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Using conformal mapping, fluid motion inside the cochlear duct is derived from fluid motion in an infi-

nite half plane. The cochlear duct is represented by a two-dimensional half-open box. Motion of the

cochlear fluid creates a force acting on the cochlear partition, modeled by damped oscillators. The

resulting equation is one-dimensional, more realistic, and can be handled more easily than existing ones

derived by the method of images, making it useful for fast computations of physically plausible coch-

lear responses. Solving the equation of motion numerically, its ability to reproduce the essential features

of cochlear partition motion is demonstrated. Because fluid coupling can be changed independently of

any other physical parameter in this model, it allows the significance of hydrodynamic coupling of the

cochlear partition to itself to be quantitatively studied. For the model parameters chosen, as hydrody-

namic coupling is increased, the simple resonant frequency response becomes increasingly asymmetric.

The stronger the hydrodynamic coupling is, the slower the velocity of the resulting traveling wave at

the low frequency side is. The model’s simplicity and straightforward mathematics make it useful for

evaluating more complicated models and for education in hydrodynamics and biophysics of hearing.
VC 2010 Acoustical Society of America. [DOI: 10.1121/1.3505108]
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I. INTRODUCTION

Because of its graded stiffness, width, and mass, the

cochlear partition, i.e., the basilar membrane together with the

organ of Corti, enables its possessor to analyze sound spectra.

Besides practical efforts1,2 to understanding cochlear mechan-

ics, there are several mathematical approaches.3–11 Not only

are the mechanical properties of the cochlear partition the

ones that need to be captured but also its intricate interaction

with the fluids in which it is immersed. This makes the task a

mathematically delicate one.

In order to understand cochlear function as it originates

from different parts, it is useful to derive analytic equations

for the cochlear partition’s motion. Many ways of approxi-

mating cochlea mechanics have been discussed so far. Among

them are the long-wave approximation8 and short-wave

approximation.7,9 These theories assume the local wave length

of the cochlear partition to be long or short, respectively, as

compared to the duct’s height. Both assumptions fail either

near the resonance region or far away from it.10 All these

approximative theories have been reviewed by Wever12 and,

more recently, by Sieroka who additionally discusses a com-

position of the long- and short-wave approximation.10

Beyond the above approximations there are attempts to

solve cochlea partition motion equations in a stricter manner

for different dimensions. Grossly unrealistic one-dimensional

models can nevertheless give a good prediction of cochlear

response,5 but because of substantial simplifications they

prevent studying fluid effects. In order to account for fluid

motion more accurately, two-dimensional theories have

been put forward, with Siebert’s9 and Allen’s3 leading the

way. Deriving integral equations, both enable reducing the

problem by one dimension. Both theories’ equations are

equivalent. Siebert, unlike Allen, has solved it by taking

advantage of the short-wave approximation. In an ample

review, Lighthill5 considered Allen’s model3 the best

among the two-dimensional ones. Three-dimensional mod-

els13 appear to be analytically unfeasible, as long as dimen-

sionality is not reduced. Much of the three-dimensional

work11,14–18 is enveloped in difficult mathematics that still

require simplifying assumptions which deny much of the

physiological reality of the cochlea.19

In the present paper we present a new two-dimensional

cochlear fluid model based on conformal mapping.

Although the conformal-mapping method is well-known in

fluid dynamics, its application to cochlear modeling is

novel. This method is both analytically and numerically

simple in comparison to alternative methods, e.g., finite dif-

ferences and image methods, and does not require approxi-

mations that are intrinsic to some methods, e.g., long- and

short-wave models. Under the assumptions of an inviscid,

irrotational, and incompressible fluid the problem is reduced

to solving the Laplace equation for the velocity potential

with boundary conditions prescribed by the geometry, as

explained in detail in the next paragraph. Applying the

technique of conformal mapping simplifies this boundary

value problem substantially since it allows for the reduction
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of a complicated boundary value problem to an easy one,

solely by transforming a known solution through the proper

conformal mapping. We then use the velocity potential to

determine the force acting on a continuum of damped oscil-

lators representing the cochlear partition. The result is an

equation of motion that is exact and entirely analytic within

the geometric and hydrodynamic approximations described

above. It is solved numerically in order to obtain the time-

dependent motion of the cochlear partition, given the accel-

eration of the stapes. The advantage of an analytically

derived equation of motion is that it can be easily modified

so that one can investigate the significance of different

physical effects on cochlear motion. For instance, the

results below confirm that hydrodynamic coupling plays an

important role in sharpening the response of the cochlear

partition to pure tones. In particular, strengthening hydrody-

namic coupling makes the resonant frequency response

increasingly asymmetric.

II. THE SIMPLIFIED GEOMETRY

We simplify the difficult three-dimensional problem and

assume that the cochlea is an one-sided open two-dimen-

sional box as in Fig. 1. We do so by “unfolding” the cochlea

in the following way: First of all, the snail-shaped duct is

unrolled so that it becomes straight and has the shape indi-

cated by the dashed lines in Fig. 1. The cochlear partition

still divides the duct in the middle such that the two fluid-

filled parts are connected by the helicotrema. We assume

that the exact form of the fluid flow through the helicotrema

is negligible so that, in good approximation, we can further

unfold the duct along the semi-infinite lines. The result is a

rectangular box with one open side representing the round

window. The closed side on the opposite end represents the

oval window connected to the stapes footplate. The closed

side on the left in Fig. 1 is the unfolded bony wall. The

closed side on the right consists of twice the cochlear parti-

tion. Finally the inward dimension is neglected. As the

resulting geometry now represents the cochlea partition

twice, any motion of the cochlear partition must be symmet-

ric about the point (H=2, L), which is the former apical end

of the cochlear partition. Except for one side being open, the

resulting model geometry is equivalent to Allen’s.3 One

open side approximates the physics of the cochlea better

than fully enclosed cavities since the round window is in fact

flexible. If it were not, incompressibility would not allow

fluid motion at all.

III. THEORY

Elastic coupling between two adjacent parts of the

cochlear partition is negligible.6 Assuming sufficiently small

displacements, we can therefore describe the motion of

the cochlear partition by a continuum of damped linear

oscillators,

m gð Þ @
2c
@t2

g; tð Þ þ hðgÞ @c
@t

g; tð Þ þ k gð Þc g; tð Þ ¼ f g; tð Þ; (1)

where c(g, t) is the partition’s displacement at position g and

time t. Mass m, damping h, stiffness k, as well as the external

force f are the corresponding quantities per unit of length.

Active elements, i.e., the amplification by outer hair cells,

are neglected here, albeit they could be introduced for

instance as undamping,20 i.e., as an additional term

�u(g) @c(g, t)=@t in Eq. (19). The external force density

arises from pressure differences across the cochlear partition

and is thus written

f g; tð Þ ¼ b Dp g; tð Þ ¼ b pðg; tÞ � pð2L� g; tÞ½ �; (2)

where b is the width of the cochlear partition and Dp is the

difference between pressure right above and below it. Then,

in the unfolded model, Dp(g, t) ¼ [p(g, t) � p(2L � g, t)]
(see Fig. 1). For simplicity the width and height of the duct

are assumed to be constant here. As we will see later, this

assumption allows us to create analytic expressions for fluid

forces and to better understand the underlying physics with-

out fundamentally changing the cochlea function.

In good approximation, the cochlear fluid is inviscid and

incompressible.13 Accordingly, the Euler equation of fluid

motion21 holds. As fluid motion is approximately irrota-

tional,13 Bernoulli’s equation

FIG. 1. Cochlear geometry: rw, round window; ow, oval window; cp, coch-
lear partition; dc and sv, ductus cochlearis and scala vestibuli unified; st,

scala tympani. The figure shows an abstract cochlea structure both in its

unfolded (solid line) and original (dashed line) shape. For clarity, the length

of the cochlea channel L (vertical) is displayed as shorter relative to the

height H of the duct (horizontal). The basilar membrane is at position

f ¼ H=2, the oval window at position g ¼ 0, the round window at position

g ¼ 2L. The effect of Reissner’s membrane (membrana vestibularis) is

acoustically negligible.13 We therefore consider the two ducts dc and sv to

be identical. We “unfold” the original cochlea structure (dashed lines) along

the dashed half-circle shaped arrow so as to get a straight one (solid lines)

with effectively open boundary conditions at g ¼ 2L instead of the dashed

U-turn at originally g ¼ L. This leads to a double representation of the basi-

lar membrane, namely one from 0 to L and one from L to 2L. Any motion of

the cochlear partition at g0 (plus in circle) thus coincides with an opposite

motion at 2L � g0 (minus in circle). Motions lead to flux sources and sinks.

The round window is represented by an effluent at 2L.
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p ¼ .
@U
@t
� 1

2
t2 � V

� �
þ constant (3)

applies, where t denotes fluid velocity, p pressure, . fluid

density, V the gravity potential, and U the velocity potential

is determined by

t ¼ �rU: (4)

The term t2 in Eq. (3) is negligible.22,23 Taking the diver-

gence on both sides of Eq. (4) and using the incompressibil-

ity condition div t ¼ 0 we get the Laplace equation

@2U

@f2
þ @

2U
@g2
¼ 0: (5)

The proper boundary conditions for the box specified in Fig. 1

are given by

� @U
@g

����
g¼0

¼ tS; (6a)

@U
@f

����
f¼�H=2

¼ 0; (6b)

� @U
@f

����
f¼H=2

¼ tC; (6c)

where tS is the stapes velocity and tC the cochlear partition’s

velocity. Using Bernoulli’s equation (3) we rewrite the force

density (2) in the form

f g; tð Þ ¼ .b
@DU
@t

g; tð Þ: (7)

Since the cochlear partition has zero thickness, the gravity

potential V below and above the cochlear partition is identi-

cal, therefore DV ¼ 0. In our model of the unfolded duct we

then have to put

DU g; tð Þ ¼ U g; tð Þ � U 2 L� g; tð Þ; (8)

as any motion of the cochlear partition at g coincides with an

opposite motion at 2L � g.

In order to gain an analytic solution of the Laplace equa-

tion (5), given the boundary conditions, Eqs. (6a) and (6b), we

take advantage of the method of conformal mapping. In the

following, we use analytic maps from the complex w-plane

where w ¼ f þ ig, into the complex z-plane where z ¼ x þ iy.

Analytic functions are harmonic so that they satisfy the Lap-

lace equation (5), which one can verify with the help of the

Cauchy–Riemann equations; cf. Churchill (Ref. 24, Chap. 2)

and Titchmarsh (Ref. 25, Secs. 2.13–2.15 and 6.15, Chap. VI).

Hence the analytic function

u zð Þ ¼ / zð Þ þ iw zð Þ; (9)

the so-called complex potential, is a solution of the Laplace

equation, too. Once we have an analytic function satisfying

simple boundary conditions, the theory of conformal map-

ping allows for transforming the solution to different, and,

supposedly, more complicated boundary conditions. Suppose

that the conformal function

g wð Þ ¼ x f; gð Þ þ iy f; gð Þ

maps an arc C in the w-plane onto an arc C in the z-plane,

then the function

U f; gð Þ ¼ u xðf; gÞ; yðf; gÞ½ �

satisfies the corresponding condition along C.24,25

The conformal map mapping an infinitely long (vertical

direction in Fig. 2) box of height H (horizontal direction) in

the w-plane, with the side at infinity being open and the

opposite side overlapping the real axis (Fig. 1), onto the

upper complex half plane is24

gðwÞ ¼ H sin
p
H

w
� �

: (10)

The complex potential of a point source at z0 with

source strength q in an unbounded region is

u zð Þ ¼ � 1

2p
q ln z� z0ð Þ

¼ � 1

2p
q ln z� z0j j þ i argðz� z0Þ½ �: (11)

The complex potential of a distribution of point sources

with density q(z0) along the arc C is therefore

u zð Þ ¼ � 1

2p

ð
C

qðz0Þ ln z� z0ð Þ dz0: (12)

FIG. 2. An illustration of conformal mapping. The sine function maps an

infinitely long one-sided open box onto the upper complex half plane.24 The

inverse function maps the upper complex half plane onto the specified box.

A globally perpendicular lattice in the upper half of the z-plane (left panel,

gray) is thereby mapped onto a new lattice (right panel, gray) within the box

in the w-plane, being perpendicular only locally. The x-axis (left panel,

thick) is mapped onto the boundary of the specified box (right panel, thick).
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Thus, according to the theorems above with z ¼ g(w), the

complex potential of a distribution of point sources in the

one-sided open box is

U wð Þ ¼ �
ð

C
Q w0ð Þ � ln sin

p
H

w
� �

� sin
p
H

w0

� �h i

� cos
p
H

w0

� �
dw0; (13)

where Q(w0) is the source distribution along the arc C. The fac-

tor 1/2 in Eq. (13) has been canceled since only half of a source

flows into the box. In Eq. (13) there are sources on the stapes as

well as on the cochlear partition. We denote the velocity poten-

tials of the stapes and the cochlear partition by US and UC,

which are the real parts of the corresponding complex potential

U(w). Figures 3 and 4 depict contour-plots for point sources.

The oval window is part of the real axis and the cochlear parti-

tion is represented by the straight line given by f ¼ H=2 and

g � 0. Using the identities sin w ¼ sin f cosh g þ icos f sinh g
and cos w¼ cos f cosh g � isin f sinh g we then find

UC g; tð Þ ¼
ðL

0

QC g0; tð ÞKC g; g0ð Þ sinh
p
H

g0

� �
dg0: (14)

The source strength densities QC(g0, t) on the cochlear parti-

tion result from its motion and thus

QC g0; tð Þ ¼ 1

p sinh
p
H

g0

� � @c
@t

g0; tð Þ; (15)

where the factor 1=sinh(pg0=H) undoes the redistribution of

the source strength density along the cochlear partition,

caused by the transformation z ¼ g(w); cf. Eq. (10). The inte-

gration kernel KC in Eq. (14),

KC g; g0ð Þ ¼ � 1

2p
ln cosh

p
H

g
� �

� cosh
p
H

g0

� ���� ���h

� ln cosh
p
H

g
� �

� cosh
p
H

2 L� g0ð Þ
� ���� ���i;

(16)

assures that each motion at position g coincides with an

opposite one at position 2L � g.

Since a membrane spans the oval window, we may well

assume that the stapes, moving with velocity tS(t), causes a

cosine-like source density tS(t) cos(pf0=H). In any case a ho-

mogeneous flow is present shortly after the basal end. Through

an appropriate substitution in Eq. (13) and, again, by consider-

ing the nonlinear transformation of sources, we obtain

US g; tð Þ ¼ �
ðH=2

�H=2

1

p
tS tð Þ ln cosh

p
H

g
� �

� sin
p
H

f0

� �h i

� cos
p
H

f0

� �
df0: (17)

Integrating Eq. (17) we find

US g; tð Þ ¼ �H

p
tS tð Þ vþ 1ð Þ ln vþ 1ð Þ½

� v� 1ð Þ ln v� 1ð Þ � 2�; (18)

where v(g) :¼ cosh(p=Hg). For the sake of simplicity we

write US(g, t) ¼: QS(t)YS(g). As can be seen from Fig. 5,

DYS(g) :¼ YS(g) � YS(2L � g) approaches a straight line

shortly after the basal end.

Substituting Eqs. (14) and (18) into Eqs. (7) and (1), we

obtain an entirely analytic equation of motion for the coch-

lear partition,

FIG. 3. Iso-potential lines given by UC(f, g) ¼ <[U(w)] ¼ constant, gener-

ated by a point source at g0 and a point sink of the same absolute strength at

2L � g0. Boundary conditions are fulfilled, as every contour hits the box’s

boundary perpendicularly. We note that the gradient and, hence, the velocity

is orthogonal to the contour.

FIG. 4. Stream lines given by WC ¼ I[U(w)] ¼ constant for different con-

stants, generated by a point source at g0 and a point sink of the same abso-

lute strength at 2L � g0. The figure thus describes fluid motion in the

cochlea for the case that only one cochlea partition at g0 moves. The stapes

is at position (0,0), the helicotrema at (0,L) far above the visible area.
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mðgÞ @
2c
@t2
ðg; tÞ þ hðgÞ @c

@t
ðg; tÞ þ kðgÞcðg; tÞ

¼ . b DYSðgÞ dQS

dt
ðtÞ þ .b

ðL

0

@2c
@t2
ðg0; tÞD KCðg;g0Þdg0;

(19)

where DKC(g, g0) :¼ KC(g, g0) � KC(2L � g, g0). Although

the original hydrodynamic problem is two-dimensional, we

are given a spatially one-dimensional equation of motion

and need not solve it for the fluid motion explicitly.

IV. COMPARISON TO THE METHOD OF IMAGES

Allen3 considered the same geometry used here, except

that his boundary conditions do not allow for one of the sides

being open, thus neglecting the presence of the round win-

dow. Taking advantage of the method of images, he found

the Green’s function, i.e., the real part of the complex poten-

tial generated by the cochlear partition, being given by the

infinite sum

GC x; x0ð Þ¼� ð�1Þj

p

X1
j¼0

X1
k¼0

ln½rþj;k x; x0ð Þr�j;k x; x0ð Þ� (20)

with

r6
j;k x; x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 6 x0 þ 2 j Lð Þ2þ 2 k Hð Þ2

q
(21)

instead of Eq. (16). The double sum stems from an infinite

number of images of point sources and sinks. Since the exact

limit of Eq. (20) is unknown, the sum has to be truncated after

a few terms. Moreover, when considering stapes motion, the

method of images leads to an open duct, which is inconsistent.

On the other hand, the method of conformal mapping allows

for consistent and physically plausible boundary conditions.

V. NUMERICS

To solve the equation of motion Eq. (19) numerically,

the cochlear partition is divided into N equally long elements

of length l ¼ L=N. The minimal coherence length, i.e., the

distance over which a transversal section of the membrane

will appear to move as a single structure, is about 120 lm.26

Finer discretization would make the model less realistic.

As others27 have, we therefore chose a total of N ¼ 300

elements.

Each of those elements is indicated by j or k, such that

g ¼ jl and g0 ¼ kl.
With g approaching g0, DKC(g, g0) diverges. Thus one

has to average the kernel by numerical integration in the

neighborhood of these singular points,

D �KC
jk :¼ 1

l

ð kþ1=2ð Þ l

k�1=2ð Þ l
DKC jl; g0ð Þ dg0: (22)

Correspondingly the averaged stapes-cochlear interaction is

defined by

D �YS
j :¼ 1

l

ð jþ1=2ð Þ l

j�1=2ð Þ l
DYSðg0Þ dg0: (23)

To compute D �YS
j numerically using Eq. (18), which contains

the term v[ln(v þ 1) � ln(v � 1)], we have replaced this

term by its limit 2 for v > 106 to avoid numerical instability.

Upon introducing a mass matrix M with components

Mjk :¼ djkmk þ . l b D �KC
jk (24)

and a vector q with components

qj

dcj

dt
tð Þ; cj tð Þ; t

� �
:¼ . bD �YS

j

dtS

dt
tð Þ � h

dcj

dt
tð Þ � kjcj tð Þ;

(25)

we can reduce the discretized counterpart of Eq. (19)

d2c
dt2

tð Þ ¼M�1 q
dc
dt

tð Þ; c tð Þ; t
� �

: (26)

Together with the initial values

d2c
dt2

t0ð Þ ¼ M�1 q
dc
dt

t0ð Þ; c t0ð Þ; t0

� �
; (27a)

dc
dt

t0ð Þ ¼ 0; (27b)

c t0ð Þ ¼ 0; (27c)

this results in an initial value problem that we have solved

by a second order Runge–Kutta method.28

Each time step requires a multiplication of a vector of

length N by the symmetric N � N matrix M�1 and therefore

has the same computational complexity as all models that

FIG. 5. Each cochlear partition interacts with other cochlear partitions due to

hydrodynamic coupling. Strength of hydrodynamic coupling of partition num-

ber k acting on partition number j is described by the integration kernel D �KC
jk in

Eq. (22). The solid graphs display D �KC
jk for different k (50, 100, 150, 200, and

250) depending on the cochlear partition number j, the position. The interaction

has a maximum at j ¼ k. That is, a cochlear partition interacts maximally with

itself, which is physically equivalent to additional mass of the cochlear

partition.
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integrate Eq. (26). The condition number of M is approxi-

mately 498 and remains about the same even for larger N
(525 for N ¼ 1000, 534 for N ¼ 3000, 537 for N ¼ 10 000,

and 538 for N ¼ 30 000).

The simulation code in Cþþ is available on request to

the authors. The parameters used for all graphs are listed in

Table I. Figure 5 shows D �KC
jk. The cochlea maps different

frequencies to different positions along the basilar mem-

brane as in the simulations shown in Fig. 6.

The phases are mostly monotone functions of the coch-

lear position, as shown by Fig. 7, evoking the illusion of a

wave traveling from stapes to helicotrema. Figure 7 also

depicts the frequency dependence of the phase difference.

The higher the frequency of the stimulus tone, the higher the

maximum phase difference of resonating elements of the

cochlear partition.

The presented model reproduces essential cochlear fea-

tures, viz., frequency selectivity, asymmetry of the envelope

and a mostly monotonic phase. Deviations from previous

results, i.e., places of resonance or phase differences of the

traveling wave (two cycles6 for 3.2 kHz input frequency, three

cycles3 for 1 kHz), are possibly due to the choice of functions

of mass, damping, and stiffness, which vary among species

anyway, even between individuals. For a review of specific

phase differences, see Ref. 29. Moreover, different boundary

conditions, particularly modeling of the round window as an

open end of the duct, may also account for deviating results

and need to be studied more accurately in the future.

VI. VARYING HYDRODYNAMIC COUPLING

Besides obvious reasons like shock absorbance and ion

supply to hair cells, the cochlear fluid is supposed to improve

frequency selectivity. By simple alteration of Eq. (24), we

are able to quantitatively study the role of the cochlear fluid

in regard to frequency selectivity. Thus, in order to under-

stand the effect of coupling of the cochlea partition to itself

TABLE I. The parameters used in the simulations were taken from Mammano

and Nobili,6 except for the width of the cochlear partition, which was taken to

be constant, and the stiffness k, which was adapted to the frequency range of

human hearing. We approximated the viscosity h by a linear function. The

values could likewise be replaced by those of other species.

Quantity Value Quantity

N 300 Number of elements of the

cochlear partition

L 33.5 � 10�3 m Length of the cochlear partition

. 10�3 kg/m3 Density of the cochlear fluid

H 10�3 m Height of the duct

b 0.2 � 10�3 m Width of the elements

mk 1.7 � 10�4 e85kL/N kg/m Mass per length of the kth strip

hk 0165 � 0.1k/N kg/(ms) Damping per length of the

cochlear fluid

kk 2.8 � 106 e�10.13 k/N kg/(ms2) Stiffness per length of the kth strip

a 10�9 m Stapes amplitude

tS ax cos (xt) Stapes velocity

FIG. 6. Amplitude of cochlear partition displacements in dependence upon

the position of the cochlear partition (element numbers 1–300) correspond-

ing to the given frequencies (Hz) indicated at the maxima. The cochlea was

excited by pure tones, starting with 20 Hz and doubling up to 10 240 Hz

which shows the approximately logarithmic dependence of maximal ampli-

tude upon the distance from the helicotrema at partition number 300.

FIG. 7. Upper panel: Phase of cochlear partition displacements in depend-

ence upon the element number of the cochlear partition (1–300) for pure

tone stimulations of 250, 500, 1000, and 2000 Hz. The mostly monotoni-

cally decreasing phases produce partition displacements such that waves

seem to travel from base to apex. Lower panel: Displacement of cochlear

partitions in dependence upon the element number of the cochlear partition

(1–300) for pure tone stimulation with 1000 Hz for three successive

moments of time (thin line, middle line, and thick line) with a time interval

of 0.2 ms. For the observer, a wave seems to travel in the direction from sta-

pes (left) to helicotrema (right).
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through the cochlear fluid, we replace �KC
jk for j = k by c � �KC

jk

in Eq. (24), retaining the diagonal elements and reducing the

influence of hydrodynamic coupling by off-diagonal ele-

ments for a coupling parameter 0 � c < 1. Figure 8 shows

the effect of hydrodynamic coupling of different cochlear

partition segments by gradually reducing the coupling pa-

rameter c. Hydrodynamic coupling sharpens the frequency

response, especially at the low frequency side. It also shifts

the position of maximal displacement to the low frequency

side. The peak of the dotted graph in Fig. 8 is almost sym-

metric as it is just the response of harmonic oscillators with

varying resonance frequencies arranged along the cochlea.

VII. DISCUSSION

The main purpose of this article is to introduce a new

base model of the cochlea, and accordingly some advantages

and disadvantages are now pointed out.

Although a two-dimensional cochlear fluid is pre-

sumed, the equation of motion is one-dimensional. That is

due to the proper positioning of the two arcs representing

the oval window and the cochlear partition in the complex

plane. Numerics can thus be implemented in a very

straightforward way. In a comparative essay, Egbert de

Boer (Ref. 30, Chap. 5) found numerical accuracy of the

solution difficult to predict or to control for the three-

dimensional case.

The cost of computation has decreased drastically in the

years since the advent of two-dimensional cochlear models.

Nevertheless, efficient computability is still important. Com-

puting the cochlear response in real time, potentially with

limited available computing power, and studying parameter

dependency requires fast and simple models. Designing

hardware implementations2 requires fast estimates of impli-

cations of parameter modifications. In particular, it is not

only single parameters that often have to be matched but

also parameter functions, which makes the problem varia-

tional and computationally costly. In this way the present

model can turn out to be a useful tool supplementing existing

one-dimensional models.3,6,26 As it solves a simplified ge-

ometry exactly, it may also be used to evaluate finite element

models. It can also serve as an initial point for further

research as it is easy to implement and to compute.

The model’s simplicity also makes it useful as an example

in lectures on hydrodynamics. Students may well benefit from

this straightforward application of mathematics to biology.

In the present model the helicotrema is not neglected as

for example in the models of Steele and Taber11 or Lesser

and Berkeley,4 since unfolding the cochlea makes the helico-

trema part of the straight duct. The round window is consis-

tently modeled as an open end, which is more realistic than a

closed box.3

But the present technique also has its shortcomings.

Conformal mapping restricts all problems to two dimen-

sions. Finding conformal mappings analytically for more re-

alistic cochlea geometries leads to integrals that cannot by

solved analytically anymore. The variation of the cochlea

scalae, however, is of negligible importance as compared to

those the cochlear partition.13 It also seems unfeasible to

include elastic properties of the round window. Yet, the dis-

placement of the round window may well be small enough

to neglect its elastic effect.

All in all, we have an analytical derivation of a cochlear

equation of motion that opens up a gateway to efficiently

handling a multitude of fascinating intrinsic dynamical pat-

terns such as what role hydrodynamic coupling effectively

plays and how it can be treated analytically.
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FIG. 8. Upper part: Envelopes of cochlear partition amplitudes for pure tone

stimulation with 1280 Hz for different values of hydrodynamic coupling c on

a logarithmic scale. The absolute values of the slopes clearly increase with

stepwise increasing coupling via the fluid. The sharpening takes place mostly

at low frequencies (here the right-hand side). Amplification thereby decreases.

Lower part: The corresponding phases show that in case of no hydrodynamic

coupling (c ¼ 0) there is no traveling wave as the phase is constant except for

a small range near the resonance frequency. The stronger hydrodynamic cou-

pling, the lower the velocity of the resulting traveling wave at the low fre-

quency side as the slope of the phase becomes steeper.
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