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Exact deterministic equations for the evolution of temporal sequences with a delay stabilization
and heat-bath dynamics are derived. The temperature may be arbitrary and both parallel and
sequential updating are allowed. The equations display limit-cycle oscillations with a broad diver-

sity of waveforms.
leads to local chaos.

Temporal associations, such as reciting a poem, count-
ing, and the control of rhythmic movements, are integral
parts of the rcpertmrc of our nervous system. Though an
extensive formalism' ~® has been developed to explain the
associative recollection of a memory, as yet no analytic
theory is available to describe the neurodynamics involved
in temporal associations. In this paper, such a theory is
developed, and it is shown under what conditions regular
sequences are present, and how a transition into chaos can
occur.

By now the collective behavior of neural nets with sym-
metric couplings is rather well understood.! ~® The basic
idea is to introduce an energy function or Hamiltonian

HN-_;—ZJijSiSja (l)
LJ

with suitable symmetric couplings J;; =Jj;, to store the
data in the Ji;, model the neurons by Ising spins S; = % 1,
1 <i=<N, and let the system perform a downhill motion
in the (free-) energy landscape associated with Hy. How-
ever, this type of dynamics does not allow a temporal se-
quence: a downhill motion ends up in a (free-) energy
minimum and the system stays there.

Transitions between patterns require a certain amount
of asymmetry. To this end, the synaptic efficacies are split
up into two parts, a symmetric part T(l =30 1&0 s
which is chosen so as to stabilize a set of ¢ bmary random
patterns {é,,,,l <i=<N} with 1<u=<g, and an asym-
metric part, T}j )=ZP-1§,,,+|§M, p < q, which is expect-
ed (see below) to induce transitions between the patterns.
We have a cycle if p+1=1(modp), which we assume
from now on.

The above setup can be simplified. First, p is taken to
be finite. (Nobody has ever recited a poem of a length
comparable to the total amount of the data stored.) The
case of extensively many patterns (p finite, g =aN with
a > 0) will be treated at the end of this paper. For finite ¢
we can also assume p =g, since, as we will see shortly, the
patterns outside the cycle do not Play any actlve role.

If we take J; i=JV+ el with JiD=N"1Tf,

=1,2, then' nothing will happen for small €, whereas for
larger values of ¢, the sequence nearly 1nstantaneously
gets mixed completely. The reason is that J? ;- wants to
induce yet another transition, u— u+1, as soon as u ap-
pears. A solution to this problem was found by Kleinfeld
and by Sompolinsky and Kanter.”™® They introduced a
delay which stabilizes the system in each state u before it
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For exponential delay it is shown how an increase of the transition amplitude

makes the transitions to u+1. If

gj([)=£“dSW(S)Sj(t_S) ()

is the delay term which samples the past up to time ¢ with
positive weight w, then the postsynaptic potential (local
field) experienced by neuron i is assumed to be given by

hi(t) = ZJ,<1>S,~(z)+eZJ,-§2)§,-(t) : €))
J

The weight or memory kernel w is normalized to one.
Typical weight functions, which all have a natural decay
time 7, are w(t) =6(t—1) for S-function delay, w(z)
=7"! for 0<t =<1 and vanishing elsewhere for step-
function delay, and w(t) =t ~lexp(—t/ 1) for exponential
delay. From a physiological point of view,'® exponential
and §-function delay are the most natural ones.

Using the overlaps m,(t) =N ~'%,£,S:(t), we can
write

hi(e) =2 &1,m, (1) + X & 417, (2) . 4)

If a system operating at zero temperature (7=0) has
made a transition v—1— v at time ¢t =0, then we expect
it to make another transition v— v+1 only after a time
of the order z and provided ¢> 1. Indeed, undcr these
conditions, stable cycles were shown to exist,”® mainly
through numerical simulations on small samples.

The equations of motion in the N-dimensional phase
space (N— o) generated by either a sequential or a
parallel dynamics of the Glauber type at zero or finite
temperature. In this paper, we show how to reduce these
equations, which are not amenable to an analytic treat-
ment, to a finite system of nonlinear (ordinary differ-
ential) equations with delay. This reduction is exact. It
allows a detailed investigation of rather surprising results
on the behavior of the solutions as a function of time and
the role of temperature.

We start by taking J,(”—N“Q“)(f &) =J{" and
JP =NT10P(g;&)=J 2 where g 5,,,,1<p<q is
the local information available to neuron i. The case stud-
ied until now has J,~§-‘”=¢(T,~§")), a=1,2, with ¢(x)=x
and is therefore called linear. However, double clipping
with ¢(x) =sgn(x) will be shown to work equally well. It
is relevant to hardware realizations.

Given ¢ binary random patterns, there are 27 different
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positions available to the random vectors &;, viz. the 27
corners x of the g-dimensional hypercube C7=[—1,1]9.
Each corner x has a probability p(x). Introducing® the
sublattices I(x) = {i;é,- =x} and sublattice magnetizations,

m(x;t)=|1(x)| -t > )S,-(t), 5)

iellx

one easily verifies that the local field at i is

(@)=Y [0V (E;y)m(y;t)

yeCc?
+eQ D (g;y)mly;)paly) ,

where py(y) =N ~'|I(y) | converges to p(y) with proba-
bility 1 as N— oo, For unbiased patterns, p(y) =279,
Finally, we note that if i belongs to 7(x), then A;(¢) only
depends on x since &; =x for all i in I(x). In the bulk lim-
it h;(¢) therefore converges to

h(x;t) = Zc [0 V(x;y)m(y;0)+eQ P (x;y)mly;)p(y),
yecs
(6)

whatever i in 1(x).

The effect of temperature, i.e., a heat bath, is simulated
by requiring that the probability of flipping a spin
(AS;=0) be given by [1+exp(—pgh;(1)aS;)] ~!. Updat-
ing may be either sequential or parallel.

Suppose a parallel updating is performed after each ele-

mentary time step Az. We then find in the limit NV — oo,
|

m,(t)=—T

One easily verifies that for patterns v not involved in the
cycle we can put m,(¢) =0.

We now turn to the results. First, whatever the updat-
ing, double clipping works as well as the linear model.
This is exemplified by Figs. 1(a) and 1(b). In our numeri-
cal work, the patterns were taken to be unbiased.

Second, for €> 1, cycles may run at temperatures far
above the critical temperature of the static model (¢ =0)
[see Fig. 1(c)]. This implies that at high temperatures,
the picture of eJ;}z) pushing the system through a free-
energy landscape created by J,-ﬁ') is incorrect.

Third, for € <1, thermal noise (T > 0) allows the per-
sistence of (pure) cycles, which, as we have seen, cannot
exist at zero temperature. [See Fig. 2 for a typical phase
diagram in the (8,¢) plane.] As the inverse temperature g
increases, we first have a continuous transition where the
cycle appears out of the completely symmetric solution
m,(t)=m, 1 < pu <g; at high temperatures the latter is
stabilized by €¢>0. As B increases further, there is a
first-order, discontinuous, transition when the cycle gets
stuck in one of the free-cnergy valleys which it visits dur-
ing its journey in phase space. '?

At low temperatures, the picture of J,-§') creating a
(free-) energy landscape where eJ,-&Z) simply induces tran-
sitions between the valleys functions reasonably well. For
instance, in the original Hopfield model! m-symmetric
states (m < gq) are stable at low temperatures if m is
odd.? Taking now ¢ =4, say, and starting with the 3-

that for all i in I(x), the thermal average of S;(t+At) is
tanh[Bh (x;¢)]. The size |I(x)| grows with N so that by
(5), (6), and the law of large numbers, the dynamics con-
verges to

m(x;t+At) =tanh[ph(x;¢)]. @)

This is a recursion relation, which has to be iterated.

If we use sequential updating, only one spin per elemen-
tary time step At is updated. To obtain an extensive
change as N becomes large one has to rescale time so that
Ate N 1 for details, see Ref. 11. Then one obtains a set
of 29 coupled nonlinear ordinary differential equations

m(x;t) = —Ti{m(x;t) —tanh[ph (x;1)1} , 8)

where I is the mean attempt rate per (rescaled) unit time.
Both (7) and (8) are exact, whatever the neural activity
level and the synaptic kernels Q.

Because of the delay contained in (x;¢), Eq. (8) repre-
sents a so-called functional differential equation. Explicit
solutions are not known, but (8) can be solved numerical-
ly. The outcomes are presented most conveniently in
terms of the overlaps m, (¢). Plainly,

m, @)=Y p&x)x,mx;t)=(x,m(x;t)). 9)
x € (9
In the case of the linear model, and only here, we can
reduce (8) to a set of g equations for the overlaps them-
selves,

m, (1) —<x,,tanh{/32xvlmv(t)+emv-‘(t)]}>J (10)
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FIG. 1. (a) Overlap with the first pattern as a function of
time for double clipping with step-function delay, parallel up-
dating, and t=15 iterations. (b) Double clipping with §-
function delay and sequential updating. Here and elsewhere
(except Fig. 4), t=1and '=3. Asin (a), B=5. (c) The linear
model with the same delay and updating as in (b), but with
B=0.7 < gHopfeld [p all three cases, e=1.5 and g =5.
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FIG. 2. Exact dynamical phase diagram for a cycle of length 1.0 (c)
q =2 with sequential updating, §-function delay (solid curve) or
exponential delay (dashed curve). The lowest point (B,¢) 0.5
=[14+y~L,(1+y) ~!] with y=I7 is apparently universal. In
the V-shaped region starting here, a pure cycle exists. 0.0 W - . .
0 500 1000 1500

symmetric state (1,2,3) one finds a so-called 3-symmetric
cycle (1,2,3)—(2,3,4)— --- if € in eJ? is large
enough. A generous increase of temperature, however,
will destroy the symmetric cycle and leave one with the
pure 1—2-—3—4— 1, in a way which is surprisingly
similar to the statics.3

Finally, we turn to the rather fascinating behavior of
the cycles as we increase . Whatever ¢> 1, §-function
and step-function delay always allow pure cycles; cf. Fig.
1. Exponential delay, however, gives rise to a rather
different behavior. In itself a very natural choice, 10 it
samples the remote past much better than the previous
two memory kernels.

Let us fix the temperature 7 and increase e = 1. At low
T, we start with pure cycles but, as ¢ increases, the system
apparently wants to perform a transition to a fully sym-
metric state. This reminds us of the malfunctioning of the
model without delay and is consistent with the exponential
distribution sampling the remote past. For odd g, the g-
symmetric state is stable and invariant, for e = ¢, it is glo-
bally attracting, so wherever the system starts, it finally
ends up here. The threshold ¢, depends on 7. At T =0,
we have ¢, = 1.8.

For even g, a new type of solution appears, since at low
temperatures the g-symmetric state is not stable. In the
case of ¢ =4 and T =0.1, a “3-symmetric” cycle is global-
ly attracting for ¢ > 1.75 and, with it, apparently chaotic
behavior appears. For instance, at ¢ =1.80, the orbit looks
very chaotic [see Fig. 3(b)]. Indeed, locally it is, though a
closer examination reveals that there exists something like
a global period, much longer than the one of the pure cy-
cle at e=1. Asshown in Fig. 3(c), parallel dynamics does
not allow any periodicity. In both cases, however, a sensi-
tive dependence upon the initial conditions'? could not be
found yet. The feature that is new is the local complexity,

which increases with g and e.
|

FIG. 3. Overlap with the first pattern as a function of time
for exponential delay with ¢ =4 and B =10. We have sequential
dynamics in (a) and (b) and parallel dynamics in (c). The pure
cycle in (a) has e=1. In (b) and (c), a globally attracting solu-
tion is shown for ¢ =1.80. Note the transient pure cycle and the
local chaos.

We now turn to the question how to describe a regular
and finite cycle of length p in the presence of ¢ =a/V pat-
terns. The intuitive idea is that the system spends most of
its time in a specific valley (ergodic component), where it
can be described by equilibrium thermodynamics. We
make, therefore, a slight detour and turn to the computa-
tion of the free energy>® for the model without any transi-
tion term (e=0). As in the ordinary Hopfield case,’ we
single out the finitely many patterns which are involved in
the cycle (to be labeled by i) and average over the rest.
Whatever the nonlinearity in Q, the expression for the free
energy® then consists of three parts. The first refers to the
4 patterns we concentrate on, the second only depends on
the order parameter 2 which represents the noise generat-
ed by the other, extensively many patterns, and the last
describes the interaction between the two groups of pat-
terns in terms of & and the overlaps m,,.

Fixing ¢, one straightforwardly verifies that the first
and third term of the free energy can be derived from the
effective Hamiltonian

N 2 N
NT'Y §mSi] “\47«—’2 hiS;, (11
=1 =1

Heﬂ'=_;_NZAu
m

where the h; are independent Gaussians with mean zero
and variance one while r =r(2) is a given function® of
and A, is the embedding strength® of pattern u. So the
extensively many patterns outside the cycle produce a
Gaussian random field of variance g We then find, for
instance, instead of (10),

m, = —F{m,, —<<x,,tanh [B [Zv:xv(mv+erﬁv-|)+x@:r_z] }>>} (12)
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FIG. 4. Comparison between the analytic solution to Eq. (12)
(solid curve) and numerical simulation on a finite sample of size
N =1000 with Glauber dynamics (dashed curve). Here we have
B=10, e=1, and S-function delay with =10 and "' =1. A cy-
cle of length three is running in the presence of 100 other pat-
terns (@ =0.10). Only the overlap with the first of the cycle is
shown.

The double angular brackets denote an average not only
over the x, = % 1 but also over the Gaussian z. A similar
equation holds for the spin-glass order parameter # As
compared to (10), the role of the extensively many pat-
terns is to smoothen the solution through the Gaussian z.
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In fact, their role is quite similar to the one of tempera-
ture.

The above procedure has no claim of rigor but as yet no
exact solution to the problem of treating extensively many
patterns has been found. Figure 4 shows, however, that
our ansatz contains the essential physics. The agreement
between the solution to (12) and the numerical simulation
on a finite sample (N =1000) is excellent. The pulse
forms agree exactly and the periods differ by only 2%
(mainly due to finite-size effects).

In summary, we have derived exact equations for the
dynamical evolution of temporal sequences, at arbitrary
temperature and with either parallel or sequential updat-
ing. The method applies not only to pure cycles but also
to cycles with repetitions (and multispin interactions),
such as the ones used to describe the acquisition of song
by birds.'* Furthermore, the method allows a detailed
study of new phenomena in the collective behavior of neu-
rons. Only a few of them have been reported in the
present work.

This work is supported by the Deutsche Forschung-
sgemeinschaft (Bonn).

1J. J. Hopfield, Proc. Nat. Acad. Sci. U.S.A. 79, 2554 (1982);
81, 3088 (1984).

25. . Hopfield, D. 1. Feinstein, and R. G. Palmer, Nature 304,
158 (1983).

3D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev.
Lett. 55, 1530 (1985); Ann. Phys. (N.Y.) 173, 30 (1987).

4G. Toulouse, S. Dehaene, and J.-P. Changeux, Proc. Nat.
Acad. Sci. U.S.A. 83, 1695 (1986).

5J. L. van Hemmen and R. Kiihn, Phys. Rev. Lett. 57, 913
(1986).

6J. L. van Hemmen, Phys. Rev. A 36, 1959 (1987).

D. Kleinfeld, Proc. Nat. Acad. Sci. U.S.A. 83, 9469 (1986).

8H. Sompolinsky and I. Kanter, Phys. Rev. Lett. 57, 2861
(1986).

9Further physiological evidence in favor of the delay mechanism
was provided by D. Kleinfeld and H. Sompolinsky, J. Neuro-
sci. (unpublished).

10A. C. Scott, Neurophysics (Wiley, New York, 1977).

IR, B. Griffiths, C. Y. Weng, and J. S. Langer, Phys. Rev. 149,
301 (1966).

12In a technical sense, these transitions are Hopf bifurcations.
The first is supercritical, the second subcritical.

13H. L. Swinney, Physica D 7, 3 (1983).

145, Dehaene, J.-P. Changeux, and J.-P. Nadal, Proc. Nat.
Acad. Sci. U.S.A. 84, 2727 (1987).



