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Numerical simulations and exactly soluble spin-glass models
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Some general arguments based on recent numerical work are presented to explain the different behavior
of short-range, random-bond and long-range, random-site spin glasses. We then analyze an exactly soluble
spin-glass model, which may be solved without replicas, and show that, except for the absence of micro-
scopic metastable states, its main features are consistent with the long-range picture.

Over the past few years considerable effort has been de-
voted to modeling the spin-glass transition and the spin-
glass phase. Both short-range!~5 and long-range®’ interac-
tions have been studied intensely but, up to recently, only
an infinite-range model, proposed by Sherrington and Kirk-
patrick (SK),® was amenable to an ‘‘exact’ solution.’-12
However, the dispute originated by that solution still contin-
ues.

Recently one of us!*»14 has proposed a new, exactly solu-
ble spin-glass model which contains both randomness and
frustration but whose solution can be obtained without repli-
cas. Like SK, it is a mean-field model. For suitable proba-
bility distributions of the coupling constants, it reproduces
the well-known plateau!” in the zero-field susceptibility for
0= T = T, and many other experimental characteristics of a
field-cooled spin glass. Since exactly soluble, realistic, spin-
glass models are rare, it is of prime importance to probe
their microscopic phase-space structure and see whether or
not this structure is consistent with the underlying physical
reality one wants to model. In this paper we aim at provid-
ing such a test. We first discuss the model proposed in Ref.
13 and then comment briefly on the SK model.

We consider the following Hamiltonian [S(i)= +11:

H=—5 3 JySWSGI-h3SG) , m
(i;'!j) !

mostly with #=0. The phase space is the set of all ( )
configurations. The coupling constants J; are random vari-
ables and we first consider two typical cases.

(a) The J;’s are independent, identically distributed ran-
dom variables which are nonvanishing only if |i—j|=1.
This is a random-bond problem. One usually takes their dis-
tribution as Gaussian or *J with equal weight.

(b) The spins interact via a Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction, but their positions are random.

For these two types of interaction the following picture
has emerged. The phase space of a spin system with frus-
trated short-range interactions consists of hills and valleys.
As the temperature is lowered and passes through 7y, the
system is supposed to get caught in one of the valleys. The
valleys label the different low-temperature phases, which are
separated by hills whose height is considerable but remains
finite as N — oo, where N is the size of the system. For the
two-dimensional +J model?3 Ty= 1.3/ and the hills have a
height H=15J. So Ty << H. If one flips the spins inside a
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so-called zero-energy loop, one transforms the state of the
system from one valley into a neighboring one.

The situation for spin systems with RKKY interactions
(and anisotropy) looks rather different.” The com-
ponents,!6 or valleys, are separated by (free) energy barriers
which may get infinitely high as N — oo, so that the system
exhibits a phase transition at a positive Ty. Inside a valley
we have many small hills and valleys. Traveling from one
little valley to a neighboring one by inverting the spins in a
small defect region now means climbing a hill whose height
H mostly does not exceed Ty; i.e., Ty~ H. We show that
the model under consideration corresponds to this second
category.

The mean-field model we wish to study has coupling con-
stants Jy which are given by

Jy=CEm+Em) @

where the £,’s and 7n,’s are independent, identically distri-
buted random variables with even distribution around zero
and a finite variance, say, one. The J;’s ought to model the
RKKY interaction in a metallic spin glass. Binder and
Schréder!” have shown that the form of the distribution of
the RKKY coupling constants is symmetric .and highly
peaked at zero, because the long range of the potential sam-
ples many small J; values. This justifies taking £’s and 7’s
with a continuous probability distribution, peaked at zero,
say, Gaussian. We assume this distribution throughout
what follows.
As N — oo, the model has three order parameters,

N N
n’l}\/=1\,_1 2 S(i), q1N=N"1 2 f[S(l) )

i=1 i=1
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which have to be chosen in such a way that m= (m,q1,q2)
minimizes a certain free-energy functional. Then ¢; and ¢,
can be shown to agree.'* Here m=0, so we are left with
one order parameter. The number of independent random
variables is 2N in contrast with the +N? of SK. Thus we

have—in agreement with the experimental situation—a
random-site problem and not a random-bond problem as in
most other models.

The relevant order parameter Q, from which other ther-
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modynamic quantities can be obtained, such as the mean
energy and specific heat, is given by

N
o=(N-'3, FEADSD)r @)
=1
The angular brackets denote- a thermal average which is to
be obtained by means of a Monte Carlo (MC) simulation.
In Fig. 1 we show both the analytical solution of Q (full
line) and the data obtained by MC simulation. Since J=1,
the critical temperature Ty equals 1.

The simulations were carried out in the following way.
We started with an arbitrary spin configuration at 7=1.3,
well above the critical temperature. Then we cooled the
sample in intervals of AT =0.1 with an average cooling time
At=200 Monte Carlo steps per spin (MCS). We report
results for different systems with size N =200, 400, and
800. Upon cooling, the system has some troubles around
Tr but then it surprisingly follows the analytical (equilibri-
um) solution. As seen in Fig. 1, the numerical values ap-
proach the analytical solution in the critical region around
Ty if the number of spins increases. Lowering the tempera-
ture further we reach a ground state. If we warm the sys-
tem up, it follows the analytical curve again. Cooling down
once again we obtain the same behavior, but in some cases
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FIG. 1. Order parameter
0=(N"13 5, +n)S(D)r
i

vs temperature 7 for various system sizes.
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the simulations give negative values of Q, indicating that in-
verted spin configurations are reached. This behavior is
quite different from that in, say, the *+J model, where a"
comparable number of spins gives rise to cooling times
exceeding 250000 MCS if one wants to reach a ground
state. Equilibrium values are either only reached in very
long MC simulations, or never reached.” Thus the behavior
of the present model is very surprising. It suggests that the
phase space consists of some big valleys separated by high
mountains (which become infinitely high as N — o) and
inside a valley the surface is relatively flat.

Further support of this picture was provided by another
numerical experiment. We again started with an arbitrary
spin configuration, but now at 7=0.1. After about 200
MCS (a rather small number) we reach a ground state. -In
most other frustrated models this is simply impossible.
Analyzing the low-temperature spin configurations, the
above interpretation was confirmed. Whereas in frustrated
short-range models we have quite a few microscopic, meta-
stable states where the system may be frozen in, we now
have only two valleys in phase space (Ising model with
spin-flip symmetry). In the thermodynamic limit these two
valleys are separated by infinitely high (free) energy barriers
and the ergodicity is broken; we have a phase transition.!®
The expectation value in (5) is taken with respect to one
component. The usual metastable states do not exist. This
does not mean, of course, that the model does not have
metastable thermodynamic states. Moreover, note that there
are many low-lying excited states since the low-temperature
specific heat is linear in T (Fig. 3).

Full results are presented for the internal energy (Fig. 2)
with N =800 and the specific heat (Fig. 3) with N =400.
The analytical solution is again indicated by a full line and
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FIG. 2. Internal energy E vs temperature T for an N =800 sys-
tem. The full line corresponds to the analytic solution.
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FIG. 3. Specific heat C (broken line) vs temperature 7 for an
N =400 system. The full line is the analytic solution. The low-
temperature specific heat is linear in T, indicating the existence of
many low-lying excited states.

we note that the agreement is rather good except for the
specific heat near T, where the MC procedure breaks down.
Increasing the time Af to 1000 MCS we nevertheless found
a fair overall agreement. But it is clear that the present
simulations fully confirm the analytical solution of the
model as given in Refs. 13 and 14. As to Figs. 1 and 2,
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similar results were obtained for the case where ¢ and n are
taken as +1 with equal probability.

In conclusion, frustrated short-range systems with bond
disorder have many ergodic components which are separated
by free-energy barriers whose height H remains finite as
N — oo. Nevertheless, H is relatively large (H = Ty) so
that at /ow temperatures these systems are in quasiequilibri-
um. One goes from one component to a neighboring one
by flipping spins inside a certain contour.> Below Ty, long-
range RKKY systems have a few ergodic components
separated by infinitely high free-energy barriers and, hence,
allow an equilibrium phase transition. Inside a component
we have many small valleys separated by barriers whose
height H is about Ty, thus accounting for metastability.
Here, too, one may go from one valley to a neighboring one
by flipping some spins in a defect region.® Plainly, mean-
field models are not expected to reproduce this soft, local
structure. Their first and foremost task is to reproduce
thermodynamic behavior and this is what the model under
consideration does—and it does so pretty well.1* The MC
data are in surprisingly good agreement with the analytical
results, even for very short observation times. Cooling and
warming experiments indicate that there are no microscopic
metastable states. We have finitely many valleys, with quite
a few low-lying excited states, separated by infinitely high
free-energy barriers. In a sense, the phase space of the
model agrees rather well with the above picture for RKKY
interactions with site disorder. The appropriate analytical
description of this type of disorder in spin glasses is still an
open problem, however.

The SK model'® exhibits qualitatively the same behavior
as the previous model. As N — oo, the valleys which are
relevant to thermodynamics do not contain finite-energy
barriers and are relatively flat. The freezing which is sug-
gested by Sompolinsky’s theory!? exists only in the case of
finite N.
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