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How spiking neurons give rise to a temporal-feature map: From synaptic plasticity
to axonal selection

Christian Leibold, Richard Kempter, and J. Leo van Hemmen
Physik Department, Technische Universita¨t München, D-85747 Garching bei Mu¨nchen, Germany

~Received 23 May 2001; published 17 May 2002!

A temporal-feature map is a topographic neuronal representation of temporal attributes of phenomena or
objects that occur in the outside world. We explain the evolution of such maps by means of a spike-based
Hebbian learning rule in conjunction with a presynaptically unspecific contribution in that, if a synapse
changes, then all other synapses connected to the same axon change by a small fraction as well. The learning
equation is solved for the case of an array of Poisson neurons. We discuss the evolution of a temporal-feature
map and the synchronization of the single cells’ synaptic structures, in dependence upon the strength of
presynaptic unspecific learning. We also give an upper bound for the magnitude of the presynaptic interaction
by estimating its impact on the noise level of synaptic growth. Finally, we compare the results with those
obtained from a learning equation for nonlinear neurons and show that synaptic structure formation may profit
from the nonlinearity.
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I. INTRODUCTION

Nerve cells that are tuned totemporalfeatures of a stimu-
lus have been found in a number of auditory brainstem
clei, where neuronal activity conserves the temporal struc
of a sound stimulus to a certain degree@1–4#. A well-known
example of a temporal feature of a sound stimulus is
so-called interaural time difference~ITD!, i.e., the difference
in the arrival time of a sound between both ears. The ITD
a measure of the spatial position of a sound source relativ
the head, and in the brain of many animals neurons w
specific ITD tuning are quite common. ITD-tuned neuro
are characterized by a best ITD at which their firing rate
maximal.Moreover, ITD-sensitive neurons have been fou
to be spatially ordered according to their best ITD in at le
two species@5,7#.This is an example of a temporal-featu
map. In contrast to maps of spatiotemporal features, wh
are, in principle, well understood@42#, the explanation of
how maps of merely temporal features can arise was an o
problem until now. In particular, it was unclear how prec
sion at a time scale of 10ms can be achieved, because p
viously analyzed interaction mechanisms are too slow. H
we present a comprehensive theoretical analysis of a me
nism @8# that allows map formation as it occurs in the lam
nar nucleus of the barn owl, the first stage of the ascend
auditory pathway receiving input fromboth ears.

The barn owl is a nocturnal predator, able to catch mice
complete darkness. Its resolution of the azimuthal position
a sound stimulus is 2° comparable to that of humans. Bu
contrast to humans, the barn owl’s distance between b
ears is only 5 cm so that the azimuthal localization task
much more difficult since the interaural time differences
the only relevant cue@10,11#. The lack of physical distance
between a barn owl’s ears is compensated by a higher
poral precision of phase locking of about 40ms along the
auditory pathway up to the laminar nucleus@5,12,13#. The
best ITD of laminar neurons gradually changes along a s
cific direction within the laminar nucleus@5#, cf. Fig. 1.
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For neurons to form a map, i.e., an in some sense ord
arrangement of their best ITD, they need an interaction
tween each other. Here we analyze a map-formation me
nism @8# and show analytically how spike-based Hebbi
learning@14–32# in conjunction with ‘‘axon-mediated spike
based learning’’@33–37# leads to map formation. This is th
first explicit example of a process leading to a tempor
feature map. If we identify an ITD with the azimuthal pos
tion of the acoustic stimulus, the map is an orderly repres
tation of the owl’s spatial environment.

In Sec. II we introduce the mathematical framework th
is used to describe synaptic plasticity in the laminar nucle
We define the Poisson neuron, explain the dynamics gov

FIG. 1. Sketch of the neuronal anatomy in the barn owl’s lam
nar nucleus@5#. Neuronal activity from one auditory frequenc
channel is conveyed~small arrows! by phase-locked spike trains i
axon bundles~thin lines! that come from the left and right ear, ru
in parallel~to the dorsoventral direction, indicated by the long ho
zontal arrow!, and contact neurons~large gray spheres! through
synapses~small white balls!. Measuring firing rates of neuron
along this direction, one finds that the neuronal site where the fi
rate is maximal varies continuously with the azimuthal location
the stimulus. Neurons are taken to be equidistant withdu . In order
to preserve the temporal structure of sound in the firing pattern
the afferent axons, temporal dispersion among the hundreds o
ons has to be small. It has been shown that in the young ani
temporal dispersion is high, whereas in the adult owl, neuro
activity arrives at the laminar neurons temporally highly correla
@6#.
©2002 The American Physical Society15-1
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ing synaptic modifications, and show how to adapt it to b
logical reality. We formulate a linear differential equation f
the time evolution of the synaptic weights. Its solution
presented in Secs. III and IV. A quantitative measure o
map’s quality is proposed in Sec. V. In Sec. VI we th
discuss the amplification of spike noise by unspecific axo
learning. Finally, we show in Sec. VII that nonlinearities d
not modify the major behavior of our model. To this end w
prove that there exists a unique fixed point. Linearizing
dynamics about the fixed point, we find that for generic i
tial conditions the synaptic efficacies are first attracted
wards it before the system evolves into the direction of
eigenvector whose eigenvalue has the largest positive
part.

II. THE MODEL

The present section gives a mathematical description
biological system that exhibits the formation of an ITD ma
We extend the learning equation for a single neu
@17,24,25# to an equation describing the development of s
aptic couplings in a network of neurons.

A. The Poisson neuron

For simplicity, the analysis of the dynamics of synap
transmission is at first performed by means of a linear s
chastic neuron model, the Poisson neuron@17,24#. We will
show in Sec. VII that taking into account nonlineariti
yields almost identical results.

Given the membrane potentialv(t) of the linear Poisson
neuron at timet, its firing probability is defined to be

lim
dt→0

Prob$neuron fires in@ t,t1dt !%

dt
ªpF„v~ t !…, ~1!

wherepF is a linear function

pF~v !5b (0)1b (1)v, ~2!

b (0) and b (1) being positive constants. The occurrence
more than one spike in a time interval of lengthdt is o(dt).
Disjoint intervals being independent, the model is an inh
mogeneous Poisson process@24,38#.

To obtain an expression for the membrane potential,
use a simple model of synaptic transmission where a syn
is described by only a single parameterJmn that weightens
the excitatory postsynaptic potentials~EPSPs! induced by the
nth input line (1<n<N) to the neuronm (1<m<M ). It is
called synaptic weight or efficacy. Let us assume that thef th
spike at neuronn occurs at timetn

( f ) . After an axonal trans-
mission delayDmn from neuronn to neuronm, the spike
evokes an EPSPJmne(t2tn

( f )2Dmn), see Fig. 2. We assum
the response kernele ~cf. Fig. 3! to be normalized so tha
*dse(s)51, causal, i.e.,e(s)50 for s<0, and positive
meaning simplye(s)>0 for all s. The linear superposition o
EPSPs evoked at themth neuron by a set ofN presynaptic
cells yields the postsynaptic membrane potential
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Jmn(
$tn

( f )%

e~ t2tn
( f )2Dmn!. ~3!

The second sum in Eq.~3! is meant to run over all firing
times tn

( f ),t of neuronn.

B. Homosynaptic Hebbian learning

The synaptic weightJmn is assumed to change in depe
dence upon the timing of presynaptic and postsyna
spikes. As a starting point for the subsequent description

FIG. 2. Synaptic model. Each ofN synapses connecting to ou
put neuronm is described by a single variableJmn , which weights
the linearly superimposed spike response kernelse that are retarded
by the axonal transmission delayDmn . The sum of responses yield
the postsynaptic membrane potential as it is described by Eq.~3!.

FIG. 3. Generic choice of the learning windowW and the re-
sponse kernele ~upper panels!. The convolution ofW ande, as they
have been used in@8#, acts as a bandpass filter, which is reflected

the real and imaginary parts of the Fourier transformŴ(v) ê(v)
~lower panels!.
5-2
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synaptic weight’s dynamics, we use a generalization o
local Hebbian rule for one postsynaptic cell@8,15,17,25#.

An input spike arriving at synapsen of neuronm changes
the weightJmn by a constant amounth win, whereh is a
small, positive scaling factor. Similarly, each output spike
neuronm results in a weight changeh wout of all synapses of
that neuron. Pairs of input and output spikes at timestn

( f ) and
tm
( f ) , respectively, lead to a weight changeh W(tn

( f )2tm
( f )),

whereW is called the ‘‘learning window’’@15#.
For Poissonian input spike trains, it is shown in@17# that

the alterations ofJmn according to the above procedure c
be expressed as a differential equation solely depending
the time averages~see below! of ensemble-averaged inpu
and output firing ratesnn

in and nm
out ~defined in Sec. II D 1!,

and the time-averaged correlation function between pres
aptic spikes from neuronn and postsynaptic spikes at neuro
m,

Cmn~ t1r ,t !5T 21E
t2T

t

dt8 lim
dt→0

~dt !22

3Prob$output cell m fires in@ t81r ,t81r

1dt ! and input cell n fires in@ t8,t81dt !%.

~4!

The dynamical equation from@17# then reads

S d

dt
JmnD

local

5hFwinnn
in~ t2Dmn!1woutnm

out~ t !

1E
2`

`

ds W~s!Cmn~ t,t1s2Dmn!G . ~5!

This learning rule can account for synaptic structure form
tion at the level of a single neuron.

The so-called learning windowW is a function of the time
difference between a presynaptic and postsynaptic s
@15#. One can define its temporal widthW as the interval of
time differencess, whereW(s) is not negligibly small. It can
be shown@17# that Eq.~5! is valid, if the averaging timeT
greatly exceedsW. Furthermore, the scaling factorh.0
should be small in the sense that the alteration of the effic
on the averaging time scaleT is far below the efficacyJmn
itself. As a result, the upper limit ofT is the typical time
scale of the dynamics of synaptic weights.

In addition to@17#, we have included the axonal transmi
sion delaysDmn that shift the time-averaged ratenn

in and the
correlation functionCmn . The shift ofnn

in can be neglected
~see Sec. II D 1!. The shift in the second argument of th
correlation function, however, will turn out to be the esse
tial step for temporal map formation.

C. Axon-mediated spike-based learning

In order to explain map formation we have to take in
account an interaction between synapses of different neu
that coordinates the development of synaptic weights ac
the postsynaptic indexm. By means of computer simulation
05191
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@8,9# it has been shown that synaptic changes propaga
along axons are necessary for the evolution of a map
interaural time differences in the barn owl’s laminar nucle

The presynaptic spread of weight modifications is imp
mented in a way that every local alteration (dJmn /dt) local of
a synaptic weight in Eq.~5! is propagated to all other syn
apses at the same axonn. This yields the learning equation

d

dt
Jmn5 (

m8Paxon n
~dmm81rbmm8!S d

dt
Jm8nD

local

, ~6!

where dmm8 denotes the Kronecker delta. The axonal co
pling matrixrbmm8 also accounts for the spatial range of t
presynaptic interaction. The positive scaling factorr deter-
mines the overall strength of the interaction between n
rons. We note thatbmm11'1 for all m and assumebmm8
>0 for all m, m8. Below we will often setbmm851 for all
mÞm8.

D. Biological constraints

The solution to Eq.~6! depends strongly on the topolog
of the network as well as on the statistics of the presyna
input activity. Specifying the axonal coupling matrixrbmm8
and the input processpin, in order to mimic the anatomy an
physiology of the laminar nucleus of the barn owl, provid
us with a noteworthy simple example of temporal map f
mation.

1. Poissonian input

According to the frequency decomposition in the ear,
barn owl’s auditory brainstem is tonotopically organize
Neurons, therefore, belong to a specific frequency layer
carry spike trains phase locked to the acoustic input wit
the respective frequency band. We intend to model map
mation within one isofrequency layer. We, therefore, supp
that all afferent axons are carrying similar temporal inform
tion in a way that spikes atN*100 presynaptic neurons ar
generated by identical Poisson processes with inten
pin(t). Presynaptic neurons are assumed to be statistic
independent. Axons to postsynaptic neurons may have di
ent delays. Therefore spikes from the presynaptic neuron
arrive at the postsynaptic neuronm with delay Dmn , i.e.,
they are generated by means of the Poisson intensitypin(t
2Dmn).

We model phase-locked afferent activity by an inhomog
neous Poisson process with periodical intensitypin(t)
5pg(t), where g>0 is a Tp-periodic function with
*0

Tpdt g(t)51. The parameterp5nTp is adjusting the pro-
cess to a mean firing raten.

We have assumed that the averaging timeT greatly ex-
ceedsTp . As a result, temporal averages are translationa
invariant in time. The time-averaged firing raten in(t)
5pin(t)5T 21* t2T

t dt8pin(t8)5n is constant and identica
for all input cells. Here, and elsewhere, an overbar denot
time average overT. The time-averaged correlation functio
between input spike trains at synapsesn and n8 ~a detailed
deduction can be found in@17#, Appendix A!,
5-3
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Cnn8
in

~ t8,t !5pin~ t8!pin~ t !1n dnn8d~ t2t8!, ~7!

is of the formCnn8
in (t8,t)5Cnn8

in (t82t). This can be shown
if the Tp-periodic functiong is represented by a Fourie
series. Defining vpª2p/Tp , we write g(t)
5Tp

21(mĝm exp(imvpt) with Fourier coefficients ĝm

5*0
Tpdt g(t)exp(2imvpt). Applying the Wiener-Khintchin

theorem@38#, we then find an expression forpin(t8)pin(t) in
Eq. ~7! in terms of a Fourier series,

pin~ t8!pin~ t !5n2 (
m52`

`

uĝmu2 exp@2p im~ t2t8!/Tp#. ~8!

As a consequence, the temporal average on the right-h
side of Eq.~7! is a function oft2t8 only, which considerably
simplifies the following analysis.

2. Axonal topology

Within the laminar nucleus, axons run in parallel and co
tact postsynaptic cells. The network topology addressing
issue is sketched in Fig. 4, which will be the basis of t
ensuing analysis. Each of theN axons is thought to contac
all M output cells so that we can neglect the restrictionm8
Paxon n in Eq. ~6! and sum over all the postsynaptic cel

In accordance with experimental data@5#, the axonal con-
duction velocityc within the laminar nucleus is taken to b
constant, cf. Fig. 4. The axonal delaysDmn are then unam-
biguously defined by

Dmn5Ln1~m21!du /c, ~9!

whereLn denotes the axonal latency between the input n
ron n and the first contacted output neuron (m51). The
spatial distance between output cellsm and 1 is calledum
5(m21)du .

FIG. 4. Feed-forward topology.N input cells projected ontoM
output cells. The axonal conduction latenciesLn (n51, . . . ,N)
between theN input cells and the first output unit (m51) are dis-
tributed over a temporal range that is at least as broad as the p
Tp of the input process. As a constant axonal conduction velocic
is assumed, the spatial distanceum5(m21) du between them th
and the first output neuron defines the total axonal delayDmn

5Ln1(m21)du /c between input neuronn and output neuronm.
05191
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3. Distance-dependent interaction

We further assume that the coupling matrixbmm8 only
depends on the spatial distanceduum2m8u of the postsynap-
tic neurons@33–36#. In other words, the presynaptic intera
tion is described through a symmetric and translationally
variant linear operator.

E. Linear learning equation

To explicitly write down a dynamics for the synapt
weights, one has to specify expressions for the time-avera
firing ratenm

out(t) and the time-averaged correlation functio
Cmn(t,t8) in Eq. ~5!. Both depend on the synaptic weigh
that may change during learning. For Poisson neurons
scribed by Eq.~2!, we obtain the output rate

nm
out~ t !5b (0)1b (1)n (

n51

N

Jmn~ t ! ~10!

and the correlation function@17#

Cmn~ t8,t !5b (0)n1b (1) (
n851

N

Jmn8

3E
0

`

dse~s!Cn8n
in

~ t82s2Dmn8 ,t !. ~11!

We insert Eqs.~7!, ~10!, and~11! as well as the learning
equation~5! into Eq.~6! and obtain a linear dynamics for th
synaptic weights,

d

dt
Jmn5(

m8
~dmm81r bmm8!

3F k11 (
n851

N

~k21dnn8k31Qnn8!Jm8n8G . ~12!

The constantsk1 , k2, andk3 are defined to be

k15h$b (0)@wout1Ŵ~0!n#1winn%,

k25h b (1)n@wout1Ŵ~0!n#,

and

k35h b (1)nE ds W~s!e~2s!, ~13!

where Ŵ(v)5*ds W(s)e2 ivs is the Fourier transform of
the learning window. We will neglect thek3 term in Eq.~12!
later because it is of orderN21 compared tok2 and Qnn8 ,
andN has been assumed to be large. In Eq.~12!, the tempo-
ral structure of the input is hidden in

Qnn8ªhE ds W~s!q@s2~Ln2Ln8!#, ~14!

where

iod
5-4



n-

r

ti
rfo
o

-

e

e

ua
z

a-

is
g
m
n

i-
ly-

Let

ce

e

ral-
to

of
e
ar
c-

ron
e
all

t

HOW SPIKING NEURONS GIVE RISE TO A . . . PHYSICAL REVIEW E65 051915
q~r !ªb (1)E ds8e~s8!@pin~ t2s8!2n#@pin~ t1r !2n#.

~15!

In the case of a periodic input densitypin(t)5p g(t) as in-
troduced in Sec. II D 1, applying Eq.~8! to Eqs. ~15! and
~14! leads to an expression ofQnn8 in terms of a Fourier
series,

Qnn85 (
m52`

`

Q̂mexp@ imvp~Ln2Ln8!# ~16!

with coefficients

Q̂m5h b (1)n2uĝmu2Ŵmêm@12dm0#. ~17!

HereŴm and êm denote the Fourier transforms of the lear
ing window W and the EPSP functione, taken at frequency
v5m vp , whereasĝm and Q̂m are coefficients of a Fourie
series. The linear driving forceQ̂m for temporal structure
formation is the power spectrumuĝmu2 of the input process
filtered through the learning window and the postsynap
potential. Their temporal extent defines the bandpass pe
mance of this filter. In Fig. 3 we show generic specimens
W and e, as they have been used in@8#, and their Fourier-
transformed convolutionŴ ê. Furthermore, it should be no
ticed thatQ̂0 vanishes. It will turn out thatQnn8 has, there-
fore, no effect on the average synaptic weight, see S
IV C 1.

Typical values of the latenciesLn are assumed to b
much smaller than the averaging timeT, which makesQnn8
dependent on a latency difference only, cf. Sec. II D 1. Eq
tion ~12! is fully specified so that we can proceed to analy
ing its general structure and solution.

III. SEPARABILITY OF THE LEARNING EQUATION

Equation~12! is an autonomous linear differential equ
tion for the set of coupling strengthsJmn (1<m<M ,1<n
<N) and hence its solution can be given explicitly. In th
section we show that the dynamics of the weights of a sin
neuron can be separated from the dynamics of map for
tion. Before doing so in Sec. IV we briefly discuss the ge
eral strategy for solving Eq.~12!.

A. General structure and solution

Once the coupling vectorJ, the inhomogeneityj , and the
linear operatorL are identified, the differential equation~12!
reads

d

dt
J5LJ1 j . ~18!

The general solution of Eq.~18! is given by Duhamel’s for-
mula

J~ t !5Jfix1etL@J~ t50!2Jfix#, ~19!
05191
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where fixed points (dJ/dt50) are defined by

L Jfix52 j ~20!

andetL
ª(k50

` (tL)k/k!. The fixed pointJfix is unique ifL is
invertible. Otherwise Eq.~19! has to be extended by contr
butions from eigenspaces with eigenvalue 0 that grow po
nomially with t.

The coupling vectorJ and the inhomogeneityj are both
elements of an (M3N)-dimensional linear spaceR. The
operatorL is, therefore, an endomorphism overR. We sus-
pend a more thorough specification ofR until Sec. III B
since all equidimensional linear spaces are isomorphic.
us supposeL is diagonalizable with eigenvaluesl and
eigenvectorsfl , which constitute a basis of the vector spa
R. Hence the deviationiªJ(t50)2Jfix of the initial cou-
plings J(t50) from the fixed pointJfix can be written as a
linear combinationi5(lalfl of these eigenfunctions. Th
time-dependent partetLi of Eq. ~19!, therefore, reads
(letlalfl . The above consideration can also be gene
ized to nondiagonalizable operators, but this will turn out
be dispensable for our example.

Summarizing, solving the fixed-point equation~20! and
the eigenvalue problem,

L f5lf ~21!

is necessary and sufficient for analyzing the time course
the linear synaptic dynamics. An explicit solution for th
special case of map formation in the barn owl’s lamin
nucleus will be given in Sec. IV. The remainder of this se
tion shows how the dynamics of weights of a single neu
~also called the ‘‘temporal part’’! can be separated from th
dynamics of map formation, i.e., the synchronization of
neurons’ weight distributions across the array~‘‘spatial
part’’!.

B. Spatiotemporal separability

We will show that both the linear operatorL and the
inhomogeneityj separate in space~m! and time (n). We,
therefore, take the linear spaceR to be the direct-produc
spaceR5RM

^ RN and specify an isomorphismI that is to
be used for embedding the set ofM3N synaptic weights
Jmn into R.

1. Embedding weights into tensor space

Let $em ;1<m<M % and $fn ;1<n<N% be a basis ofRM

andRN, respectively. Consequently$em^ fn% is a basis ofR.
If we introduce scalar products so that

em•em85dmm8 and fn•fn85dnn8 , ~22!

we also obtain a scalar product on the tensor spaceR with
the property that

~em^ fn!•~em8^ fn8!5~em•em8!~ fn•fn8!5dmm8dnn8 .
~23!

Our choice for the isomorphismI is now as simple as it
can be,
5-5
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I: RM3N→R,

I$Jmn ;1<m<M ,1<n<N%°J5 (
m51

M

(
n51

N

Jmnem^ fn ,

~24!

and thus

I 21J5$~em^ fn!•J%5$Jmn%. ~25!

The benefits of this transformation become clear after rea
ing that both the operatorL and the inhomogeneityj are
tensor products,

L5L S
^ L T, ~26!

j5 jS^ jT, ~27!

where the superscript indicesS and T denote spatial and
temporal components. The two parts of the linear opera
read

L Sem5(
m8

~dm8m1rbm8m!em8 , ~28!

L Tfn5(
n8

~k21dn8nk31Qn8n!fn8 , ~29!

while the two parts of the inhomogeneity can be written

jS5L S1S, ~30!

jT5k11T, ~31!

with 1S5(mem and1T5(nfn . Then the action ofL onto the
coupling vectorJ is calculated as

L J5(
mn

Jmn~L Sem! ^ ~L Tfn!. ~32!

In this way we obtain a fully separable version of Eq.~18!,

d

dt
J5 jS^ jT1~L S

^ L T!J. ~33!

We note that although this differential equation is fully sep
rable, its solution is generally not, i.e.,JmnÞJm

SJn
T does not

factorize. Separable solutions occur if and only if the init
values Jmn(t50) are separable. The next two paragrap
demonstrate that a separable linear dynamics yields bo
separable fixed point and separable eigensystems.

2. Separable fixed point

If we apply Eqs.~26! and ~27!, the fixed-point equation
~20! yields

(
mn

Jmn
fix ~L Sem! ^ ~L Tfn!52 jS^ jT. ~34!
05191
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The right-hand side of Eq.~34! is separable, as has to be th
left-hand side. This requirement can only be fulfilled if al
the fixed pointJmn

fix 5Jm
SfixJn

Tfix is separable. We then can rea
the spatial and temporal part separately so that we obtain
independent fixed-point equations. With Eq.~30! we find a
spatial fixed-point equation

L SJS fix5L S1S ~35!

and with Eq.~31! a temporal one

L TJT fix52k11T, ~36!

whereJS fix5(mJm
S fix em andJT fix5(nJn

T fix fn . These equa-
tions are unequivocal besides a constant multiplicative fa
aÞ0. Multiplying JT fix by a leads to a multiplication of
JS fix by a21. The position of the minus sign in Eqs.~35! and
~36! is, therefore, arbitrary.

3. Separable eigensystems

We now focus on the eigenvalue problem~21! for the
operatorL5L S

^ L T from Eq.~26!. If we insert a separable
ansatz for the eigenfunctionsf5fS

^ fT we obtain

L SfS
^ L TfT5lfS

^ fT. ~37!

Again, separating coordinates, we find independent spa
and temporal eigenvalue problems, viz.,

L SfS5lSfS, ~38!

L TfT5lTfT, ~39!

with the total eigenvaluel5lSlT. Let us suppose the ei
genvalue problems~38! and~39! have been solved. Then th
ansatzf5fS

^ fT yields M3N eigenfunctions and henc
we have found the complete eigensystem of Eq.~21!.

IV. SPATIOTEMPORAL DELAY SELECTION

We separately solve the ‘‘spatial’’ and ‘‘temporal’’ parts o
the differential equation~33! as outlined in the preceding
section and discuss the biological relevance of the solutio

A. Spatial solution

The solution of the spatial part of Eq.~33! is simple be-
cause the linear operatorL S as given by Eq.~28! is a cyclic,
or circulant, matrix. We assumeuru!1, cf. Sec. VI. There-
fore L S is invertible and has the unique fixed point in E
~35!,

JS fix51S. ~40!

With equally spaced output cells and a translationally
variant axonal coupling~see Sec. II D 3!, L S is translation-
ally invariant as well. Translationally invariant, i.e., cycli
operators are very common in quantum mechanics and s
state physics and their spectral theory is completely und
stood@39#. The eigenfunctionsfS( l ) of L S are plane waves
with wavelengthl PZ so that
5-6
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fS~ l !ª (
m51

M

e2p iml/Mem ~41!

for 1< l<M . The eigenvalues are

lS~ l !511rb̃l , ~42!

where

b̃l5 (
m52M /211

M /2

b0me2(2p i /M )ml ~43!

is the spatial Fourier transform of the coupling matrix. Th
only holds exactly forM→` or periodic boundary condi
tions, but as shown by Ledermann@40#, for finite M the
alignment of the spectrum ofL S remains unchanged. Sinc
we have assumed symmetric axonal coupling,lS( l ) is sim-
ply a real number. We also note that the scalar product of
eigenvectors isfS( l )•fS( l 8)5Md l ,2 l 8 , cf. Eq. ~22!.

At this stage, two important aspects ought to be stres
First, in order to guarantee map formation, i.e., synchron
tion of synaptic structures along the neuron array, we hav
ensure that all synapses at a specific axonn either grow or
decay, cf. Figs. 1 and 4. This means that synaptic modifi
tions are to be associated with the axon indexn rather than
with the postsynaptic indexm. The eigenvectorfS(0)
5(mem is made up of equal contributions from all postsy
aptic cells 1<m<M , and, thus, represents a homogeno
weight change along the axons. All other eigenvectors l
to combined strengthening and weakening of the syna
strengths at one axon and, hence, disturb the formation o
ITD map. Second, if we interpret an eigenvalue as the ve
ity of growth of an eigenvector, Eq.~42! tells us that the
eigenvectorfS(0) exhibits significantly faster growth tha
eigenvectors withlÞ0, if rb̃0*1 andurb̃l u!1 for lÞ0. In
our example of the laminar nucleus of the barn owl we w
argue thatb̃0'M , and, thus,r'1/M is already large enough
for map formation.

B. Temporal solution

HandlingL T as defined in Eq.~29! is, in general, impos-
sible unless we specify the distribution of the latenciesLn .
We assume a uniform distribution of latencies in an inter
of lengthTp ,

Ln5n Tp /N, ~44!

which does not favor any phasea priori. Generality is not
restricted by introducing delays that only cover an interva
lengthTp , because the dynamical equations are strictly
riodic, cf. Fig. 5.

The definition of L T in Eq. ~29! contains the matrix
Qnn8 , which acts as the driving force for structure formati
as defined by Eqs.~14!–~17!. We insert the latency distribu
tion ~44! into Eq. ~16! and obtain

Qnn85 (
m52`

`

Q̂m exp@2p im~n2n8!/N#. ~45!
05191
e

d.
-

to

a-

s
d
ic
an
c-

l

l

f
-

BecauseQnn8 only depends on the differencen2n8, the op-
eratorL T is cyclic. The next steps consist of examining t
eigensystems (fT,lT) of L T and calculating the fixed-poin
solution of Eq.~36!.

1. Temporal eigensystems

The eigenvectors ofL T are plane waves,

fT~m!5 (
n51

N

fne2p imn/N for 0<m<N21. ~46!

The vectorsfT(m) are normalized in such a way tha
fT(m)•fT(m8)5Ndm,2m8

N , where we define a modified
Kronecker deltadmm8

N to equal 1 form5m81ZN and 0 oth-
erwise. The eigenvectorsfT can be defined for allmPZ
sincefT(m)5fT(m1N) andfT(2m)5fT(N2m).

To calculate the eigenvalueslT(m) of eigenvectors
fT(m), we exploit (n exp@2pi(m2m8)n/N#5Ndmm8

N , apply
Eqs.~29!, ~45!, and~46! to the eigenvalue problem~39!, and
obtain

lT~m!5N~k2dm,01k3 /N1Qm!, ~47!

whereQmª(m8Q̂m8dm,m8
N . From now on,k3 /N will be ne-

glected, sinceN has been assumed to be large, see S
II D 1.

2. Temporal fixed-point solution

To calculate the temporal fixed point, we take a clos
look at Eq. ~36!. We already know from Eq.~46! that
fT(0)51T. Therefore1T on the right-hand side of Eq.~36!
is an eigenvector ofL T with eigenvalue lT(0)5N(k2
1Q0), cf. Eq. ~47!. Then the temporal fixed point is

JT fix5
2k1

N~k21Q0!
1T. ~48!

For a biologically reasonable choice ofW ande with expo-
nentially decaying slopes as in Fig. 3, we can setQ050
becauseQ̂050 @cf. Eq. ~17!# and the coefficientsQ̂m decay

FIG. 5. Structure formation at a single postsynaptic neuronN
5600 synapses with Gaussian distributed latenciesL ~mean 1 ms,
width 0.3 ms! are contacting output cellm. ~a! Initially, the weights
Jmn (1<n<N) are equally distributed with mean 0.9 and standa
deviation 0.01. The prominent contribution is yielded by the te
poral eigenvectorfT(0) that describes the average weight, where
all other eigenspaces participate upto a small portion.~b! After 15 s
of learning, the prominent eigenspace@Tp51/(3 kHz), horizontal
bar# is already noticeable.~c! Temporal synaptic structure after 50
Parameters are taken from@8#.
5-7
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at a polynomial rate of at leastm22 and thusQ̂N5O(N22).
With parameters taken from@8# we even findQ̂N5O(N23)

A prerequisite for structure formation is that synap
weights should neither all decay to zero nor increase to
finity, see also Fig. 1. Therefore stabilization of the zero
eigenvectorfT(0) due to a negative eigenvaluelT(0) is
necessary for structure formation. We will argue that
growth of a synaptic structure is possible, if a few eigenv
tors with mÞ0 have large positive eigenvalues. The follow
ing section shows how both constraints can be achieved

C. Synthesis of spatial and temporal solution

The discussion of the general solution~19! of an autono-
mous linear differential equation, e.g., Eq.~12!, can be re-
duced to an analysis of the prominent directions of tempo
evolution, viz., the eigenspaces with largest eigenvalue
all the other eigenvalues are significantly smaller@24,41,42#.
From Eqs.~41! and ~46! we find the product of spatial an
temporal eigenfunctions to be plane waves,

f~ l ,m!ªfS~ l ! ^ fT~m!

5(
mn

em^ fnexp@2p i ~ml/M1nm/N!# ~49!

with eigenvalues given by Eqs.~42! and ~47!,

l~ l ,m!ªlS~ l !lT~m!5~11rb̃l !N~k2dm01Qm!. ~50!

Let us first discuss the evolution of the average syna
weight (l 5m50).

1. Stabilization of the average weight

The average synaptic weight is defined as

Jav:5~NM!21(
mn

Jmn5~NM!21J•~1S
^ 1T!, ~51!

where the second equality follows from Eqs.~23! and ~24!.
Requiring the average weight to be stable and positive,
obtain conditions for the parametersk1 andk2 from Eq.~13!.
Equation~49! shows that1S

^ 1T in Eq. ~51! equalsfS(0)
^ fT(0). Thetemporal evolution ofJav is, therefore, deter-
mined byl(0,0)5(11rb̃0)Nk2, cf. Eq.~50!. If the learning
dynamics is required to stabilizeJav to a finite value, then
l(0,0) has to be negative.lS(0)511rb̃0 is positive be-
cause the elements of the axonal coupling matrixbmm8 in Eq.
~6! have been defined to be non-negative. This me
lT(0)5N k2 must benegative. For a negativek2 @see Eq.
~13!#, either the integral over the learning windowŴ(0) or
the postsynaptic contributionwout, or both, have to be nega
tive.

If we combine Eqs.~40! and ~48!, we find the overall
fixed point

Jfix5Jfix1S
^ 1T, ~52!

with the average weight at the fixed point
05191
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Jfix
ª2k1 /~Nk2!. ~53!

The fixed point Jfix is a multiple of the eigenfunction
fS(0)^ fT(0) in Eq. ~49!, which is a special feature of th
present dynamics. A negative eigenvaluel(0,0) then means
that Jav is asymptotically governed by the fixed point, viz
lim

t→`
Jav5Jfix. ThereforeJfix has to be positive so as t

avoid vanishing of synaptic input. Equation~53! then implies
thatk1 is restricted topositivevalues. For a positivek1 and a
negativek2 in Eq. ~13!, the presynaptic contributionwin must
then be positive.

2. Structure formation

Synaptic strengths in the immature animal are assume
be uniformly distributed around a multiple ofJfix in Eq. ~52!;
compare Fig. 5. This initial distribution strongly contribute
to the eigenspacef(0,0) with the negative real part of th
eigenvalue, whereas all contributions to eigenspaces with
positive real part of the eigenvalue, i.e., all projectio
f(2m,2 l )•Jfix are small, so that none of them has a he
start. The eigenspaces with the largest eigenvalues
dominate the dynamics. We are going to calculate its con
quences for the time course of the membrane potential
predict the capability of temporal processing in our mod
network.

As we have seen in the preceding section, temporal eig
values with positive real parts are restricted tom
51,2, . . . ,N21. For a sufficiently large interaction width
along axons we find spatial eigenvalueslS(0)@lS( lÞ0)
511rb̃l , cf. Eq. ~42!. If, for instance, the interaction doe
not depend on the spatial distance between synapses,bmm8
51, we find lS( l )511rMd l0. The relevant eigenvalue
for structure formation are thusl(0,m)5(11r M )Qm , cf.
Eq. ~50!. The leading eigenfunctionf(0,m) can now be in-
terpreted as a synchronization of the phases of latency ei
functionsfT among theM output neurons. We have, there
fore, arrived at aselection of axonsrather than a selection o
synapses.

Taking into account the bandpass property of our learn
dynamics, as mentioned in the discussion of Eq.~16! ~see
also Fig. 3!, it is likely that somem5mopt dominates the
temporal eigenvalues. For sufficiently large input frequenc
vpª2p/Tp , the optimal harmonic is the first one,mopt51.
Hence we expect the emerging structure to reflect the p
wavef(0,61).

Traveling excitation waves. What does the prominent ei
genvector contribute to the postsynaptic potential? The
swer is a plane-wave-like postsynaptic excitation travel
along the output array. As for the proof, we calculate t
input-averaged (̂•••&) membrane potential~3! resulting
from the synaptic efficaciesJ5Jfix1a f(0,61),

^vm&~ t !5Nn@Jfix1aĝ61ê61exp$6 ivp~ t2c21um!%#5:v (0)

1v (1)exp@6 ivp~ t2c21um!# ~54!

with constantsv (0) andv (1). The spatial wavelength, which
is the difference between two isophase lines, is, theref
given by 2pcvp

21 .
5-8
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3. Independent input populations

Up to now, we have explored synaptic structure format
with only one set of independent input processespin(t). In
the case of the laminar nucleus, however, there are two
of input populations representing the activity of the affere
fibers originating fromboth ears. Due to random variation
of the spatial location of sound sources, these subpopulat
are assumed to be independent, see below.

To deduce the synaptic dynamics of the laminar nucl
~that is driven by two independent input populations! from
synaptic structure formation for one input population, as d
cussed above, we show thatX independent input populations
denoted byx, with 1<x<X, develop independent synapt
structures.

Two sets of input cells are defined to be independen
their spike trains are temporally uncorrelated on the ti
scaleT. To be concrete, we require that, in extension to E
~7!, the time-averaged presynaptic correlation function re

Cx8x,n8n
in

~ t8,t !5n21dx8x@px
in~ t8!px

in~ t !2n2#

1ndx8xdn8nd~ t82t !. ~55!

This kind of correlation can be achieved, for example,
random phase changes in periodically firing populations w
equal raten. The periodsTp,x52p/vp,x of the subpopula-
tions do not have to be identical but must be significan
shorter then the averaging timeT. The typical time difference
between two phase changes, however, has to be of the
order of magnitude asT, so as to not destroy the tempor
correlations within one population.

We are now dealing withX input populations. The
weightsJmn,x of input line n, therefore, obtain a populatio
index x and, in analogy to Eq.~14!, we defineQnn8,x by
using the attributes of input populationx. These substitutions
again yield a spatiotemporally separable learning equatio

d

dt
Jmn,x5 (

m8Paxon
~dmm81rbmm8!

3Fk11 (
x8n8

Jm8n8,x8$k21dxx8~k3dnn81Qnn8,x!%G .

~56!

The sum overx8 in Eq. ~56! is obtained since all population
contribute to the postsynaptic potential.

The spatial component of the inhomogeneity and lin
operator remain unchanged when compared to the equiva
equation for only one input population~12!, whereas the
temporal coordinates are embedded into% x51

X RNx with Nx

input lines in populationx. Then the temporal part of th
linear operator reads

L Tfn,x5 (
n8x8

fn8,x8@k21dx8x~k3dn8n1Qn8n,x!#.
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Since only thek2 term mixes up different population indice
one may suspect already at this stage, and in analogy to
IV C 1, that different populations do not interfere in structu
formation.

Structure formation. All eigenspacesf( l ,m), with mÞ0
remain unchanged as compared to those of the dynam
with only one population. The ansatz

f~ l ,m,x!ª(
mn

em^ fn,xexp@2p i ~ lm/M1mn/N!#

~57!

yields the eigenvaluesl( l ,m,x)5(11rb̃l)(NxQm,x). In
other words, each populationx contributes to its own struc
ture with its own driving forceQm,x weighted with the re-
spective number of input cellsNx .

Fixed point and normalization.In analogy to Eq.~48!, the
temporal part of the inhomogeneityjT52k1(x51

X 1x
T is an

eigenvector ofL T and, withQ0,x50 ~cf. Sec. IV B 2!, we
find the fixed point to be

Jfix5
2k1

k2(
x51

X

Nx

1S
^ (

x51

X

1x
T . ~58!

Its eigenvalue isl(0,0,0)5(11rb̃0)(k2(x8Nx8).
In contrast to the single population case,L T has X21

eigenvectorsY5(xnYxfn,x with eigenvalue 0, defined by th
condition (xNxYx50. Since1x

T
•1x

T5Nx , the vectorsY are
orthogonal tojT and, hence, do not influence the dynamic

4. Standing waves and temporal feature maps

To see how a temporal-feature map can arise, we retur
the example of a map of interaural time differences~ITDs! in
the barn owl’s laminar nucleus@8,43#. Two sets of input lines
that correspond to the two ears are assumed to be inde
dent as defined in Sec. IV C 3 but otherwise identical. T
two periodic input processes generate spike trains that
phase locked to the acoustic stimulation of either of the t
ears. Auditory processing in the laminar nucleus is sub
vided into isofrequency layers, where the reciprocal of t
frequency corresponds to the considered periodicityTp
52p/vp . The axons from both ears run along the array
M output cells in opposite directions, interdigitate and,
doing so, contact the laminar neurons, see also Fig. 1.

After independent structure formation in both popu
tions, the system faces two contrarily traveling excitati
waves,vm

left(t) and vm
right(t) with cleft52cright, cf. Eq. ~54!.

Their linear superposition leads to a standing wave phen
enon,

^vm
left~ t !1vm

right~ t !&

52v (0)12v (1) cos~vpum /c1F!cos~vpt !. ~59!

The placesumax of the interference maxima are then defin
by the phase offsetF between both classes of input pro
5-9
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cesses:umax5ZcTp/22cF/vp . We have thus obtained
place coderepresenting the time differenceF/vp between
both classes. The time difference is determined by the h
wired conduction delay between the auditory organ and
laminar cell, and by the azimuthal position of the sou
source, i.e., the ITD; cf. Fig. 6 and@44#. Since the conduc-
tion delay is an anatomic constant for each neuron, we h
actually obtained a representation of the ITD in terms of
positions of interference maxima in the laminar nucleus.

These interference maxima cannot be translated into fi
rate maxima with linear neurons, since the mean output
nm

out5b (0)1b (1)^v left1v right&5b (0)1b (1)2v (0) is indepen-
dent of m. In Sec. VII, however, we show that nonline
neurons lead to an identical synaptic structure and, there
to identical standing waves of the membrane potential.
cause of the nonlinearity, these standing waves are
transformed into firing rates, i.e., an ITD map.

V. ORDER PARAMETERS

We introduce two order parameters serving as qua
measures for the synaptic development in a single popula
of input lines.

A. Local and global order

The ‘‘local’’ order parameter is to describe the avera
extent of delay selection at the single cells, and the ‘‘glob
one will indicate the synchronization of selected delays

FIG. 6. Map of interaural time difference~ITD!. ~a! Schematic
drawing of the coincidence detector array~gray shaded disks! as
proposed by Jeffress@44#. Acoustic stimulation is delayed by~i! the
spatial distance between the sound source and the ears~dashed
lines! and~ii ! the physiological transduction from the ear to the c
~solid lines!. After delay tuning, the theoretically predicted avera
membrane potential̂v(t)& is a standing wave across the lamin
nucleus with period lengthTp c/2. Its phase offset is determined b
the interaural time difference. The azimuthal position of the sou
source in auditory space is thus mapped onto the positionum of
maximal amplitude of the membrane potentialvampwithin the lami-
nar nucleus~the brighter the disk, the higher the membrane pot
tial amplitude!. ~b! For comparison, we show the simulated amp
tude of the membrane potential~dots with error bars! and the
theoretical prediction@solid line, see Eq.~59!# for an ITD of 50 ms
and synaptic weights after 875 s of formal learning. The interac
strength in the simulation isr50.7/30; the other parameter value
have been taken from@8#. Each data point is obtained from a best
of the average time course of the neurons’ membrane potentia
Eq. ~59!.
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tween the cells. We deduce the order parameters from
quantity called vector strength. The vector strength of a po
tive, Tp-periodic function is defined@45# to be the amplitude
of its first Fourier component divided by the Fourier comp
nent of order zero. This yields a quantification of the dev
opment of the leading eigenfunctionf(0,61).

The vector strength of weightsJmn of neuron m is
u(ne2 ivpLnJmn /(nJmnu. Then theaveragevector strength of
M cells is defined to be

Vavg5S 1

M (
m51

M U(
n

e2 ivpLnJmn

(
n

Jmn

U 2D 1/2

, ~60!

which indicates the systems’ local order. We define the ‘‘a
onal weight’’ as the sum of all weights of some axon, e.
(mJmn for axon n. The axonal vector strength then is the
vector strength of the ‘‘axonal weights,’’

Vaxon5U(
mn

e2 ivpLnJmn

(
mn

Jmn

U . ~61!

It is as a measure of the systems’ global order.

B. Dynamics

With the results from Sec. IV it is possible to analytical
specify the time course of the above order parameters.
sums in Eqs.~60! and~61! can be identified with projections
of the weight vector on eigenspaces of the linear opera
L T. Due to Eq.~46! andJmn5(em^ fn)•J from Eq.~25!, we
find

(
n

e2 imvpLnJmn5@em^ fT~2m!#•J. ~62!

Exploiting the fact that the eigenvectorsfT(m) in Eq. ~46!
andfS( l ) in Eq. ~41! are a basis ofRN andRM, respectively,
we can write J as a linear combination of eigenvecto
f( l ,m) of the operatorL,

J~ t !5(
l ,m

alm~ t !f~ l ,m!,

where the time course of the coefficients

alm~ t !5
1

MN
f~2 l ,2m!•J~ t !

5
1

MN (
mn

Jmn~ t !exp@22p i ~ lm/M1mn/N!#

~63!

is governed by the differential equation

l

d

-

n

to
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d

dt
alm5

1

MN
f~2 l ,2m!•

d

dt
J

5
1

MN
f~2 l ,2m!•~LJ1 j !

5alml~ l ,m!2d l0dm0l~0,0!Jfix, ~64!

where we have usedj52LJfix5l(0,0)Jfix f(0,0), cf. Eq.
~52!. As a result, thealm evolve independently of each othe

a00~ t !5Jfix1el(0,0)t@a00~0!2Jfix#,

alm~ t !5el( l ,m)talm~0! for ~ l ,m!Þ~0,0!. ~65!

The projection defined in Eq.~62! then yields

@em^ fT~2m!#•J5N(
l

e2p i lm/Malm . ~66!

If we assume the temporal evolution of the average weigh
be much faster than structure formation or, in other wor
the temporal eigenvalues~47! comply with lT(0),0 and
ulT(0)u@lT(mopt), then we are allowed to set the avera
synaptic weight~51! equal to the fixed point~52!. That is to
say, in terms of Eq.~65!, we substituteal05d l0Jfix. Conse-
quently, the denominators of Eqs.~60! and~61! are indepen-
dent ofm since, according to Eqs.~62! and ~66!,

(
n

Jmn5N(
l

e2p i lm/Mal05Na005NJfix. ~67!

The numerator in Eq.~60! can be calculated similarly if we
also use(me2p i lm/M5Md l0,

(
m

u@em^ fT~2m!#•Ju25M(
l

uNalmu2,

whereas the numerator in Eq.~61! is obtained directly as

U(
m

@em^ fT~2m!#•JU5uf~0,2m!•Ju5uMNa0m~ t !u.

Summarizing the above calculations we find

Vavg~ t !5F(
l

ual1~0!el( l ,1)tu2G1/2Y Jfix

and

Vaxon~ t !5ua01~0!el(0,1)tu/Jfix.

For the sake of simplicity we assume the axonal coupl
matrix ~6! to bebmm851 for all m,m8. Due to Eq.~42! this
yields eigenvaluesl( l ,1)5lT(1)(11rMd l0) and, withlT

5Re@lT(61)#, we obtain

Vavg~ t !5g0etlT(11rM )F11~M21!S g1

g0
D 2

e22rMtlTG1/2

~68!
05191
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and

Vaxon~ t !5g0etlT(11rM ), ~69!

where

g0ªua01~0!u/Jfix,

g1ªF (
l ; lÞ0

ual1~0!u2/~M21!G1/2

/Jfix. ~70!

The initial valuesal1(0) are reduced to the two numbersg0
and g1. To estimate their order of magnitude, we calcula
expectation values. As initial conditions, we assumeJmn(0)
5Jfix1jmn, the jmn being uncorrelated white noise wit
mean zero and correlation function

^jmnjm8n8&5d2dmm8dnn8 .

With Eqs.~49! and ~25! we obtain the expectation value

^ual1~0!u2&5d2/~MN!.

Replacingual1u2 in Eq. ~70! by ^ual1u2& we find

g0'g1'd/~JfixAMN!. ~71!

These approximations have been used for plotting the t
evolution of order parameters, viz., Eqs.~68! and ~69!, in
Fig. 7 for the set of parameters from@8#. A comparison be-
tween Figs. 7 and 8 shows that the theoretical predictions
a reasonable approximation of the data obtained by num
cal simulations with the same set of parameters.

C. Optimal coupling

The global order is always below the local order since

Vaxon~ t !

Vavg~ t !
5F11

~M21!~g1 /g0!2

e2rMtlT G21/2

,1. ~72!

As t→`, the ratio of vector strengths in Eq.~72! approaches
1 since bothr andlT are positive. So, if we wait sufficiently
long, we should gain a perfect globally ordered map. T
final quality of the map, therefore, seems to have only lit
dependence uponr. These considerations, however, on
hold if the dynamics remains linear. For biological syste
this assumption is generally not fulfilled, as the resour
available for synaptic modification are restricted. This
striction can be mimicked by introducing an upper bound
the local order parameterVavg. Once the boundary is reache
~at t5t freeze.0) the whole dynamics is assumed to be fr
zen. The difference between local and global order at fre
ing time, however, has a strong dependence uponr, cf. Fig.
7.

For fixed t5t freeze.0, Eq.~72! shows that the bigger the
axonal couplingr, the more the difference between the va
ues of both order parameters diminishes. So one could a
that map formation becomes more and more effective,
larger the axonal coupling strength. In Sec. VI we will sho
5-11
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that this is not the case and that, due to noise, the upper
for the axonal coupling strengthr&O(M 21/2).

VI. INPUT NOISE

Up to now all results are based on Eq.~5!. That is to say,
we have been dealing with a time-averaged mean-field
scription, where the inherent temporal noise of the input p
cesses is neglected. Calculating the variance of the temp
evolution of one synaptic weight~see@17#, Appendix E! jus-
tifies the mean-field approximation for sufficiently small va
ues ofh: the diffusion constant isO(h2) and the eigenvalue
areO(h), which makes the time scale of synaptic modific
tion due to input noise longer by a factor ofO(h21) than the
time scale of structure formation.

If we set up an axonal interaction like in Eq.~6!, the
diffusion constant increases. Therefore, the time scale a
ciated with input noise decreases. Hence we can gain a
straint for the coupling strengthr, so as to avoid an increas
of the order of magnitude of the input-noise evoked jitter

The variance Var(Jmn)(t)ª^Jmn
2 &(t)2^Jmn&

2(t) of a syn-
aptic weight forbmm851 is governed by the dynamics~see
also Secs. II B and II C!

FIG. 7. Dynamics of order parameters. The global order par
eterVaxon~solid line! and the local oneVavg ~dashed line! are plotted
as functions of time in units of the inverse real part of the lead
eigenvalue (lT)21 @see Eqs.~68!, ~69! and ~71!#. The interaction
strengthrM is varied systematically fromrM50 ~no interaction!
to rM52/3 ~strong interaction!. Once the local order paramete
reaches a saturation threshold, say vector strength 0.8~dotted hori-
zontal line!, synapse growth stops. This can be achieved, e.g.
introducing an upper bound for the single synaptic weights. He
at the same time~dotted vertical line! also the global order param
eter stops increasing. Thus, the difference between global and
saturation depends onrM . In accordance with@8#, the following
parameters have been used,d/Jfix50.2, N5250, M530.
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dt
Jmn5h (

m851

M

~dmm81r!FwinSn~ t2Dm8n!1woutSm8~ t !

1E dsW~s!Sn~ t1s2Dm8n!Sm8~ t !G . ~73!

HereSn(t)ª($tn
( f )%d(t2tn

( f )) denotes the spike train origina

ing from the hillock of neuronn. Its ensemble average is
therefore, identified with intensity of the input processpin(t).
Supposing that the efficacies are all approximately equa
Jfix at the beginning of learning, we obtain~see Appendix!

Var~Jmn!~ t !5t$@11rM #2D11@112r1r2M #D2%

1O~N21/2!, ~74!

where

D15h2@~win!2n12winnnoutŴ~0!1n~nout!2Ŵ~0!2#
~75!

and

D25h2F ~wout!2n12woutnnoutŴ~0!1n2nout(
m

uĝmu2uŴmu2

1nnoutE ds W~s!2G . ~76!

-

g

y
e

cal

FIG. 8. Simulated dynamics of order parameters. The glo
~solid line! and local~dashed line! order parameters are plotted a
functions of time, compare Fig. 7. As the interaction strengthrM is
increased, the difference between the saturation values of gl
and local order diminishes. Saturation is realized by an upper bo
of 2 for the individual synaptic weights. Again, parameters are c
sen in accordance with@8#.
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Since the variance turns out to be linear int, we can define a
diffusion constantDªt21Var(Jmn). For M@1, two sce-
narios exist.

~i! If D1@D2 or D1'D2, the leading power of the inter
action terms in Eq.~74! is (rM )2. For r&M 21, D remains
of the same order of magnitude when compared tor50. A
number of 30 postsynaptic cells like in@8# then yieldsr
&3.3%.

~ii ! If D1!D2, the leading power in Eq.~74! is r2M ,
which yields an upper limitr&M 21/2. For M530 we get
r&18%.

As shown in Figs. 7 and 8, an interaction strengthr
51/2M51.7% already suffices for an aligned developme
of local and global order withM530, andr is small enough
not to violate the upper limits in either scenario. Furth
more, calculating the fractionD1 /D2 with the parameters
used in@8# yields D1 /D2'431023, which corresponds to
scenario~ii !, and sor is about ten times smaller than i
possible limiting value.

To summarize, we state that in the limitr→` map for-
mation is prevented because a high value ofr amplifies the
shot noise of spikes. Forr50 there is no map formation
either. As a consequence, there must be a valuer.0, where
the synchronized development of temporal receptive field
optimal. Already small values, e.g.,r&1/M can be suffi-
cient.

VII. MAP FORMATION WITH NONLINEAR NEURONS

So far we have dealt with linear Poisson neurons, cf.
~2!. We now extend the theory of spike-based Hebbian lea
ing and map formation from neurons with a linear firin
probability to those with an exponential firing probabili
@46#

pF~v !5n0 exp@bv#. ~77!

As already announced in Sec. II A, we will derive a line
learning equation equivalent to Eqs.~12! and ~18! for the
deviation of the synaptic weight vectorJ from a fixed-point
solution Jfix of the nonlinear dynamics. The idea is simp
We linearize Eq.~6! with respect toJfix and will show that
certain eigenvaluesl i of the linearizationDªD(Jfix) may,
and usually do, have a positive real part. The one with
largest real part Re$l i%.0 will asymptotically dominate the
time evolution exp(tD). One, therefore, may wonder: Wh
study anunstablefixed point?

The rationale underlying the above analysis is that
evolution operator exp(tD) is exactly soluble while the
eigenspaces ofD with Re$l i%,0 indicate the ‘‘domain of
attraction’’ of Jfix. Given the initial positionJ(0), thesystem
stateJ(t) first approaches the fixed pointJfix before the ‘‘ex-
panding’’ eigenvalues with Re$l i%.0 take over. Avoiding
any special assumption regardingJ(0), we assume its com-
ponents to be independent random variables that are eq
istributed in a certain interval~as in Fig. 5! and because
J(0)’s part in the ‘‘expanding’’ eigenspaces is negligible~see
Sec. IV C 2!, it is bound to first approachJfix. Hence the
eigenvaluel i of D with the largest real part Re$l i%.0 pro-
05191
t

r

is

.
n-

.

e

e

id-

vides us with important information concerning pattern fo
mation in the system of synaptic efficacies.

A. Linearizing the learning equation

In contrast to the linear learning Equation~18!, the above
activation function~77! yields a nonlinear synaptic dynam
ics,

d

dt
J5NJ, ~78!

whereN denotes a nonlinear operator mappingR→R. Sup-
pose we have found the fixed pointNJfix50 of the differen-
tial Equation~78!. We then expand Eq.~78! in deviationsi
ªJ2Jfix so as to obtain the linearized dynamics

d

dt
i5Di1O~i2!. ~79!

HereD is the total derivative ofN at positionJfix.

B. Rate and correlation

To obtain expressions forN and its total derivative, we
have to find a way of calculating the time-averaged r
nm

out(t)5^pF„vm(t)…& and correlation functionCmn(t1r ,t)
5:cmn(t1r ,t), cf. Eqs.~4! and~5!. The correlationcmn can
be rewritten using Bayes’ formula~for a proof, see@47#,
Appendix A!,

cmn~ t1r ,t !5^pF„vm~ t1r !…&un,tp
in~ t !. ~80!

The notation̂ •••&un,t indicates an average over input spik
trains given a spike of input celln at time t. For the time
being, we leave the temporal averages aside.

Both nm
out andcmn can be calculated by means of the Po

sonian probability measurem on the set of Poissonian inpu
spike trainsV5øF1 , . . . ,FN

VF1•••FN
, where VF1•••FN

de-

notes the set of all spike trains with axon 1 conductingF1
spikes, axon 2 conductingF2 spikes, and so on; all this is to
happen during a period of durationT. Since the subsets
VF1•••FN

are disjoint, we can write

^pF~vm!&5E
V

dmpF~vm!5 (
F1 , . . . ,FN

E
VF1•••FN

dmpF~vm!.

~81!

Though their occurrence is correlated throughpF , the indi-
vidual spike events of a Poisson process are indepen
and, hence, the probability measurem can be restricted to the
subsetsVF1•••FN

so as to give

E
VF1•••FN

dmpF„vm~ t !…5S )
n51

N

)
f 51

Fn E
2`

t

dtj
( f )D

3P$Fn%~ t,$t j
( f )%!pF„vm~ t !…,

where, given the individual Poisson intensitiespin,
5-13
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P$Fn%~ t,$t j
( f )%!5expF2(

n
E

2`

t

ds pin~s!G
3S )

n51

N
1

Fn! )f 51

Fn

pin~ t j
( f )!D

is the probability density forN Poissonian input spike train
with $Fn% spikes at times$tn

( f )%, cf. Appendix A 4 in@48#.
The dependence ofvm on the input spike times can b

found in Eq. ~3!. Substitutingymn(t2tn
( f ))5b Jmn e(t2tn

( f )

2Dmn) we find from Eq.~77!,

pF„vm~ t !…5n0 )
n51

N

)
f 51

Fn

exp@ymn~ t2tn
( f ))#

and, thus,

E
VF1•••FN

dm pF„vm~ t !…

5n0 expF2NE
2`

t

ds pin~s!G )
n51

N
1

Fn!

3S E
2`

t

ds pin~s!eymn(t2s)D Fn

.

Taking advantage of Eq.~81! we end up with

^pF„vm~ t !…&5n0 expH (
n51

N E
2`

t

ds pin~s!@eymn(t2s)21#J
5n0 expH (

n51

N E
0

`

ds pin~ t2s2Dmn!

3@eb Jmne(s)21#J . ~82!

The calculation of the conditional mean can be execu
analogously. We find

^pF„vm~ t1r !…&un,t5^pF„vm~ t1r !…&eymn(r ). ~83!

The total derivativeD in Eq. ~79! is determined by its
partial derivatives with respect toJmn ,

]^pF„vm~ t !…&
]Jmn

5b^pF„vm~ t !…&

3E
0

`

dse~s! pin~ t2s2Dmn!e
bJmne(s)

~84!

and
05191
d

]^pF„vm~ t1r !…&un8,t

]Jmn
5b^pF„vm~ t1r !…&F E

0

`

dse~s!

3pin~ t1r 2s2Dmn!e
bJmne(s)

1dnn8e~r 2Dmn!G
3exp@bJmn8 e~r 2Dmn8!#. ~85!

The temporal averages of Eqs.~82!–~85! will turn out to be
simple, once we have found the correct fixed-point couplin
Jmn

fix .

C. Fixed point of the nonlinear dynamics

We will prove under very general conditions that Eq.~78!
has the fixed-point solutionJfix5Jfix (1S

^ 1T). We, there-
fore, insertJmn5Jfix into Eq. ~82! and due to

(
n

pin~ t2Dmn!5(
n

pin~ t2um /c2n Tp /N!

5p(
n

g~ t2um /c2n Tp /N!

5n(
nm

ĝmexp@2p im~ t2um /c

2n Tp /N!/Tp#

5n(
m

Ndm0ĝm5Nn,

the mean firing probability~82! is constant,

nout5^pF„vm~ t !…&5n0expH NnE
0

`

ds@ebJfixe(s)21#J .

~86!

Consequently, also the correlation function is independen
t,

Cmn~ t1r ,t !5pin~ t !^p F„vm~ t1r !…&unt

5noutn exp@bJfix e~r 2Dmn!#. ~87!

We insert Eqs.~86! and ~87! into Eq. ~5! and obtain from
NJfix50,

gª
2win

nE ds Weff~s;bJfix!1wout

5
nout

n
, ~88!

where the effective learning window isWeff(s;x)
ªW(s) exe(2s). In biological neural networks the ratiog
between the input and output rates is of the order of one. A
arbitrary value ofg.0 can be obtained by adjustingwin and
wout on the left-hand side of Eq.~88! for any given values of
n and bJfix. Moreover, since it will turn out in Sec. VII D
that the denominatorn*ds Weff(s;bJfix)1wout has to be
5-14
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negative in order to guarantee stabilization of the output r
g.0 again requireswin.0. We thus postulate a fixed pos
tive valueg and due to Eq.~86! we can write

ln~gn/n0!/~Nn!5E
0

`

ds@ebJfixe(s)21#5:c~bJfix!.

~89!

Herec is a monotonically increasing function ofbJfix with
c(0)50 and hence, for ln(gn/n0).0, there is a unique
fixed-point solutionbJfix.

D. Linearized dynamics

The discussion of the eigensystems of the linearized
namics~79! requires temporally averaged expressions of
partial derivatives in Eqs.~84! and ~85! at Jmn5Jfix. We,
therefore, introduce an effective spike response ke
eeff(s;x)ªe(s) exe(s) and find

]^pF„vm~ t !…&
]Jmn

5bnoutnêeff~0;bJfix!, ~90!

where êeff(v;x) is the Fourier transform ofeeff(s;x) with
respect to the first argument. The temporally averaged pa
derivative of the ensemble-averaged correlation functioncmn
from Eq. ~80! is

]Cmn8~ t1r ,t !

]Jmn
5b noutexp@bJfixe~r 2Dmn8!#

3Fdnn8n e~r 2Dmn!1E dseeff~s;bJfix!

3pin~ t1r 2s2Dmn!p
in~ t !G . ~91!

This yields a familiar form of the linearized dynamics~79!,

d

dt
i5(

mn
~em^ fn!3 (

m8n8
~11r dmm8!

3@k21dnn8k31Qnn8#im8n8 , ~92!

where the constantsk2 andk3 equal

k25hbnoutn e0
eff@Ŵ0

effn1wout#,

k35hbnoutnE dse~2s!Weff~s;bJfix!

and the Hebbian matrixQnn8 is

Qnn85hbnoutn2 (
m52`

`

uĝmu2 êm
effŴm

eff @12dm,0#

3exp@ ivp~Ln2Ln8!#.

Here we have introduced the abbreviationsŴm
eff

5Ŵeff(mvp ;bJfix) andêm
eff5 êeff(mvp ;bJfix). Proceeding as
05191
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in the case of the linear Poisson neuron we find that
temporal evolution of synaptic couplings, as described by
linear model, Eq.~12!, is equivalent to a linearization of a
nonlinear dynamics around the fixed-point solution. Mo
over, also the fixed-point couplings are equivalent.

In Eq. ~50! for a linear Poisson neuron, the spectrum
the latency dynamics is ruled byŴ ê. In contrast, the Heb-
bian matrixQnn8 in Eq. ~92! contains the factorsŴeffêeff. Its
spectrum is shown in Fig. 9 for different values ofbJfix. For
bJfix50 we obtain the same result as in the linear case,
Fig. 3. The reader may notice that the imaginary part ofŴê
in Fig. 3 is not small enough for biologically relevant fre
quencies to neglect a drifting of the nascent structure. Thi
to be expected, since the learning windowW is taken from
@8#, where map formation is investigated with nonline
cells. However, in the above discussion we have shown
nonlinearities change eigenvalues and, hence, for simulat
with linear neurons, other choices forW and e have to be
made in order to produce nondrifting maps.

An increase of the nonlinearitybJfix has two conse-
quences:~i! a smaller imaginary part so that the drifting te
dency of the structure decreases and~ii ! an increasing low-
pass edge of the spectrum so that the sensitivity of
learning rule to higher frequencies is enhanced, cf. Fig. 9
order to grasp how this works, we note that postsynap
firing is preferentially induced by presynaptic spikespreced-
ing output spikes by about the rise time ofe. In Fig. 10~a! we
have plotted the effective learning windowWeff(s) for
bJfix50.1, 0.25, and 0.5. The maximum ofWeff is shifted to
the left ~towards negatives) by the rise time ofe. The larger
the positive peak, the more effective is the synaptic struct
formation, since eigenvalues of the synaptic dynamics
provided by the Fourier transform ofQ @see Eq.~47!# which
is a convolution ofWeff with eeff, see Fig. 10~b!. The maxi-
mum ofQ is close tos50, and the magnitude of the peak
strongly affected by the nonlinearity. The more distinct t
peak ofQ at s50 the larger the enhancement of its real pa
in Fourier space. This enhancement of the real part comp
to the imaginary part as a function ofbJfix is summarized in

FIG. 9. Spectrum of temporal eigenvalues in dependence on
nonlinearitybJfix. Real parts are drawn as solid lines, dashed lin
are imaginary parts. The eigenvalues are normalized with respe
the maximum value of their real part.~a! bJfix50. The leading
eigenvalue is equivalent to that of the linear model neurons.~b!
bJfix51/3, ~c! bJfix52/3. As bJfix increases from~a! to ~c!, the
bandpass~for bJfix50) becomes a low pass, and the imagina
parts approach zero.
5-15
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Fig. 10~c!. We have plotted the ratio of the real and t
imaginary part of the leading eigenvalue as predicted by
present theory and as extracted from computer simulati
This result confirms that nonlinearities may stabilize t
Hebbian structure formation.

VIII. DISCUSSION

Synaptic plasticity plays an important role in the develo
ment and ongoing modification of neuronal maps@49#. Ear-
lier theories on map formation@50–54# due to synaptic plas
ticity deal with rate-based linear neuron models. In spite
their success in explaining, e.g., visual orientation ma
ocular dominance columns, and even spatiotemporal map
visual directional selectivity, they are not capable of expla
ing maps of stimulus features that are solely temporal.

Recently, spike-based learning rules have become m
and more prevalent@8,14–32#. The present work is an at
tempt to understand the formation of temporal-feature m
by means of a spike-timing dependent synaptic learning r
As a facinating example, we have studied maps of intera
time differences~ITDs! in the laminar nucleus of the bar
owl.

Synaptic learning at the level of a single laminar neur
can result in the development of ITD tuning. The best IT
where a neuron has its maximum response depends on
dom initial conditions. If we set up an array of neurons, t
best ITDs can be ordered systematically through presyna
nonspecific propagation of a local Hebbian learning along
axon, called axon-mediated spike-based learning~AMSL!,
viz., Eq. ~5!. We have modeled this presynaptic interacti
and have shown that the resulting learning equation sepa
into a temporal and a spatial part. The temporal part of

FIG. 10. Nonlinearities can stabilize structure formation.~a! The
effective learning windowWeff for three values ofbJfix50.1 ~solid
line!, 0.25 ~dashed!, and 0.5~dotted!. The largerbJfix, the more
pronounced is the positive peak ofWeff. ~b! The functionQ as the
convolution ofWeff andeeff has a maximum at abouts50. ~c! The
ratio of real and imaginary parts of the leading eigenvaluelT(1)
from Eq. ~47! for Tp51/3 ms ~solid line! is a monotonically in-
creasing function ofbJfix. Diamonds are obtained from comput
simulations with parameters taken from@8#. We have calculated the
contribution of the leading eigenvector to the synaptic struct
a1ªfT(21)•J(t)}exp@t lT(1)#. Real and imaginary parts of th
leading eigenvalue are computed as a linear fit to the amplit
lnua1(t)u5t Re$lT(1)%1const and the phase arg@a1(t)#
5t Im$lT(1)%1const of the synaptic structure, respectively. F
have been performed at times before the amplitude has rea
twice its initial value.
05191
e
s.

-

f
s,
of
-

re

s
e.
al

n

an-

tic
n

tes
e

learning equation represents the dynamics of delay selec
at a single neuron.

The spectrum of temporal eigenvalues shows that
learning rule acts as a low-pass filter, causing the evolu
of higher-order harmonics of the weight structure to
slower than the increase of the principal harmonic. Sim
results have been found in@19#. The spatial part of the learn
ing equation mirrors the presynaptic interaction. Synchro
zation of the individual neurons’ best ITDs needs a lon
range presynaptic interaction.

If the Fourier-transformed coupling matrixb̃l as given by
Eq. ~42! has the propertyb̃0'b̃61, for instance, because of
spatially restricted interaction, then synaptic efficacies a
with spatially oscillating strengths. Thus, axonally mediat
coordination of synaptic strengthening may break down
smaller distances, which leads to a patchy pattern of affe
innervation and, thus, to a representation of stimulus div
sity along the direction of arborization. We note that in t
case of the Jeffress map, diversity is a consequence of
arrangement of laminar neurons along antiparallel axons
a Tp-periodic tuning of their delays~Fig. 6!.

The quality of the temporal-feature map has been sho
to increase with the magnituder.0 of the presynaptic in-
teraction along the axon. Because the spatial eigenva
scale withrM and the numberM of presynaptically coupled
neurons might be quite high, even small values ofr&M 21

suffice for map formation. This may be the reason for w
there are only a few papers@33–37# experimentally verifying
presynaptic propagation of synaptic learning. There is als
computational reason for a smallr. Presynaptic propagation
of synaptic learning supports map formation as long asr is
small enough to guarantee the validity of the temporally a
ensemble-averaged mean-field learning equations~5! and
~6!. Both are violated, if the inherent noise of the stochas
processes gets too big. Sources of noise are the shot noi
spike input and output and the temporal jitter of the stoch
tic input process. Each synaptic weight, therefore, perform
random walk around the mean trajectory. If its standard
viation approaches the same order of magnitude as the m
the mean-field description breaks down. We found that
presynaptic interaction amplifies noise because fluctuat
of synaptic weights are propagated to neighboring neuro
We have obtained an estimate of the order of magnitude
the axonal couplingr ~Sec. VI!, where the standard devia
tion is small enough to keep the mean-field assumption
tact. As a consequence, the exact value ofr is not critical to
map formation.

Most of our calculations have been performed using
~linear! Poisson neuron. Real neurons are neither Poisso
nor linear. We have, therefore, shown that introducing n
linearity into the Poissonian dynamics leads to an alm
identical learning equation~92! and very similar behavior of
the synaptic dynamics, see also@8#. Furthermore, map for-
mation canbenefitfrom the nonlinearity, which, in our case
tends both to inhibit drifting of the synaptic structure and
increase the temporal precision of the learning rule. In or
to discuss stabilization of the output rate in an even m
general case~cf. Sec. IV C 1!, it has been shown elsewher
@25# that nonlinear threshold dynamics and also refracto

e

e

ed
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ness yield similar learning equations.
For map formation, there are various synaptic interact

mechanisms, such as recurrent synaptic coupling@51–54#,
gap junctions, and diffusing messengers. Trying to exp
temporalmap formation by means of these mechanisms,
have to bear in mind that the difference between best ITD
neighboring cells in the laminar nucleus and in our mode
less than 10ms. Then the abovementioned alternative int
action mechanisms are unsuitable to achieve such an
map. Gap junctions, though they cannot be ruled out
young animals, have time constants of about the memb
time constant~'100 ms!. Extracellular diffusion is spatially
isotropic and, therefore, cannot produce diversity. Recur
synaptic coupling, besides its nonexistence in the lam
nucleus, is at least as slow as 100ms, a drawback that also
applies to the time scale of population responses@55#. In
short, the temporal precision of ITD tuning at single neuro
is a result of the local spike-based Hebbian learning ru
whereas the even higher temporal precision of the map,
the gradient of best ITDs, is warranted by the axonal top
raphy and the presynaptic nonspecific propagation of lo
learning.

We note that, although our learning rule is capable
forming structures that suffice for temporal information pr
cessing in a submillisecond range, the actual weight chan
induced by temporally precise interactions between pres
aptic and postsynaptic activity, may occur at a time scale
minutes. The time scale of structure formation depends
f

o

n
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the learning parameterh, which, e.g., in computer simula
tions @8# is supposed to be of the order of 1024. In reality h
may even be smaller.

In summary, we suggest that presynaptic unspec
propagation of synaptic learning~AMSL! is a key mecha-
nism to the formation of maps whenever there is a tempo
aspect. The simple reason behind this suggestion is that
poral correlations of input activity are best preserved alo
the afferent axons.
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APPENDIX: CALCULATION OF THE VARIANCE

To estimate the effect of shot noise due to spike trains,
calculate the variance of a single synaptic weig
Var(Jmn)(t)ª^Jmn

2 &(t)2^Jmn&
2(t)5^@Jmn(t)2Jmn(0)#2&

2^Jmn(t)2Jmn(0)&2, at the beginning of learning, i.e., whe
all strengthsJmn are randomly distributed around the fixe
point valueJfix. Here ^•••& denotes the ensemble avera
addressing the stochastic nature of both the input and
output spike trainsS(t). Referring to the stochastic differen
tial equation~73!, we find the variance to be
Var~Jmn!~ t !5h2 (
m8m9

@dmm81r#@dmm91r#H ~win!2E
0

t

dt8E
0

t

dt9@^Sn~ t8!Sn~ t9!&2n2#

12winwoutE
0

t

dt8E
0

t

dt9@^Sn~ t8!Sm8~ t9!&2n nout#1~wout!2E
0

t

dt8E
0

t

dt9@^Sm8~ t8!Sm9~ t9!&2~nout!2#

12winE
0

t

dt8E
0

t

dt9E
2`

`

ds W~s!@^Sn~ t8!Sn~ t91s2Dm8n!Sm8~ t9!&2n2nout#

12woutE
0

t

dt8E
0

t

dt9E
2`

`

ds W~s!@^Sn~ t81s2Dm8n!Sm8~ t8!Sm9~ t9!&2~nout!2n#

1E
0

t

dt8E
0

t

dt9E
2`

`

ds8 W~s8!E
2`

`

ds9 W~s9!@^Sn~ t81s82Dm8n!Sn~ t91s92Dm9n!

3Sm8~ t8!Sm9~ t9!&2n2~nout!2#J . ~A1!
bil-
Here we assumed the output ratenout to be independent o
the postsynaptic locationm, which we will show to be a
good approximation for randomly distributed weights, pr
vided the number of input linesN is very large.

Let us now perform the six ensemble averages in Eq.~A1!
step by step by recursively applying the definitio
of the conditional probability, Prob$ ø i 51

I Bi%
-

5Prob$ B1% Prob$ B2uB1%•••Prob$ BI uø i 51
I 21Bi%, where

Prob$ Bi uBj% means Prob$Bi under conditionBj%. Since we
are dealing with Poisson processes, the conditional proba
ity densities can be computed according to@17#, Appendix A.

~i! ^Sn(t8)Sn(t9)&5pin(t8)@pin(t9)1d(t82t9)#. In addi-
tion, if we assumet@Tp , we obtain t21*0

t dt8pin(t8)'n
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and, therefore, the first term inside the curly brackets of
~A1! equals (win)2n t.

~ii ! ^Sn(t8)Sm8(t9)&5pin(t8)lim
dt→0

@dt21Prob$ m8 fires

in @ t9,t91dt) if n fires att8%]. Applying expansion~2! to the
conditional firing probability, we find

^Sn~ t8!Sm8~ t9!&5pin~ t8!Fb (0)1b (1)(
n

Jm8n

3E ds8e~s8!pin~ t92s82Dm8n!

1b (1) Jn e~ t92t82Dmn!G
5:pin~ t8!@pm8

out
~ t9!1O~1/N!#.

The last term of the first equality isO(1/N) as compared to
the summation over allN synapses. The output intensi
pm

out(t) can be calculated explicitly if we plug in the Fourie
series of the periodic input processpin5p g introduced in
Sec. II D 1,

pm
out~ t !5b (0)1b (1) n(

m
ĝm êm(

n
Jmn

3exp@ imvp~ t2Dmn!#.

We consider the system to be in the initial state where s
aptic weights are randomly distributed aroundJfix. We, there-
fore, apply the central limit theorem to(nJmn5NJfix @1
1O(1/AN)#, and due to(neimvpLn'Ndm,0, we obtain

pm
out~ t !5b (0)1b (1)nNJfix5:nout. ~A2!

This also justifies the above assumption of the output
being independent of the spatial positionm. We thus end up
with

^Sn~ t8! Sm8~ t9!&5pin~ t8!nout1O~1/AN!.

The second term on the right of Eq.~A1! is, therefore, of
orderO(1/AN).

~iii ! ^Sm8(t8)Sm9(t9)&5pout(t8)@pout(t9)1d(t8
2t9)dm8m9#. With Eq. ~A2!, the third term, therefore, equa
(wout)2noutdm8m9t.

~iv! ^Sn(t8)Sn(t91s2Dm8n)Sm8(t9)&5pin(t8)$@pin(t9
1s2Dm8n)1d(t92t81s2Dm8n)#@pm8

out(t9)1O(1/N)#%.
Equation~A2! and both time integrals yield the fourth term
2 winn noutŴ(0)t. Here we assumed the integration timet to
be much larger than the width of the learning windowW and
the typical values ofDmn .

~v!

^Sn~ t81s2Dm8n!Sm8~ t8!Sm9~ t9!&

5pin~ t81s2Dm8n!$@pm8
out

~ t8!1O~1/N!#

3@pm9
out

~ t9!1O~1/N!1dm8m9d~ t82t9!#%.
05191
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Applying again Eq.~A2! we find that both temporal integra
tions are straightforward. So we write the fifth ter
2woutn noutŴ(0)dm8m9t.

~vi!

^Sn~ t81s82Dm8n!Sn~ t91s92Dm9n!Sm8~ t8!Sm9~ t9!&

5pin~ t81s82Dm8n!@pin~ t91s92Dm9n!1d~ t82t9

1s82s91$um92um8%/c!#@pm8
out

~ t8!1O~1/N!#

3@pm9
out

~ t9!1O~1/N!1dm8m9d~ t82t9!#.

We split up the above expression into four parts, ap
Eq. ~A2!, and insert it into Eq.~A1!. We then end up with
four integrals over time~a!–~d!,

~a!

~nout!2E
0

t

dt8E
0

t

dt9pin~ t81s82Dm8n!pin~ t91s91Dm9n!

5~nout!2n2 t2.

~b!

~nout!2E
0

t

dt8E
0

t

dt9 pin~ t81s82Dm8n!d~ t82t91s82s9

1@um92um8#/c!5~nout!2n t.

~c!

noutdm8m9E
0

t

dt8E
0

t

dt9 pin~ t81s82Dm8n!pin~ t91s9

1Dm9n!d~ t82t9!

5noutdm8m9E
0

t

dt8 pin~ t81s82Dm8n!

3pin~ t81s92Dm9n!

5noutdm8m9 n2 (
m m8

ĝmĝm8

3E
0

t

dt8exp$ ivp@m~ t81s82Dm8n!

1m8~ t81s92Dm9n!#%

5noutn2 t(
m

uĝmu2 exp@ imvp~s82s9!#dm8m9 .

Here we have exploited*0
t dt8 eimvpt85t dm 0 for t@Tp .

~d!

noutdm8m9E
0

t

dt8E
0

t

dt9 pin~ t81s82Dm8n!

3d~s82s8!d~ t82t9!

5noutn t d~s82s9!dm8m9 .
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Executing both integrals over the learning window (s8
and s9! yields the sixth term of Eq. ~A1!,
tnoutn$Ŵ(0)2@nout1n#1dm8m9@n(muŴmu2uĝmu2
1*ds W(s)2#%.

Adding ~i!–~vi! leads to a much simpler expression f
Eq. ~A1!,

Var~Jmn!5t (
m8m9

@D11dm8m9D2#@dmm81r#@dmm91r#,

~A3!

where

D15h2@~win!2n12 winnnoutŴ~0!1n~nout!2Ŵ~0!2#,
g

d
f
.

s

n

n

.

.

e

a-
)
-D

v.

G

05191
D25h2F ~wout!2n12 woutnnoutŴ~0!1n2nout(
m

uĝmu2uŴmu2

1nnoutE ds W~s!2G .
The double sum in Eq.~A3! then yields

Var~Jmn!~ t !5t$@11rM #2D11@112r1r2M #D2%,
~A4!

as announced in Eq.~74!.
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