S;(t — A*) — a] instead of S;(t — A*), the —a being crucial. In the low-activity
limit with a = —1, [S;(t — A*™) — a] equals 2 if at time ¢t — A® the presynaptic
neuron j is active and vanishes if the neuron is quiescent. That is perfectly
reasonable since j cannot activate ¢ if it is not active itself. After a spike has
been generated by j it needs A™ = A%*ms to reach the synapse {ij} at time .
Then AJ;; 20 if S;(t + At) = £1, corresponding to i being “told” to fire or keep
quiet. In words, the presynaptic neuron is gating. Given presynaptic activity,
the synaptic efficacy increases (= potentiation) when during the next time step
the postsynaptic neuron is active whereas it decreases (= depression) when the
postsynaptic neuron does not fire.

As Fig. 4 illustrates, the asymmetric learning rule (20) has proven to be ex-
tremely efficient for storing spatiotemporal patterns [32, 42, 43]. It was also
a key to devising the ‘learning window’ [45] which is instrumental in describing
long-term synaptic plasticity for temporally highly resolved activity patterns. Ex-
periments of Markram et al. [48] were the first to confirm (20) as neurobiological
learning rule; a more complete list will be given once we turn to explaining the
notion of ‘learning window’ in the next section. Additional theoretical support
through combinatorial and energy-saving arguments has been provided as well
[49].

The dynamics is that of (10) with v;(t) =3, Jijn;(t — AfF). To see the effect
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of Si(t+ At)[S;(t — AfY) —a] as it appears in (20), we perform a simple signal-to-
noise ratio analysis for a network with no delays and N as the number of neighbors
each neuron is connected with while (;; = 1/N. Furthermore, the network has
been taught ¢ 4+ 1 stationary patterns so that .J;; = N~ Zu §'(& —a). The
pattern p = 0 with & =: & is presented to the network while the others generate
the ‘noise’. We assume a, = a for the sake of simplicity; cf. (13). Focusing on
the low-activity limit @ — —1, we take n; := (£ — a)/2 as input and find, as
N — oo,

o= NTY (Zfﬁ(gf—a)) (& —a)/2
i) \

= U LS e a0 = L+ o)l + OVa/NL(21)
=

Except for the common factor (1 + a) on the right, which we can forget about,
we have the same terms as in (17). One might have argued that (' — a)(¢} — a)
(symmetry) were nicer. If so, (§; — a) would replace the signal term &; in (21) so
that the signal for the inactive neurons, i.e., the big majority, would be strongly
weakened. Because of the asymmetry the signal term & now appears alone,
without —a or ¢qa®, which greatly improves the signal-to-noise ratio. Even worse
for the “symmetric” term, it does not allow spatiotemporal low-activity patterns
to evolve. For A* > 0 the argument becomes more complicated but the gist
does not change.

4 Time-Resolved Hebbian Learning: Looking
at Synapses Through a Learning Window

The barn owl (Tyto alba) is able to determine the prey direction in the dark by
measuring interaural time differences (ITDs) with an azimuthal accuracy of 1-2
degrees corresponding to a temporal precision of a few us, a process of binaural
sound localization. The first place in the brain where binaural signals are com-
bined to ITDs is the laminar nucleus. A temporal precision as low as a few us was
hailed by Konishi [50] as a paradox — and rightly so since at a first sight it con-
tradicts the slowness of the neuronal “hardware”, viz., membrane time constants
of the order of 200 us. In addition, transmission delays from the ears to laminar
nucleus scatter between 2 and 3 ms [44] and are thus in an interval that greatly
exceeds the period of the relevant oscillations (100-500 ps). The key to the so-
lution [45] is a Hebbian learning process — cf. §3.5 — that tunes the hardware so
that only synapses and, hence, axonal connections with the right timing survive.
Genetic coding is implausible because three weeks after hatching, when the head
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Figure 4: Motion of a ‘phase bound-
ary’, a string of black pixels, through
a 20 x 20 storage layer with 0/1 rep-
resentation; 1 is black and 0 is white,
i.e., invisible. The system starts with
a single point in the upper left-hand
corner and the string develops as time
proceeds (top to bottom; first left,
then right). During the motion, the
number of black pixels varies between
1 and 20 but @ in (20) does not: it is
—1. Taken from [32].

is full-grown, the young barn owl cannot perform azimuthal sound localization.
Three weeks later it can. So what happens in between?

The solution to the paradox involves a careful study of how synapses develop
during ontogeny [45, 46, 47]. The inputs provided by many synapses decide what
a neuron does but, once it has fired, the neuron determines whether each of the
synaptic efficacies will in- or decrease, a process governed by the synaptic learning
window, a notion that will be introduced shortly. It is a generalization of what
we have seen in Eq. (20). Each of the terms below in (22) has a neurobiological
origin. The process they describe is what we call infinitesimal learning in that
synaptic increments and decrements are small. Consequently it takes quite a
while before the organism has built up a ‘noticeable’ effect. As for the mean
response R = npQ studied in §1, only the presynaptic probability of release p
and the postsynaptic response () can change ‘continuously’ whereas the number
n cannot. What happens in the long run is not known yet [4, 8, 18].

For the sake of definiteness we are going to study waxing and waning of
synaptic strengths associated with a single neuron, which therefore need not carry
a label; cf. Fig. 5. The 1 <7 < N synapses are providing their input at times tlf.
The firing times of the neuron are denoted by ¢", it being understood that n is a
label like f. Given the firing times, the change AJ;(t) := J;(t) — J;(t — T}) of the
efficacy of synapse i (synaptic strength) during a learning session of duration 7;
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and ending at time t is governed by several factors,

AJit)y=n| > w™+ > wrt+ Y Wi -m)| . (22)

t-T<t! <t =Ty <" <t t-Ty<t! tn<t

Here the firing times t" of the postsynaptic neuron may, and in general will, de-
pend on J;. We now focus on the individual terms. The prefactor 0 < n < 1
reminds us explicitly of learning being slow on a neuronal time scale?. Through-
out what follows we refer to this condition as the the adiabatic hypothesis. Tt
holds in numerous biological situations and has been a mainstay of computa-
tional neuroscience ever since. It may also play a beneficial role in an applied
context. If it is does not hold, a numerical implementation of the learning rule
(22) is straightforward, but an analytical treatment is not.

Figure 5: Single neuron. We study the devel-
opment of synaptic weights J; (small filled cir-
cles, 1 < i < N) of a single neuron (large circle).
The neuron receives input spike trains denoted
by Si* and produces output spikes denoted by
Sout. Taken from [47].

input s’

Each incoming spike and each action potential of the postsynaptic neuron
change the synaptic efficacy by nw'™ and nw®®, respectively; see the literature
[51, 52, 53, 54] for experimental evidence.

The last term in (22) represents the learning window W (s), which indicates
the synaptic change in dependence upon the time difference s = tzf—t” between an
incoming spike tlf and an outgoing spike t". When the former precedes the latter,
we have s < 0 & tzf < t", and the result is W (s) > 0, implying potentiation.
This seems reasonable since NMDA receptors (see §1), which are important for
long-term potentiation (LTP), need a strongly positive membrane voltage to get
‘accessible’ by loosing the Mg?* ions that block their ‘gate’. A postsynaptic action
potential induces a fast retrograde ‘spike’ doing exactly this [21]. Because the
presynaptic spike arrived slightly earlier, neurotransmitter is waiting for getting

2Since the Greek alphabet is finite and there is no ambiguity between the present learning
parameter and the refractory potential of Section 2, there is no harm in using n here as well.
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access, which is allowed after the Mg?* ions are gone. The result is Ca?" influx.
On the other hand, if the incoming spike comes “too late”, then s > 0 and
W(s) < 0, implying depression — in agreement with a general rule in politics,
discovered a decade ago: “Those who come too late shall be punished.” In
neurobiological terms, there is no neurotransmitter waiting for being admitted.
The learning rule (22) is a direct extension of (20), its time-discrete predecessor.
There is meanwhile extensive neurobiological evidence [48, 55, 56, 57, 58, 59] in
favor of this time-resolved Hebbian learning. An illustration of what a learning
window does is given in Fig. 6.

sf L |
Uy | | i

Ji(t)

Figure 6: Hebbian learning and spiking neurons — schematic. In the bottom graph we show
the time course of the synaptic weight J;(¢) evoked through input and output spikes (upper
graphs, vertical bars). An output spike, e.g., at time #!, induces the weight .J; to change by
an amount w°%*, which is negative here. To show the effect of correlations between input and
output spikes, the learning window W (s) (center graphs) has been indicated around each output
spike; s = 0 matches the output spike times (vertical dashed lines). The three input spikes at
times t{ = t}, t7 and t} (vertical dotted lines) increase J; by an amount w'™ each. There are
no correlations between these input spikes and the output spike at time ¢'. This becomes clear
once we look at them “through” the learning window W centered at ¢': the input spikes are too
far away in time. The next output spike at t?, however, is close enough to the previous input
spike at t3. The weight J; is changed by w®"* < 0 plus the contribution W (¢} — t?) > 0, the
sum of which is positive (arrowheads). Similarly, the input spike at time ¢} leads to a change
w™ + W (t} — t2) < 0. Taken from [47].

If other (infinitesimal) learning algorithms are discovered, one can simply
adapt W accordingly. For instance, for inhibitory synapses one has found in-
finitesimal growth processes [60] that can be described qualitatively by putting
W := —W in Fig. 7; the latter shows a typical learning window for an excitatory
synapse [45, 47]

exp(s/m™™) [Ay(1 —s/74) +A (1 —s/7)] for s<0,

ORI A A assiaimt or s>0. %Y
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Here, as before, s = tlf —1™ is the time difference between presynaptic spike arrival
and postsynaptic firing, 7 is our small learning parameter, 7, := 77 /(79" +

74), and 7 := 77 /(7" + 7). Parameter values as used in numerical sim-
ulations [47] are n = 107>, A, =1, A = -1, 7" = 5ms, 7, = lms, and
7- = 20 ms.
A B 10
ren $ 0] .
W(s) 2
s
3
- <
Q
N
s [msg] &
£
—40 -20 s 20 60 ®
1=
£
s
£ |
| © 60 ;

40 80 0 40 20 0 20 40 60 & 100
Time of Synaptic Input (ms)

Figure 7: A. The learning window W in units of the learning parameter 7 as a function of the
delay s = t{ — t™ between presynaptic spike arrival at synapse ¢ at time t{ and postsynaptic
firing at time ¢". If W (s) is positive (negative) for some s, the synaptic efficacy J; is increased
(decreased). The increase of J; is most efficient, if a presynaptic spike arrives a few milliseconds
before the postsynaptic neuron starts firing (vertical dashed line at s = s*). For |s| — oo we
have W(s) — 0. The form of the learning window and parameter values are as described
in Eq. (23). Taken from [47]. B. Experimentally obtained learning window of a cell in rat
hippocampus; reprinted by permission [55]. The similarity with the left figure is evident. It is
important to realize that the width of the learning window is to be in agreement with other
neuronal time constants. In the auditory system, for instance, these are nearly two orders of
magnitude smaller so that the learning window’s width scales accordingly.

Spike generation is (nearly) always a local process in time and so are the
1 <2 < N input process generating the input spikes tzf. For the latter category
we can, and will, take inhomogeneous Poisson processes (see Appendix B), with
rate function \;(¢); any other local process with independent increments or short-
range correlations (cf. Appendix A) would do as well. In the barn-owl case, the \;
are periodic functions corresponding to a certain frequency. A simple explanation
is as follows. The cochlea being an “inverse piano”, it performs a frequency
decomposition with, say, ¢ labeling the frequencies in a cochleotopic manner.
In the auditory system spike trains are therefore phase-locked to a frequency
component of the acoustic stimulus. A Poisson process operating in a learning
window of finite width (of a few milliseconds) emulates that input frequencies are
never fixed but belong to a finite frequency range.

The time interval [t — T},t) is taken to be big since, due to the adiabatic
hypothesis, learning is so slow that we can safely assume 7; to greatly exceed
neuronal times such as interspike intervals and the width of the learning window.
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Nevertheless we will arrive at a relatively small change of the J;’s so that the
assumption concerning 7T; is self-consistent (otherwise we don’t see anything).
We can divide the time interval [t — 7},¢) into many small intervals that are,
stochastically, independent of each other — apart from a minuscule overlap at
their borders. Hence the sum (22) is self-averaging; cf. the discussion following
(4), a process that is incorporated here.

The above averaging was one over the randomness. We are now going to
perform another one over time. To fully appreciate what is going to happen, we
turn to a differential-equation problem,

d F

& = ) (24)
where 7 is ‘small’ and F'(x,t) for fixed z is a periodic function of ¢, i.e, F(z,t +
T) = F(z,t). After one period = has hardly changed so that, for fized x, we can
average F' over t. That is to say, instead of (24) one studies [61, 62]

F(z) = %/tT dt' F(z,t) = %x =nF(x) . (25)

Here the integral over time, viz., t', is performed with z, the argument of F, fized;
the integration boundaries ¢ — 7" and ¢ of the integral in (25) can be replaced
by 0 and T, respectively. Hence the differential equation we arrive at is an
autonomous one since £ does not depend explicitly on ¢. It is plain that the
whole argument hinges on 71 being small. In fact, under suitable conditions the
‘method of averaging’ [61, 62] can be generalized to nonperiodic F. Here we will
simply average over a period of duration 7; and often use an overbar to indicate
this.

We now return to our problem, viz., (22) averaged over the randomness, and
average over time as well. This sounds quite harmless (it is) but we will soon
see the effect is beneficial. To simplify the notation, we first introduce two spike
flows?,

SRty = st —t), S =) ot—1"), (26)

and rewrite (22), introducing angular brackets to indicate an average over the
randomness,

A%(t) _ n{%/tﬂ ar’ [win<5«z@n(t/)>+wout<sout(t/)>]

1

t t—t
+ L / ds W () (S™(F + )5 () S . (27)
Ty Ji-m, t—Ti—t!

3Since there is no fear of confusion we are using the same notation S for spins and spike
flows.
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It is evident that both types of averaging, over randomness and over time, have
been taken into account. So far so good. The first term on the right, the time
average (Si"(t)) of the rate function (Si"(#')) for times #' in the interval [t — T}, 1),
is a mean which we call i"(¢). For an inhomogeneous Poisson process (see Ap-
pendix B) this is nothing but the mean intensity \;(#) where the probability of
finding one spike in an interval of length At near ¢ is \;(¢)At. If \; is a periodic
function (in the auditory system often for frequencies in the kHz range), then its
time average is a constant so that the time dependence is gone and v"(t) = ;.
The second term, the time average of (S°"*(¢)), which is to be called v°"(¢), is
harder to compute since it entails both the outgoing and all the incoming pro-
cesses, the latter “deciding” together when an action potential will be generated.
For later reference we summarize the above two definitions,

ph(t) = (SP)), v = (S(D) (28)

)

The former refers to the input only, the latter takes the output by itself.

The truly hard nut is the double integral in (27), explicitly correlating input
and output — a distinguishing property of Hebbian learning. Let us take a “typi-
cal” ¢/, say t' =t —T;+ 2T, with 0 < x < 1. Then the lower bound of the integral
over s is effectively —zT} while the upper bound is (1 —x)7}. The learning window
W is something local in time; for the auditory system of the order of milliseconds,
for most of the cortex seconds — anyway, much, much shorter than 7;. Hence for
our “typical” t' the lower bound of the integral over s is —oo whereas the upper
bound is 400 so that, up to a negligible error, we are left with

% L /_ Z ds W (s) (S (¢ + 5)S°" (1))
_ / N dsW(s)% /t AP+ )5 ) (29)

Returning to (27), we note that we can transform it into a differential equation
since AJ;(t) = J;(t)—J;(t—T;) and, due to the adiabatic hypothesis, the change of
J; is so slow that AJ;(t)/T; can be replaced by d.J;/dt. In other words, we choose
T, so large that it greatly exceeds all neuronal times, e.g., interspike intervals
and the width of the learning window W, but on the other hand is much smaller
than ! — all in all, a condition fully consistent with the Hebbian philosophy
“practice makes perfect”. That is to say, 7; separates neuronal and learning time
scales. Then we find, using (27), (28), and (29),

d

. o0 1 [t .
R / ds W (s) = / dt' (St + 5)SO(#))

00 j-vl t—T; (30)

This equation is exact and describes the time evolution of infinitesimal synaptic
plasticity for a neuron with given inputs.
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It is a nice aspect of (30) that the final integral over ¢’ is nothing but the time-
averaged correlation function. The correlation function itself is (Sin(¢") S°ut(#)).
We may interpret it as the joint probability density for observing an input spike
at synapse 7 at the time ¢t and an output spike at time ¢'. Hence we write

Cilst) = /tT A (SP(# + 5) S (1) = (SP(E+ )5 (0], (31)

l

the second equality being just a definition. Altogether we get a synaptic dynamics
of appealing simplicity,

d L >
&Ji =nw™ v + w1 + / ds W(s) Ci(s,t)] . (32)

In this form the learning equation is easy to remember: the input rate " modifies
the synaptic efficacy through w'™, the output rate v°"* does so through w°®, and
the Hebbian correlation function C; favors or disfavors it through the learning
window W.

Appearances are deceiving, however. Not only do »°"* and C; depend on J;
but also, through S°"*, on all the other .J; with j # 7. Moreover, neuronal firing is
intrinsically nonlinear. Hence synaptic dynamics is an intricate collective process.
Figure 8 gives an illustration of what may, and often does, happen. Inspired by
the barn-owl case [45], we imagine a set of axonal delay lines contacting a neuron.
They exhibit a uniform distribution of delays and of synaptic strengths (> 0) to
start with. The neuron is of the integrate-and-fire type and the solution as shown
is numerically exact. As one sees, there is first a symmetry breaking where certain
synapses “‘grow” faster than the rest. The fact that certain delays are favored
makes that their ‘auto’correlation function exceeds that of more ‘distant’ axonal
delays. In this way they grow faster and the others deteriorate in their role of
“those that come too late”. This initial stage is characterized by an exponential
growth (or decrease), the rationale of which will be illustrated by the Duhamel
formula (49) below. The next stage where a few synapses are favored and the rest
is eliminated is hard to characterize since it is governed by a nonlinear dynamics
due to the integrate-and-fire neuron. The final stage is a simple saturation at
an upper bound determined by finite synaptic resources or a lower bound, zero,
where nothing is left. What we see is a kind of evolutionary process where only
a few axonal delay lines, the “fittest”, survive.

In the next section we will study an exactly soluble neuronal model that allows
a disentanglement of the different inputs and, in this way, provides a more precise
feeling for what is going to happen.
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Figure 8: Bottom to top, selection of synapses dur-
ing pattern formation of the synaptic connectivity

on an integrate-and-fire neuron. As shown by the
Y panel at time ¢;, a set of axonal delay lines with a
uniform distribution of synaptic strengths and de-

lays in the interval [0, 7] gets Poissonian input with
frequency w = 27/T. The panel at time ¢o exhibits
t symmetry breaking and exponential growth; the lat-
2

ter is a simple consequence of linearizing (32). At
WWMWMWMMWWMM time t3 saturation sets in and at t4 we have reached
full saturation, a stationary state characterized by
“survival of the fittest”.

5 Disentangling Synaptic Inputs:
the Poisson Neuron

Equations (30) and (32) tell us that “all we need” for deriving the time evolution
of the synaptic efficacies is °"* and the function C; correlating Si" and S°U. In a
threshold model, such as the Spike Response Model (§2), the Si* together deter-
mine S°" in a nonlinear way because of the threshold. Disentangling input and
output and obtaining exact solutions is thus prohibitively difficult. We therefore
introduce a model, the Poisson neuron, that allows for an exact solution [47] of
the synaptic dynamics (32) by circumventing the threshold but keeping the firing
rate.

5.1 Poisson Neuron: Definition and Properties

Spikes originate, so to speak, from the potential v(¢) as given by (3). We now
define the Poisson neuron to be the inhomogeneous Poisson process (see Ap-
pendix B) with rate function, or intensity,

XUt = vy +u(t) = v+ Y Ji(t)e(t —t]) >0 (33)

where 1y is a spontaneous firing rate. A Poisson process is defined by three prop-
erties: (i) the probability of finding a spike between t and ¢ + At is A\°"(¢) At,
(ii) the probability of finding two or more spikes there is o(At), and (iii) the pro-
cess has independent increments, i.e., events in disjoint intervals are independent.
When the potential v(¢) in (33) is high/low, the probability of getting a spike is
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high/low too. The input processes (26) are taken to be Poisson as well, a reason-
able, often even realistic, assumption. For those who like an explicit nonlinearity
better, the clipped Poisson neuron with

AL et = 11O[0(t) — 1] (34)

clipped —

and © as the Heaviside step function of (11) is a suitable substitute that also
allows an exact disentanglement [63]. In fact, practically any function of v will
do [64].

For the sake of convenience we require that the integral over ¢ (instead of &’s
maximum) be one. We start by noting that (S°"*) = (A\°"*(¢));, where the former
average is over both the output process, i.e., the Poisson neuron, and over the
input processes whereas the latter is over the input processes only; hence the
lower index ‘in’ served here as a reminder. Using (33) we then get

(5™ = vy + 3~ (1) /0 T ds ()Nt — 5) = v + S ROAND) . (3

The first equality in (35) is as in the transition from (78) to (80) in Appendix B. In
agreement with the previous section, .J; has been treated as an adiabatic variable
and, thus, is taken to be constant on the time scale of 7}. In (35) it can therefore
be evaluated at time ¢. The final equality defines A" as the convolution of £ and
Al

To compute (S(t + s)S°*(¢)) in (30) and disentangle input and output, we
exploit the properties of a Poisson process. For the moment we put 1y = 0 and
define h;(t) == Ji(t) >, e(t — t1). Performing the average associated with our
Poisson neuron, viz., (33), we find

(S (¢ + $) S (1)) = (S (¢ + s)[hs(t) + Z hi( (36)

The h; with j # ¢ and Si" being independent, the average of their product is a
simple computation as it factorizes so that we can use (35). The result is

(St + s Z hi(t)) = AM(t+s) Y AR(E)J;(t) . (37)

3(#0)

It it will be recollected in (41) below.
The average (SI"(t + s)h;(t)) is over the input process (26),

<|:Zf/5(t+8_tlf,)] X [Ji(t) ng(t—tzf)]> ) (38)

The correlations are explicitly present in the arrival times tzf "and t{ of the spikes
as they hit synapse ¢. The disentanglement that is to come is exactly as in the
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transition from (83) to (84) in Appendix B. We approximate the delta function in
(38) by the normalized indicator function (A#) ' Migpikesin .4 -+ar} (W) with At —
0. Here w is sampling our probability space, i.e., the collection of random events,
so that averaging means integrating over w. Furthermore, we discretize the time
axis by breaking it into intervals [t, t, + At) of length At and take ¢, := ¢ + s
(for k£ := 1) as an end point of one of the intervals. Keeping an eye on (38) and
J;(t) on ice, we have to evaluate averages of the form

(At)~ <1I{spikes in i+ 203 (@) D Wspikesin oy -+t (@) €t = tk)> . (39)

As long as At > 0 we have to take into account that more than one spike may
occur in an interval; ‘no spike’ is easy because it gives nothing. As At — 0, the
probability of getting more than one spike in an interval of length At is o(At),
in perfect agreement with neuronal refractoriness, and thus may be neglected.
In the sum occurring in (39) we separate the term k = [ from the rest and note
that for & = [ we get > = 1 whereas the events k # [ are independent so that
expectation values factorize. Remembering ¢, =t 4 s, we then end up with

AR(t) [elt—t) + Y AP(t)e(t — t) At
KD

= At +s) L:(—s) + ) AR (t)E(t — ) At-l : (40)
= J
In the limit A¢ — 0, the above Riemann sum converges to its integral [ dt’ A"(¢')

e(t — '), which is nothing but Al"(¢). Collecting terms and reinstalling (37),
vp > 0, and J;(t), we obtain

vo + Ji(t)e(—s) + ) J;(t)AR(t)

J=1

(Si"(t+5) S (1)) = AP (t+ 5) (41)

where, except for j = 4, the sum stems from (37). We note that £(—s) # 0 only
if s < 0. In view of causality, this makes sense since S(¢ + s) can influence
Seut(¢) only if s < 0. In fact, the term AP(¢ + 5).J;(t)e(—s) incorporates the way
in which an input spike at synapse 7 at time ¢ 4 s influences the neuronal output
at time ¢t through £(—s) and, hence, is correlated with itself. The sum represents
the influence of ‘other’ times (j = i) and other synapses (j # i).

Time-averaging (41) is trivial. We insert (41) in (31) and (32) and invoke the
adiabatic hypothesis of the previous section so as to find

Ci(s,t) = At + 5) [vo + Ji(t)e(—s)] + Z Ji(NM(t+s)AMt) . (42)

j=1
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By definition, A"(¢) = v/"(¢). Combining (32) and (42) we obtain for 1 <7 < N,

d o
_Jz =7 [[wm l/;n + wout

dt *

N
Vo + Z JiAF ()
=1

/_OO ds W (s) {)\;“(t + 5) [vo + Jie(—s)] + Z TN (t + s) AP (t)] }]] . (43)

00 7=1

Functions of time that carry no argument are to be taken at time ¢. A single
glance suffices to convince us that (43) is a linear differential equation. The time
averages, though slowly varying, might still depend on time. If so, the solution
is standard [78, 79] but very hard, and explicit expressions can only be obtained
numerically. If, on the other hand, the ); are periodic functions of time, as in
the auditory system, the time averages are (practically) constant and an analytic
approach is within reach, at least for the mean activity.

Throughout what follows we drop the prefactor n from the dynamics by rescal-
ing time through the substitution nt := t and redefining all functions in sight that
depend on time; to this end we use (43) and bring 7 to the left. Alternatively,
we measure everything in units of size . We define a few quantities,

a; = w"r™ 4 v[w 4 / ds W(s)Ain(t + s)] ,

o0

bi = A;n(t) wOUt,
¢ = / ds W (s)e(—s)A"(t +s) ,

oo

Qult) = /_ " ds W(s) NG 1 ) AT (E) | (44)

oo

with Al*(t) = [dse(s)A"(t — ) as in (35), and find for 1 <i < N
q N N
&Jl :ai—f—ijJj—FCiJi—f—ZQiij . (45)
=1 j=1

We can rewrite (45) in terms of the vector J = (.J;) € R by defining the diagonal
matrix C' = diag{cy, co, ..., cy}, using Dirac’s bra-ket notation® and introducing
the N-vectors |1) = (1,...,1), a = (aq;), and b = (b;) so that (45) reappears in
the form d
EJ:a+(|1)(b|+C’+Q)J. (46)
4Dirac’s imagination has led to an appealingly simple notation. The idea is this. A Hilbert
space H is a vector space with inner product H x H 3 {x,y} — (z|y) € C, which is taken to be
linear in the right-hand side, viz., y. The resulting inner product looks like a bracket so that
Dirac called (z| a ‘bra’ and |y) a ‘ket’. Vectors in our Hilbert space are kets and written |y).
Then the operator P = |2){z| is projector-like and bound to operate on vectors |y} in such a
way that Ply) = |2)(z]y) « |2). See the literature [88, §14.4] for additional information.
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As it will turn out in §5.5 that C' does not dominate the asymptotic behavior of
(46) we simplify it by taking ¢; = ¢ so that C' = ¢1I, the spectral theory of C'+ @
is reduced to that of (), and we are left with

%J:a+(|l>(b|+cﬂ+Q)J. (47)
Input channels 7 and j whose delays are fixed give rise to a specific matrix element
Q;; that takes the delay structure into account. For input processes that are
Poissonian with periodic intensity, the v/* and v°"* as defined by (28) are constants
when 7} is large enough, and so are the Q;;. It is important to realize that this
statement is true on the time scale of 7; but need not¢ hold on that of the total
learning time.

Finally, the learning equation (47) allows the analysis of the influence of noise
on long-term synaptic plasticity. Learning results from stepwise, infinitesimally
small weight changes: “Practice makes perfect”. With noise, each weight per-
forms a random walk whose expectation value is described by the ensemble-
averaged equation (47). For an analysis of noise as a deviation from the mean
the reader is referred to the literature [47].

5.2 Relation to Rate-Based Hebbian Learning

In neural network theory, Hebb’s ideas [28] have usually been formulated as
learning rules where the change of a synaptic efficacy J; depends on the correlation
between the mean firing rate " of the i th presynaptic neuron and the mean firing

rate v°" of a postsynaptic neuron, viz.,

d . . .
&Jz — dO 4 dl V;n 4 d2 Vout 4 d3 V;n Vout 4 d4 (Z/Z!H)Z 4 d5 (Vout)2 , (48)

dy < 0 and dy,...,ds being proportionality constants. Apart from the decay
term dy and the “Hebbian” term v v°" proportional to the product of input
and output rates, there are also synaptic changes which are driven by the pre-
and postsynaptic rates separately. The parameters dy, ..., ds; may depend on .J;.
Equation (48) is a general ansatz with terms up to second order in the rates; see,
e.g., [80, 81, 82]. In case dy = dy = d5 = 0 and under the (strong) assumption
that S and S°'* are independent, it is straightforward to derive (48) from (32)
directly. Alternatively, one can obtain (48) from (45).

Linsker [80] has derived a mathematically equivalent equation to (47) by start-
ing from (48) and using a linear graded-response neuron, a rate-based model. The
difference between Linsker’s equation and (45) is, apart from a slightly different
notation, the term cI and the fact that (45) has been derived from underlying
processes, viz., spikes, whereas Linsker’s equation is the result of the rate ansatz
(48). The present approach is far more comprehensive. Correlations between
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spikes on time scales down to milliseconds or below can therefore enter the driv-
ing term @ for structure formation. They may be, and I expect are, essential for
information processing in neuronal networks such as auditory and electro-sensory
systems [83].

The mathematics of (47) has been analyzed extensively by MacKay and Miller
[84] in terms of eigenvectors and eigenfunctions of the matrix |1)(b| + @ with
b = b1 and ¢ = 0. The matrix (Q;; + b+ ¢d;;) in (47) contains ¢ times the unit
matrix and thus has the same eigenvectors as (Q;; + b) while the eigenvalues are
simply shifted by c.

5.3 Synaptic Dynamics and Self-Normalization

Normalization of the average synaptic efficacy or of the mean output activity is
a very desirable property for any synaptic dynamics. After all, the mean output
rate should not blow up during learning but converge to a finite value in an
acceptable amount of time. Standard rate-based Hebbian learning, however, can
lead to unbounded growth. Several methods have been designed to control this
unbounded growth, such as subtractive and multiplicative rescaling of the weights
after each learning step so as to impose, e.g., Z]. J; = Const. or Z]. J]2 = Const.
[85]. Most of these methods make use of the .J; dependence of the parameters
di,...,ds in the learning equation (48). Mathematically they do what they ought
to do but, from the point of view of biological physics, it is unclear where they
come from. Hence we will derive self-normalization from scratch.

We are going to show under what conditions the arithmetic mean J* =
N-1%". J; of the synaptic efficacies, and hence the mean neuronal output, con-
verges to a finite limit as ¢t — co. In other words, we focus on the question of how
we can get self-normalization. The first result in this direction, an even more
pronounced form for integrate-and-fire neurons (see §2) in the general context
of (32), was found numerically by Gerstner et al. [45]. We will see that, for a
realistic scenario, we need a; > 0 and b; < 0, whatever 7. The former condition
is evident once we realize that naive synaptic efficacies start at .J; = 0; after
all, where else? Then (47) is nothing but dJ/d¢t = a. For excitatory synapses
starting at J; = 0 it would be good to increase. Hence we cannot but require
a; > 0. We will assume the excitatory case throughout what follows; inhibition
can be treated analogously.

The linear equation (47) is of the form dJ/dt = MJ + a with M being the
matrix (|1)(b| + ¢+ Q). As long as M is fixed, the synaptic dynamics can be
solved explicitly through Duhamel’s formula,

J(t) = exp[(t — to) M]I(to) + /t ds exp|[(t — s)M]a . (49)

to

The right-hand side of (49) satisfies (47) and equals J(¢y) at time ¢t = ;. Hence it
is the solution J(¢) we are looking for. In the asymptotic limit ¢ — oo, the vector
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a may depend on s, i.e., time, so that a = a(s). Duhamel’s formula is as valid as
it was for constant a. To incorporate a time-dependence of M one has to replace
exp|(t — to) M| by the corresponding solution operator U(t,ty). Since both a(s)
and M (t) in general preclude any analytic solution, we will not pursue the issue
here but take both constant. Let us, then, suppose first that all eigenvalues of
M, the so-called spectrum o (M), have strictly negative real parts. Accordingly
we get exp(tM)J(ty) — 0 as t — oo while in the very same limit the integral
gives —M 'a, the fixed point of the differential equation. So it all fits, provided
—M~'a has all components nonnegative, which may well happen. We need to
keep in mind, though, that the key assumption on (M) remains a bit hard to
verify.

We did not require M to be diagonable. In fact, except for o(M), we did not
assume anything yet. To get sharp analytic results we now suppose (i) b; = b for
all 1 <i < N, which implies |b) = b|1), and (ii) a specific commutator vanishes,

@, [1)(1]] =0 . (50)

Thus all row and column sums of @) equal a single number ¢N since |1)(1] is the
matrix whose elements all equal 1. The matrix @) being N x N, ¢ tells us how
big/small a “typical” matrix element is. Phrased differently, the sum ¢V has the
right scaling behavior as N becomes large. In passing we note that one can do
with slightly less [86]; say, [@,|1)(b]] = 0 and variations thereof. There are at
least two consequences. First, the spectral theory of P := [1)(1| and @ refers
to two different things that can be sorted out separately and together determine
the effect of M = bP + ¢l + @ in that exp(tM) = exp(ct) exp(tbP) exp(tQ).
The only eigenvector of the Hermitian P with nonzero eigenvalue (= N) is |1) =
(1,...,1); the eigenvalue N is non-degenerate so that® |1) is also an eigenvector of
Q. Alternatively, it is a direct outcome of (50) that the corresponding eigenvalue
is ¢N. Second, the differential equation governing the dynamics of J" is

dJ¥/dt = a® + (Nb+c+ Nq)J* . (51)

with ¢® := N} Z]. a; > 0. Let us now put m := Nb+c+ Ng. Then the solution
of (51) is again given by Duhamel’s formula (with ¢y = 0),

J¥(t) = ™ J¥(0) + m ("™ — 1)a™ . (52)

To get a finite result we simply require m < 0. Then J*(¢) approaches the
fixed point J* := —a®/m > 0 of the differential equation. The fixed point
is asymptotically stable if and only if m < 0. If (50) does not hold, not even
approximately, things become a bit harder.

>Suppose two matrices A and B commute, i.e., [A,B] :== AB — BA = 0. Let a be an
eigenvector of A with nondegenerate eigenvalue . That is, Aa = aa. Then BAa = A(Ba) =
a(Ba) so that, a being nondegenerate, Ba = fa. In other words, a is also an eigenvector of
B. For degenerate eigenvalues of A the present argument breaks down.
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5.4 Asymptotics and Structure Formation

By now there is no harm in starting with a matrix M that has a few eigenvalues
with a strictly positive real part and calling those with largest and second-largest
real part A\; and \y; for the sake of convenience, we also assume they are nonde-
generate. We return to Duhamel’s formula (49), viz., its upshot for constant a
and constant M,

J(t) = exp(tM) J(0) + M~ '[exp(tM) — 1] a , (53)

which is the matrix version of (52) with ¢, = 0. If the matrix M is diagonable
and the real part R\, of A\, is appreciably bigger than )5, we need only know
the normalized eigenvectors e; and g; with (g;]e;) = 1 belonging to the “largest”
eigenvalues \; and \! of M and its Hermitian conjugate (i.e., adjoint) MT as they
determine the leading contribution A;|e;)(gi| in the biorthogonal expansion [87,
§11.23] of M in structure formation®. Equation (53) then tells us that, after an
initial phase with ¢ ~ 0, there is exponential growth along e;.

Since ®A; > 0 the nonzero components of J(¢) are bound to blow up or
decrease to —oo as t becomes large. This is of course unrealistic since synaptic
resources are finite. For excitatory synapses we therefore assume an upper bound
J", with 0 < J* < oo, and a lower bound 0. If the efficacy of synapse i has reached
J", it will stay there as long as its time derivative J!(¢) is positive. On the other
hand, once J/(t) < 0 it may decrease. For the lower bound the argument is just
the opposite. We thus see that sooner or later, with the timing depending on
R\, we get saturation of (53), i.e., of

J(t) ~ exp(th) (8113 (0)) + A, (gila)ler — M 'a.. (54)

Once a component of J reaches the upper or lower bound the problem becomes
nonlinear. We then take it out, fix it, and continue with the remaining problem,
which is again linear; and so on. Though implausible, a ‘fixed’ component is
allowed to return to the interior of [0,.J"%] once its time derivative points into

6 If M is diagonable, then it has N independent eigenvectors e; that constitute the columns
of a matrix T with T='MT = diag(\y, ..., \n) (i). Hence TTMT(TT)~ = diag(A},...,\%)
(ii) and the columns g; of the matrix (TT)~! are eigenvectors of M with eigenvalues \}. For
nondegenerate eigenvalues it is a simple argument to show (g;le;) = 0 for i # j: (MTg;|e;) =
(gj]Me;) so that Xj(gjle;) = (gjlei) A with A; # Xj. Now (g;le;) # 0 because otherwise
gi = 0, so that we can put the inner product equal to 1 and find M = }  A\i|e;)(gi|. In
addition, exp(tM) = Y, exp(t);)|e;)(gi|. For self-adjoint M = MT we are back at the ordinary
spectral representation. The reader may consult Merzbacher [88, §14.4] for a detailed account
of Dirac’s convenient bra-ket notation. In fact, the only condition on M that is needed for
a biorthogonal expansion is that M be diagonable. Then (i) says T = (ey,...,en) and (ii)
asserts (T~')t = (gi1,...,gn). Hence biorthogonality is equivalent with (7~')T = 1I, which
is evident. The expansion itself can be verified on a complete set of eigenvectors of M, viz.,
{e;; 1<i< N} QED
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the ‘right’ direction. With the benefit of hindsight we can now formulate “self-
normalization” to be a limit state where 0 < J* = N~' 3" J; < J*; for inhibitory
synapses, or mixtures, the statement is to be modified accordingly.

5.5 Simple Example of Structure Formation

We finish this section by studying a simple, exactly soluble, case. To this end we
divide the N statistically independent synapses into two groups, N7 and N5 with
N; and N, synapses, respectively, and N; + Ny = N while N;, Ny > 1. Since
each group contains many synapses, we may assume that N;/N and Ny/N are
of the same order of magnitude.

The spike input at synapses in group N is generated by a Poisson process
with a constant intensity A*(#) = v, which for i € N is taken to be time-
independent. Using the definition (44), we therefore get @Q;;(t) = @11 for i and/or
jEN.

The synapses i € N are driven by some time-dependent input, A" (#) = A" (¢)
with the same mean input rate A\i*(t) = v as in group N;. Without going into
details about the dependence of A\®(t) upon the time ¢ we simply assume \"(t)
to be such that Q;;(t) = Qa2 for i,j € N, and regardless of ¢ while Q;;(t) = Qs
in all other cases. Here Q11 and (Q9y are constants and we have used (44). For
the sake of simplicity we require in addition that ()os > (1;. In summary, we
suppose in the following

s ={ 27O L e (59

Qu otherwise

We recall that (Q;; is a measure of the correlations in the input arriving at synapses
i and j; cf. (44). Equation (55) tells us that at least some synapses receive more
positively correlated input than the rest, a rather natural assumption. As one
may expect in the animal kingdom, some synapses are “more equal” than others.

We now examine the evolution of the average weight in each of the two groups
N and N5 and put

1 1
gV = =N g, = —S" . 56
1 N zgv:l ’ Ny g% 0

As long as lower and upper bounds do not influence the dynamics, the corre-
sponding rates of change are determined by (47),

d Jf‘v . 1 bN1 +c bN2 Jf‘v
m <J2> =« (1) + ( N, b+ QNy+c) (57)
where we have put b := b+ Q11 and Q) := Q2o — Q11 > 0; the inequality is by as-

sumption. Obtaining an explicit solution to the above equation is straightforward
once we realize its relation to a quantum spin 1/2.
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The matrix M appearing on the right in (57) is a linear combination M =
noll + n - o of the unit matrix T and the Pauli spin matrices [88, §13.6],

() (D) ()

Here i = \/—1, the center dot in n - o denotes a scalar product, and n € R? if
and only if the matrix M is Hermitian. If we want to use the Duhamel formula
(53) — we do — we need to compute exp(tM). This is easy since simple algebra
based on 0,0, =io, et cycl. or any decent quantum mechanics book [88, §13.6]
shows that (n-o)? = (n-n) I and consequently

exp(tM) = ™" |cosh(yv/n-nt) + %\/Lnnt) n-o| . (59)

Once M is diagonable the rest of the game is computing two eigenvalues and the
corresponding eigenvectors; biorthogonality as treated in Footnote 6 is helpful.

It is however simpler, and also more physical, to exploit the fact that both
Ny/N and Ny/N are O(1) and take them equal, i.e., Ny = Ny = N/2. Then
M is Hermitian (here real and symmetric) and n € IR? so that we can write
n = nn with n being the length /n-n of the vector n and i being a unit
vector. In physical terms, n- o is the projection of the spin onto the direction n.
Furthermore, ng = (b + Q/2)N; + ¢, n = (bN1,0, —Q N1 /2), and the eigenvalues
of M are my := ng = n. As Eq. (59) shows explicitly, the latter result also
determines the asymptotics for complex n.

Keeping (53) and (54) in mind, we can now exploit (59). The eigenstates of M
are identical with those of nn - o, the projection of the ‘spin’ & onto the direction
n; the corresponding eigenprojections are |ey)(ex| = (1/2)(I + n- o). A simple
computation gives my 1= ng £ n = (b+ Q/2)N; + ¢ £ N,[b? + Q?/4]"/%. Since
@ > 0 by assumption, both eigenvalues m. are positive, if b > 0 and N; > 1
so that ¢ is subdominant; we can use ¢ for fine-tuning, however. If on the other
hand b < 0, then m_ < 0 but my > 0. In both cases the eigenstate e belonging
to m; > 0 is dominant. As we are given |eL)(e.|, the source term a, and the
initial condition J(0), we know what the asymptotics looks like; cf. (54).

Figure 9 shows the result of a realistic simulation, a nice academic exercise:
0 < J;(0) = J* for all i. Synapses that are “more equal” than others, win. We
can now easily understand why. In the present case a = al, J(0) = J“1, and
J"+a/my > 0 so that the vector 1, := |e;)(e,|1) = (1 + (Ny/n)(b—Q/2),1+
(N1/n)(b+ Q/2))" tells us what will happen; (N;/n) does not depend on N;. A
nontrivial structure occurs only if b < 0 since the first component of 1, is then
negative whereas the second is positive. This is the case in Fig. 9, where b < 0.
For b > 0 both components of the vector 1, are positive and a trivial saturation
occurs.
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A careful look at the right inset of Fig. 9 reveals, however, that the agreement
between theory and experiment is not perfect. Why is that? To see why, we
return to (45) and adapt it to the present situation,

d
Ejl :a+b <XJ:J]> +CJ¢+Q(S¢7N'2 Z Jj s (60)

JEN2

with §; x, = 1ifi € My and 6; n, = 0 otherwise. We started with Ny = Ny = N/2,
which holds as long as none of the .J; has attained the upper or the lower bound,
viz., J* or 0. As soon as this happens, say for i = iy € Nj, we take ¢ = g
out of (60) but not out of Ni; the procedure must be repeated each time a J;
touches one of the boundaries. Furthermore, N; and Ny now become dynamic
variables counting the number of active J; in N7 and N5, respectively, with in
general Ny # N,. Equations (57) and (59) still hold as long as none of the active
J; hits one of the boundaries, but n and ny change continuously, as do the N; in
both (56) and (57). Moreover, 1_ (the analog of 1) as well as a # 0 may, and
in general will, influence the dynamics. Hence the exact dynamics given by (60)
approximates but is not identical with the one given above — as advertised. In
fact, the exclusion process continues until Ny = Ny = 0, beyond which nothing
changes any more.

6 Short-Term Synaptic Plasticity

Despite being of ‘short’ duration, short-term synaptic plasticity may have pro-
found effects on network behavior and is, in fact, closely correlated with it. We
therefore start by outlining the problem and analyzing a simple model of short-
term plasticity that is an adaptation of the model of Tsodyks and Markram
[65, 66] to the Spike Response Model (see §2). We then specify how the synaptic
efficacies change as a function of presynaptic input — and time. The resulting
setup allows a full-blown study of network behavior.

6.1 The Problem

Short-term synaptic plasticity is to be contrasted with its long-term counterpart
in that it refers to a change in the synaptic efficacy on a time scale of milliseconds
up to seconds. It is therefore natural to inquire whether and to what extent
this has functional consequences, and to elucidate the underlying mechanisms
[65, 66, 67, 68, 69, 70, 71]. The experimental observation underpinning short-
term synaptic plasticity is the fact [72, 89, 90, 91] that the transmission of an
action potential across a synapse can have a significant influence on the amplitude
of the postsynaptic potential (PSP) evoked by subsequently transmitted spikes.
In some synapses, the height of the postsynaptic potential is increased by spikes
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Figure 9: Temporal evolution of the average synaptic efficacies J2¥ and J&V as defined in (56),
and J¥ = (J® + J&V)/2 as a function of the learning time ¢ in units of 10* seconds. This
is a fictitious time to keep the computational time finite. It is in general too fast for biology
but can be adapted to it by a simple rescaling without changing the picture. The quantity
J? is the average weight of all synapses, J& and J3' are average weights of the groups Nj
and A5, respectively. Synapses i in group N, where 1 < i < 25, receive incoherent input
whereas synapses i in group N>, where 26 < i < 50, are driven by a coherently modulated
input intensity. Parameters are a = 107%, b= —107*, ¢ =7.04 x 107°, and Q = 6.84 x 1077,
all of dimension s~!; furthermore, N; = Ny = 25. The eigenvalues of the Hermitian matrix M
in (59) are my ~ ¢ and m_ = —5 x 1072 so that we get two different time scales. Simulations
started at time ¢ = 0 with a homogeneous weight distribution J; = 0.1 = J* for all i. There is
a ‘fast’ decrease determined by m_ < 0 and, thus, finished within a time of order O(100s). All
this is near the vertical axis and hardly visible. Structure formation is dominated by m4 > 0
and is happening on a time scale that is two orders of magnitude slower than that of the fast
relaxation. Now synaptic efficacies saturate at the upper bound (J£V) or at the lower bound
(J2¥). The insets show the weight distributions at times ¢+ = 10%, 10%, 2.93 x 10%, and 7 x 10*s
(arrows). Taken from [47].

that have arrived previously (short-term facilitation, STF; also called paired-
pulse facilitation). In other synapses, the postsynaptic potential is decreased
by previously arrived action potentials (short-term depression, STD; also called
paired-pulse depression).

Short-term synaptic plasticity, or simply short-term plasticity, is different from
its well-known counterpart “long-term plasticity” in at least two crucial points.
First, nomen est omen, the time scale on which short-term plasticity operates
is much shorter than that of long-term plasticity and may be well comparable
to the time scale of the network dynamics. Second, short-term plasticity of a
given synapse is driven by correlations in the incoming spike train (presynaptic
correlations), whereas classical long-term plasticity is driven by correlations of
both pre- and postsynaptic activity; a prominent example of the latter is Hebbian
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learning as studied in the previous sections.

6.2 Modeling Short-Term Synaptic Plasticity

Modeling short-term plasticity is based on the idea that some kind of ‘resources’
is required to transmit an action potential across the synaptic cleft [73, 74, 66,
67, 68]. The term ‘resource’ can be interpreted as the available amount of neuro-
transmitter, some kind of ionic concentration gradient, or postsynaptic receptor
availability; cf. Fig. 1. We assume that every transmission of an action potential
affects the amount of available synaptic resources and, on the other hand, that
the amount of available resources determines the efficiency of the transmission
and therefore the maximum of the postsynaptic potential. There is meanwhile
considerable evidence [4, 89, 91] that short-term plasticity is due to presynaptic
effects and, hence, to presynaptic correlations only. We can think of presynaptic
‘resources’ as, e.g., the number of vesicles that determines the release probabil-
ity [89]. The relevant notion is then the probability p as it occurs in the mean
synaptic response R = np(@; see §1.

We are going to discuss short-term plasticity in the context of the Spike Re-
sponse Model (see §2). In so doing we closely follow Ref. [77]. It will turn out that
the spike-response formalism is very convenient in deriving closed expressions for
synaptic efficacies as a function of spike arrivals and time. The time-dependent
synaptic efficacy J;;(¢) is a function that depends both on time and on the mo-
ments of arrival of the spikes from neuron j. This function will be computed in
the next subsections.

6.3 Modeling Short-Term Depression

The model of Tsodyks and Markram [66] assumes three possible states for the
“resources” of a synaptic connection: effective, inactive, and recovered. When-
ever an action potential arrives at a synapse a fixed portion R of the recovered
resources becomes first effective, then inactive, and finally recovers. Transitions
between these states are described via first-order kinetics using time constants
Tinact and Tree. The actual postsynaptic current is proportional to the amount of
effective resources.

In the context of the Spike Response Model the above three-state model can
be simplified further since the time course of the postsynaptic current, as it is de-
scribed by the transition from the effective to the inactive state, is already taken
care of by the form of the postsynaptic potential (PSP) given by the response
function Je. Focusing on a specific synapse {ij}, we drop its label. The only rel-
evant quantity is the maximum (minimum) .J determined by the charge delivered
by a single action potential. As we have seen in §1, a synaptic efficacy J can be
interpreted as its mean (.J). We henceforth drop the alternative ‘minimum’ that
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takes care of an inhibitory postsynaptic potential and assume an excitatory one,
the modifications for inhibition being evident.

Transitions from the effective and the inactive to the recovered state are de-
scribed by linear differential equations. The maximum of a PSP only depends on
the amount of resources that are actually activated by the incoming action poten-
tial. We therefore summarize the 2-step recovery of effective resources (inactive &
recovered) by a single step and end up with a 2-state model of active (Z) and in-
active (Z) resources; see Fig. 10. Each incoming action potential instantaneously
switches a proportion 0 < P < 1 of active resources to the inactive state from
where they recover to the active state with time constant 7. In mathematical
terms we arrive at

Cil—iz—PZS(t)jLTlZ, Z=1-7, (61)
with S(¢) = >_,0(t — ;) as the incoming spike train. This differential equation
is well-defined, if we declare Z(t) to be continuous from the left, i.e., Z(t;) :=
Z(t; —0). The solution Z(t) is in the interval [0, 1].

The amount of charge that is released in a single transmission and therewith
the maximum of a PSP depends on the amount of resources that were switched to
the inactive state, or, equivalently, on the amount of active resources immediately
before the transmission. The strength of the synapse at time ¢ is then a function
of Z(t) and we simply put J(t) = J° Z(t) where J° is the maximal mean synaptic
efficacy.

A B
P S(t) 1/t
/\ /\
Z STD Z A STF A
N~ N~
1/7 R S(t)

Figure 10: Schematic representation of the present model of short-term depression (A) and
short-term facilitation (B). With short-term depression, every incoming action potential instan-
taneously switches a proportion 0 < P < 1 of active resources Z to the inactive state Z. This
is described by a first-order reaction kinetics with the time-dependent rate P S(t); here S is the
incoming spike train, a sequence of delta functions. Resources relax from the inactive state to
the active state with time constant 7. The model for short-term facilitation emerges from the
model for short-term depression simply by inverting the directions of the arrows. A far right
represents the ineffective resources, which are decimated by incoming spikes at a rate R S(t).
The active resources A relax back to the inactive state at a rate 7—!. Taken from [77].

Let us now suppose that the first spike arrives at a synapse at time ty. Immedi-
ately before the spike arrives, all resources are in their active state and Z () = 1.

38



The action potential switches a fraction P of the resources to the inactive state
so that Z(ty + 0) = 1 — P. After the arrival of the action potential the inactive
resources recover exponentially fast in ¢, and we have

Z(t>ty) =1— P exp[—(t —to)/7] . (62)

At the arrival time ¢; of the subsequent spike there are only Z(t;) resources in
the active state and the PSP is depressed accordingly.

To see how to proceed, we integrate (61) between ¢t; — At and ¢y + At so as to
obtain Z(t; + At) — Z(t; — At) = —PZ(ty) + O(At), and take the limit Az — 0.
Since Z(t) is continuous from the left we find Z(t; +0) — Z(t;) = —PZ(t;) and
hence

Z(t;+0)=(1-P)Z(ty) . (63)

Between two spikes Eq. (61) reads dZ/dt = —d(1 — Z)/dt = 77'(1 — Z), whence
(1 — Z)(ty) = exp|—(ta — t1)/7](1 — Z)(t1). If, now, t; approaches a firing time
(which will also be called t;) from above, then we get
Z(ty) = 1—[1—Z(t +0)]exp[—(tr —t1)/7]
= 1—-[1—(1=P)Z(t1)] exp[—(ta — t1)/7] . (64)
In the transition from the first to the second line we have exploited (63).
.From the first few examples we can easily read off a recurrence relation that

relates the amount of active resources immediately before the nth-spike to that
of the previous spike,

Z(tl) =1—-P exp [—(tl — tg)/T]
Z(ty) =1—[1—=(1—=P)Z(t1)] exp[—(to — t1)/7]

Z(ty) =1—[1—(1—=P)Z(tp-1)] exp[—(tn — tn-1)/7] . (65)

In passing we note that, instead of Z(ty) = 1 we could have taken any desired
initial condition 0 < Zy < 1. The ensuing argument does not change.
The recurrence relation (65) is of the form

Z(ty) = an + by Z(tn-1) (66)
with

ap =1-— eXp[_(tn - tn—l)/T]v bn = (1 - P) eXp[_(tn - tn—l)/T] . (67)
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Recursive substitution and a short calculation yield the following explicit expres-
sion for the amount of active resources,

Z(t,) = ay + by Z(tn_1)
= ay + by [an—l + bp1 Z(tn—2)]
= ap + bn Op—1 + bn bnfl Op—2+ ...

00 k—1
- E Ap—k H bnfj
k=0 i=0

= an_1(1 = P)* exp[—(tn — tns)/7]

P o0

=1-—— (1 — P)F exp[—(tn — tu_i)/7] . (68)
1-P

k=1

The synaptic efficacy at time ¢ as a function of the spike arrival times --- <
th_o < t,_1 < tis given by
0 P < k
J(t;ty 1,tn 2,...)=J 1= 1P (1= P)* exp[—(t —tnk)/T] ¢ . (69)
k=1

This is a key result to what follows.

6.4 Periodic input

The synaptic efficacy J is a nonlinear function of the spike arrival times t;. We
can give a simplified expression for J in the case of a sudden onset of periodic
spike input. Let ¢, = nT for n > 0 and ¢, = —oo for n < 0. We obtain from
(68) for n > 0,

Z(t) =1~ = (1 P)* exp[-k T/
1= {1~ (- P 7T (70)

The behavior of Z(t,,) for large n can be read off easily from the above equation.
Since 0 < e~ /7 (1 — P) < 1, the braced expression converges to unity exponen-
tially fast and the rest, which is independent of n, gives the asymptotic value of
Z(ty) as n — 0.

6.5 Modeling Short-Term Facilitation

In a similar fashion to §6.3, we can devise a model that accounts for short-term
facilitation instead of depression. To this end, we assume that in the absence of
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presynaptic spikes the fraction A(t) of active synaptic resources decays with time
constant 7. Each incoming spike recruits a fraction, or ratio, 0 < R < 1 from
the reservoir A of ineffective resources; see Fig. 10. Then the dynamics of A(t)
is given by
dA - 1
E:RAS(t)—T A, A=1-A, (71)
with S(t) = > ;6(t —t) as the incoming spike train and A(t) being continuous
from the left. Magleby and Zengle [74] used a similar model to describe synaptic
potentiation at a frog neuromuscular junction.
For a discrete set of spike arrival times t¢ = #y,;,... the amount of effective
synaptic resources immediately before the nth spike as a function of that before

the previous spike is

A(tn) = an + by A(tn_y) (72)

where
an = R exp[—(tn, — th_1)/7], b, = (1 — R) exp|—(t, — ty_1)/7] (73)

are nearly identical with their companions in (67).

In a similar way to (68), we obtain an explicit expression for the amount of
effective resources. We adopt a simple linear dependence of the synaptic efficacy
J upon the amount of effective resources A of the form J = J° [Ay + (1 — Ag) A],
0 < Ay < 1, with .J; being the maximal mean synaptic efficacy and J° A its
minimal strength. Altogether we obtain

R o

. — 70 _ — R)k —(+ —
J(tty—tsty_s,...) =J {AO + (1= Ao) 5 ;(1 R)* exp [—(t tn_k)/T]}
(74)
In the case of periodic input with ¢, =nT for n > 0 and ¢,, = —o0 for n < 0

the above equation reduces to the facilitation analog of (70),
R n
0 __ _ _ _ -T/T

T(ta) 0 = Ao+ (1= o) {1-[a-Rme "} ()

This implies that as n — oo the synaptic efficacy converges exponentially fast
from below to the asymptotic value

(76)

JOSOTF:JO |:A0_|_ (1_AU)R :|

eT/T — (1 — R)

Short-term plasticity introduces a second time scale into the dynamics of a
neuronal network. An analysis of its implications for a homogeneous network
of excitatory neurons, the simplest possible case, and simulations showing intri-
cate network behavior despite the apparent structural simplicity, can be found
elsewhere [77]. In a similar vein, Buonomano [92] presents numerical evidence
suggesting that short-term plasticity plays a role in neuronal decoding of temporal
information.
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Figure 11: Membrane potential v (solid line) and synaptic resources Z or A (dashed line) as a
function of time in case of short-term depression (A and B) and facilitation (C and D). Spikes
arrive at t = 0,8,16,...,56 ms, and finally at ¢ = 100 ms. In all figures, the time constant of
the synaptic recovery is 7 = 50 ms and the rise time of the EPSP equals 5 ms; cf. (61), (71),
and (6). Both Z and A are numbers between 0 and 1; Z starts at 1.0, A at Ap = 0.1. In
A, only a small portion P = 0.1 of all available resources is used during a single transmission
so that the synapse is only slightly affected by transmitter depletion. In B, the parameter P
is increased to P = 0.9. This results in a pronounced short-term depression of the synaptic
strength. Short-term facilitation is illustrated in the lower two diagrams for R = 0.2 (C) and
R = 0.8 (D). Taken from [77].

7 Conclusion and Open Problems

We began this chapter with a provocative question, “What is synaptic plastic-
ity?”. We end it with a more practical one, “What induces synaptic plasticity?”,
knowing that time scale and order of neuronal events may, and often do, play a
key role. Hebbian learning is like a game involving three contestants: a presy-
naptic neuron, a postsynaptic neuron and a synapse between them. The two
neurons interact via synaptic events induced by all-or-none depolarizations of
their membranes, beginning in the presynaptic cell and propagating along an
axon to synaptic sites on the postsynaptic neuron. This takes a finite amount
of time, a delay in the millisecond range. Eventually, the postsynaptic neuron
reaches firing threshold, producing an action potential that backpropagates [21]
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from the site of spike initiation into the synapse.

Thus, pre- and postsynaptic cells interact at the synapse through a learning
window that relates their spike timing to an increase or decrease in synaptic
efficacy. If precise timing is not important, the learning window is broad, and rate
coding is a simple consequence. Axonal delays naturally appear as elements of the
learning window. The notion of learning window was first conceived in theory
[45] but has since been extensively confirmed by experiment; see for instance
Fig. 7. This experimental evidence emphasizes milli- and sub-millisecond timing
as being of fundamental importance in the three-partner game.

Conceptually, we can often think of learning as something that occurs in in-
finitesimal steps, incremental increases and decreases in synaptic efficacy that,
as we have shown, lend themselves to a rigorous mathematical treatment culmi-
nating in the learning equation (32). Though single synapses may behave quite
erratically, we have seen that an ensemble of them provides a neuron with a prac-
tically deterministic input due to the strong law of large numbers, a mainstay of
stochastic analysis. The ensemble of synapses decides whether the postsynaptic
neuron will generate an action potential and, subsequently, a backpropagating
spike. Since spike generation is highly nonlinear, we have introduced the notion
of ‘Poisson neuron’ to linearize the dynamics of the ensemble of synaptic effica-
cies. By applying the central limit theorem to the presynaptic input, one can
replace the Poisson neuron by a Poissonian counterpart of arbitrary nonlinearity
[64] and none the less solve the dynamics nearly exactly; cf. the Berry-Esseen
estimate in Appendix B.

The key to unraveling the synaptic dynamics of infinitesimal learning is recog-
nizing that, under normal circumstances, Eq. (32) is self-averaging. Nevertheless,
it remains a challenge to use a deterministic, hence nonlinear, neuron model to
solve the learning equation (32). It may well be that neuronal dynamics in
conjunction with synaptic dynamics is an insoluble problem, but the prospect of
discovering a full theoretical understanding of both long- and short-term synaptic
plasticity is a prize worthy of the attempt.

Appendix A: Laws of Large Numbers

The textbook by Durrett [98] is a general, though advanced, background for
various formulations of the laws of large numbers listed below. To begin with, let
us suppose that the f; are independent, identically distributed random variables
with mean zero. If the mean (f) is nonzero, we subtract it and consider f; := f; —
(f) instead. There is no harm in taking the f; to be real variables. Furthermore,
we require the second moment (f?) to be finite. By Cauchy-Schwarz, (|f|) <
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(f)1? < 0o, and the variance 0% := ((f — (f))?) is finite too. Let

be the sum of the random variables f;. Then the following three theorems hold.

e Strong law of large numbers: lim,_,,,n 'S, = 0 with probability 1. Since
the f; are sampled from a probability distribution, this means that, as
n — oo, the configurations where the above equality does not hold have
probability zero. In plain English, they do not occur. One also says that the
above equality holds ‘almost surely’ (a.s.). All that is needed is (|f]) < oco.

e Central limit theorem: As n — oo, n~'/2S, has a Gaussian distribution
with mean zero and variance o?.

e Law of the iterated logarithm:

Sl

limsup —————==1 a.s.

n—soo oV2nlnlnn

Etemadi [99] has given an “elementary” proof of the strong law of large num-
bers for pairwise independent, identically distributed random variables under the
minimal condition (|f]) < oo. Slick proofs (occasionally with some extra con-
ditions, say, finite fourth moment) have been given by Lamperti [11]. Breiman
[12] treats the first two theorems in their full generality. The law of the iterated
logarithm is an extension of the central limit theorem. Its proof is tricky.

All three theorems also hold for independent, not necessarily identically dis-
tributed random variables [11, 12, 101]. The first two even allow a weak de-
pendence. For example, let R;; := (fif;) — (fi)(f;), and suppose the f; do not
have too wide a distribution, e.g., sup, |R;;| < oo. Then the strong law of large
numbers holds [96, p. 265] [102], provided R;; — 0 as |[i — j| — oo; that is to
say, the correlations between f; and f; should not have too long a range. For the
central limit theorem to hold, trickier conditions are required, e.g., stationarity
of the sequence fi, f,... and some kind of mixing [98, Ch. 7.7c] so that, say,
> |Rij| < oo. Then the variance of the Gaussian limit distribution is given by

o0

o? = lim i2:<fzflc> = (fD) +2Z<f1fk> :

Nooco N —
i k=2

Dropping stationarity, the reader may consult Scott [103] for an advanced ac-
count.

A generalization of the law of the iterated logarithm to independent but not
necessarily identically distributed random variables is this [100, p. 241]. Let o}
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be the variance of fy, B2 := Y, 0%, and f,/B, = o(1/y/Inln B2). Then we

have
lim |S"|
sup

nosec Bpy/2InIn B2

Appendix B: Inhomogeneous Poisson Processes

In this appendix, which is identical with Appendix A of Kempter et al. [46]
and reproduced here for convenience of the reader, we define and analyze the
inhomogeneous Poisson process. This notion has been touched upon by Tuckwell
[93, pp. 218-220] and others, e.g., Ash and Gardner [94, pp. 28-29], but neither
of them explains the formalism itself or the way of computing expectation values.
Since both are used extensively, we treat them here, despite the fact that the
issue is considered by Snyder and Miller [95, §2.1-2.3]. Our starting assumptions
in handling this problem are the same as those of Gnedenko [96, §51] for the
homogeneous (uniform) Poisson process but the mathematics is different. Neither
does our method resemble the Snyder and Miller approach, which starts from the
other end, viz., Eq. (87). In the context of theoretical neurobiology an analysis
such as the present one, focusing on the local behavior of a process, seems far
more natural. We proceed by evaluating the mean and the variance and finish
by estimating a third moment that is needed for the Berry-Esseen inequality,
which tells us how good a Gaussian approximation to a finite sum of independent
random variables is.

Definitions

Let us suppose that a certain event, in our case a spike, occurs at random in-
stances of time. Let N(t) be the number of occurrences of this event up to time ¢.
We suppose that N(0) = 0, that the probability of getting a single event during
the interval [t,t + At) with At — 0 is

Pr{N(t+ At) — N(t) =1} = A()At, A >0, (77)

and that the probability of getting two or more events is o(At). Finally, the
process has independent increments, i.e., events in disjoint intervals are indepen-
dent. The stochastic process obeying the above conditions is an inhomogeneous
Poisson process.

Under conditions on A to be specified below, there are only finitely many
events in a finite interval. Hence the process lives on a space {2 of monotonically
non-decreasing, piece-wise constant functions on the positive real axis, having
finitely many unit jumps in any finite interval. The expectation value correspond-
ing to this inhomogeneous Poisson process is simply an integral with respect to
a probability measure p on €2, a function space whose existence is guaranteed
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by the Kolmogorov extension theorem [97, §4.4.3]. A specific realization of the
process, a function on the positive real axis, is a ‘point’ w in 2. The discrete
events corresponding to w are denoted by t;(w) with f labeling them.

As we have seen in Eq. (3), spikes generate postsynaptic potentials €. We now
compute the average, denoted by angular brackets, of the postsynaptic potentials
generated by a specific neuron during the time interval [t, t),

(32, =t —trw)) - (78)

Here it is understood that ¢; = ty(w) depends on the realization w and t, <
tr(w) < t. We divide the interval [ty,t) into L subintervals [t;, ¢;+1) of length At
so that at the end At — 0 and L — oo while LAt =t —t;. We now evaluate the
integral (78) exploiting the fact that ¢ is a continuous function.

Let #{t; < tf(w) < 141} denote the number of events (spikes) occurring
at times ¢;(w) in the interval [t;, ;1) of length Af. In the limit At — 0 the
expectation value (78) can be written

| aute) [ et =) #40 < t5(0) <t} (79

so that we are left with the Riemann integral

t
/ ds A(s)e(t —s) . (80)
to

We spell out why. The function 1y _; is to be the indicator function of the set
{...}in Q; that is, Iy j(w) =1, ifw € {...} and it vanishes, if w does not belong
to {...}. So it ‘indicates’ where the set {...} lives. With the benefit of hindsight
we single out mutually independent sets in {2 with indicators W<t f(w)<tion} and
write the expectation value (78) in the form

/Qdﬂ(w) > Wpcrywene(t — ) #{t < tp(w) <t} (81)
l

Each indicator function in the sum equals

iy <tiwy<tiyr} = LN -Ne=0y T LN, -n=13 + Lin)-Nw)>2y - (82)

In view of (78) and (81) we multiply this by (¢t — ;) #{t; < t;(w) < ti11},
interchange integration and summation in (81), and integrate with respect to p.
The first term on the right contributes nothing, the second gives £(t — ;) A(t;) At
and thus produces a term in the Riemann sum leading to (80), and the last term
can be neglected since it is of order o(At). So the eating of the pudding is that
only a single event in the interval [¢;,¢,,1) counts as At — 0. Since £(t) is a
function which decreases at least exponentially fast as ¢ — oo there is no harm
in taking ty = —oo.
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Second Moment and Variance

It is time to compute the second moment

<[Z e(t - tf)]2> : (83)

ty<t

In a similar vein as before we obtain, in the limit A — 0,

(D elt—tpelt—17)

tf,t’f<t
= /Q d,u(w) Z ]I{tlgtf(w)<t,+1}]I{tmgt’f(w)<tm+1}‘€(t - tf(w))g(t - tlf(w))
l,m
= D ME)AA(Em) At (t — t)e(t — ) +

I#m
/ Z]I{tz<tf o)<t} E (= 1)
_ /t/dtldtg (E)M(B)e(t — 1)t — 1) + /tdsA(s)SZ(t—s)

to

- u ds A(s)e (t—s)r+/tds)\(s)62(t—s). (84)

to

Hence the variance is the last term on the right in (84). It is a simple exercise
to verify that, when A(¢) = A and £(¢) = 1 in (80) and (84), we regain the mean
and variance of the usual Poisson distribution [96, §51].

We finish the argument by computing the probability of getting £ events in
the interval [tg, ). For the usual, homogeneous Poisson process it is

(A(t = to)]*

Pr{N(t) = N(to) = k} = exp[=A(t —t)] - ——

(85)

We now break up the interval [ty,¢) into many subintervals [, 741) of length At
and condition with respect to the first, second, ...arrival. The arrivals come one
after the other and the probability of a specific sequence of events in [ty,#; +
At), [to, ta + At), ..., [t, tx + At) is made up of elementary events such as

Pr{first spikein [¢;, ¢, + At)} =
Pr{nospikein [ty, t1)} Pr{spikein [t;, t; + At)} =
[1— A(m)At][1 = M)A ... [1 = Aty — A)AL] M(t1) At =

exp {— /t:l dTA(T)] )AL (36)
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Here we have exploited the independent-increments property and taken the limit
At — 0 to obtain the last equality. Repeating the above argument for the follow-
ing events, including the no-event tail in [ty 4+ At, t), multiplying the probabilities,
and summing over all possible realizations we find

Pr{N(t) — N(ty) = k}

~ exp {— /totdm(T)] /t:dtk)\(tk).../t:3 dtg)\(tQ)/tOt2 dt, A(t)
~ exp [— /tothA(T)] % [/t:dm(s)r | (87)

In other words, N (t)—N(to) has a Poisson distribution with parameter ftto ds A(s).
If A(s) = A, one regains (85). We now see two things. First, the appropriate
condition on A is that it be locally integrable. Then Pr{N(t) — N(ty) < oo} =1
as the sum of (87) over all finite k£ adds up to one. Furthermore, N(t) — N(t')
with ¢y < ¢’ < ¢ has a Poisson distribution with parameter f; ds A(s). Second,

by rescaling time through ¢ := ft ds A(s) one obtains [93, 94] a homogeneous
Poisson process with parameter A = 1. This also follows more directly from (77).
It is of no practical help, though. For instance, in the case of the barn owl, \(t)
is taken to be a periodic function of ¢, with the period determined by external
sound input. The cochlea produces a whole range of frequency inputs whereas
time can be rescaled only once.

Berry-Esseen Estimate

Equation (3) tells us that the neuronal input is a sum of independent, though not
necessarily identically distributed, random variables corresponding to ‘neighbor-
ing’ neurons j. Neither independence nor a common distribution is necessary but
both are quite convenient. The point is that, according to the central limit theo-
rem (cf. Appendix A), a sum of N independent random variables” has a Gaussian
distribution as N — oo. In our case N is definitely finite, so the question is: How
good is the Gaussian approximation? The answer is provided by a classical, and
remarkable, result of Berry and Esseen [11, §15].

We first formulate the Berry-Esseen result. Let X, X5,... be independent
random variables with a common distribution having variance o and finite third
moment. Furthermore, let Sy = Z;.VZI(Xj — (Xj)) be the total input, the X;
stemming from neighboring neurons j as given by the right-hand side of (5)
with N as the number of synapses, and let Y, be a Gaussian with mean 0 and
variance 02. Then there is a constant (27)~'/2 < C' < 0.8 such that, whatever

"This N directly corresponds with the number of synapses that provide the neuronal input.
There is no need to confuse it with the stochastic variable N(t) of the previous subsection.
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the distribution of the X; and whatever z,

<

(88)

SN C<|X1 — <X1>|3>
Pr{ﬁgx}—Pr{Yggx} TN :

In the present case, o2 directly follows from (84). Computing (| X; — (X})[?) is a
bit nasty but it is simpler, and also providing more insight, to directly estimate
the third moment by Cauchy-Schwartz so as to get rid of the absolute value,

(X0 = (X0 P) < (X0 = (X)) (0 = (X)) 2. (89)

The first term on the right equals o, the second is given by

<(X1—<X1>)4>:/ ds \(s) &4 (t — 5) + 30 (90)

to

where 02 = ft'; d s A(s)e?(t — s). Collecting terms we can estimate the right-hand
side of (88), the precision of the Gaussian approximation being determined by
1/\/N as N becomes large.
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