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How spiking neurons give rise to a temporal-feature map: From synaptic plasticity
to axonal selection
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A temporal-feature map is a topographic neuronal representation of temporal attributes of phenomena or
objects that occur in the outside world. We explain the evolution of such maps by means of a spike-based
Hebbian learning rule in conjunction with a presynaptically unspecific contribution in that, if a synapse
changes, then all other synapses connected to the same axon change by a small fraction as well. The learning
equation is solved for the case of an array of Poisson neurons. We discuss the evolution of a temporal-feature
map and the synchronization of the single cells’ synaptic structures, in dependence upon the strength of
presynaptic unspecific learning. We also give an upper bound for the magnitude of the presynaptic interaction
by estimating its impact on the noise level of synaptic growth. Finally, we compare the results with those
obtained from a learning equation for nonlinear neurons and show that synaptic structure formation may profit
from the nonlinearity.
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[. INTRODUCTION For neurons to form a map, i.e., an in some sense ordered
arrangement of their best ITD, they need an interaction be-
Nerve cells that are tuned temporalfeatures of a stimu- tween each other. Here we analyze a map-formation mecha-
lus have been found in a number of auditory brainstem nunism [8] and show analytically how spike-based Hebbian
clei, where neuronal activity conserves the temporal structurarning[14—32 in conjunction with “axon-mediated spike-
of a sound stimulus to a certain degfde-4]. A well-known  based learning{33-37 leads to map formation. This is the
example of a temporal feature of a sound stimulus is thdirst explicit example of a process leading to a temporal-
so-called interaural time differend&TD), i.e., the difference feature map. If we identify an ITD with the azimuthal posi-

in the arrival time of a sound between both ears. The ITD idion of the acoustic stimulus, the map is an orderly represen-

a measure of the spatial position of a sound source relative ﬁ?t'lon SOf thﬁ OWI.S fpgt'al et?]wronrtr;]ent. tical f K that
the head, and in the brain of many animals neurons Wm?s urs],edet% de\;vsriltl)qerg rl:;eticelgqs?icif m|r51l tll?lz |;§1T13Vrvﬁfjc|ejs
specific ITD tuning are quite common. ITD-tuned neurons, ynaptic p y ‘

are characterized by a best ITD at which their firing rate isWe define the Poisson neuron, explain the dynamics govern-

maximal.Moreover, ITD-sensitive neurons have been found . )
input from right ear

how maps of merely temporal features can arise was an open H] d }
problem until now. In particular, it was unclear how preci- . Il
s?on at a time scgle of l(ps can be aphieved, because pre- HH‘ — best-ITD gradient
viously analyzed interaction mechanisms are too slow. Here input from left ear
we present a comprehensive theoretical analysis of a mecha- . ' )
nism[8] that allows map formation as it occurs in the lami- FIG. 1. Sketch of the neurgqal anatomy in the_ barn owl’s lami-
nar nucleus of the barn owl, the first stage of the ascendingar nucleus[5]. Neuronal activity from one auditory frequency
auditory pathway receiving input frofoth ears. hannel is conv_eye_dsmall arrow$ by phase-locked sp_ike trains in
The barn owl is a nocturnal predator, able to catch mice irfxon bundlegthin lines that come fr.om Fhe. left and right ear, run
. . - 1[_n parallel(to the dorsoventral direction, indicated by the long hori-
complete darkness. Its resolution of the azimuthal position of htal arrow, and contact neurondarge gray spherasthrough
a sound stimulus is 2° comparable to that of humans. But i '

h he b 's di b b napses(small white bally. Measuring firing rates of neurons
contrast to humans, the barn owl's distance between bot long this direction, one finds that the neuronal site where the firing

ears is only 5 cm so that the azimuthal localization task ig4te is maximal varies continuously with the azimuthal location of
much more difficult since the interaural time differences arge stimulus. Neurons are taken to be equidistant @jthIn order

the only relevant cuélO,l]]._The lack of physical distance o preserve the temporal structure of sound in the firing patterns of
between a barn owl's ears is compensated by a higher tenge afferent axons, temporal dispersion among the hundreds of ax-
poral precision of phase locking of about 48 along the ons has to be small. It has been shown that in the young animal,
auditory pathway up to the laminar nuclei&12,13. The  temporal dispersion is high, whereas in the adult owl, neuronal
best ITD of laminar neurons gradually changes along a speactivity arrives at the laminar neurons temporally highly correlated
cific direction within the laminar nucled$], cf. Fig. 1. [6].

to be spatially ordered according to their best ITD in at least du,  axonal delay lines —e— HH
two specieg5,7].This is an example of a temporal-feature ———
map. In contrast to maps of spatiotemporal features, which .HH] H]HI—HI--H}- +"‘.
are, in principle, well understoof#2], the explanation of laminar | Qcc E ‘"" N !
nucleus | !
2R --ﬂ.r--hl,,--ﬂﬂ---m
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ing synaptic modifications, and show how to adapt it to bio-
logical reality. We formulate a linear differential equation for
the time evolution of the synaptic weights. Its solution is
presented in Secs. Il and IV. A quantitative measure of a
map’s quality is proposed in Sec. V. In Sec. VI we then
discuss the amplification of spike noise by unspecific axonal
learning. Finally, we show in Sec. VIl that nonlinearities do
not modify the major behavior of our model. To this end we
prove that there exists a unique fixed point. Linearizing the
dynamics about the fixed point, we find that for generic ini-
tial conditions the synaptic efficacies are first attracted to-
wards it before the system evolves into the direction of the
eigenvector whose eigenvalue has the largest positive real
part.

output neuron m

Il. THE MODEL input processes 1, ..., N

The present section gives a mathematical description of a FIG. 2. Synaptic model. Each &f synapses connecting to out-
biological system that exhibits the formation of an ITD map.put neuronm is described by a single variahlg,,, which weights
We extend the learning equation for a single neurorthe linearly superimposed spike response kera¢tsat are retarded
[17,24,29 to an equation describing the development of syn-by the axonal transmission deldy,,. The sum of responses yields
aptic couplings in a network of neurons. the postsynaptic membrane potential as it is described by3tq.

A. The Poisson neuron

=2 Jmn et—t—A, ). 3)

For simplicity, the analysis of the dynamics of synaptic " n=1 ;M
transmission is at first performed by means of a linear sto- "
chastic neuron model, the Poisson neufd#,24]. We will
show in Sec. VII that taking into account nonlinearities The second sum in Ed3) is meant to run over all firing
yields almost identical results. timest{’<t of neuronn.
Given the membrane potentia(t) of the linear Poisson

neuron at time, its firing probability is defined to be B. Homosynaptic Hebbian learning

- Prol{neuron fires in[t,t+dt)} ), O The synaptic weighf,,,,, is assumed to change in depen-
50 ot =Pev(l), dence upon the timing of presynaptic and postsynaptic
spikes. As a starting point for the subsequent description of a

wherepg is alinear function
pe(v) =B+ My, 2)

B© and B being positive constants. The occurrence of
more than one spike in a time interval of lengthis o(ét).
Disjoint intervals being independent, the model is an inho-
mogeneous Poisson procg&4,38.

To obtain an expression for the membrane potential, we
use a simple model of synaptic transmission where a synapse ”:_;
is described by only a single parametgy, that weightens <w
the excitatory postsynaptic potentiaSPSP$induced by the
nth input line (1I=n=<N) to the neurorm (1=m=<M). It is
called synaptic weight or efficacy. Let us assume thatthe
spike at neurom occurs at timet{" . After an axonal trans-
mission delayA,, from neuronn to neuronm, the spike
evokes an EPSP,,.e(t—t{"—A ), see Fig. 2. We assume
the response kernel (cf. Fig. 3 to be normalized so that FIG. 3. Generic choice of the learning winddw and the re-
fdse(s)=1, causal, i.e..e(s)=0 for s<0, and positive sponse kernet (upper panels The convolution ofV ande, as they
meaning simplye(s)=0 for all s. The linear superposition of have been used i8], acts as a bandpass filter, which is reflected by
EPSPs evoked at thmth neuron by a set ol presynaptic  the real and imaginary parts of the Fourier transfoitw) e(w)
cells yields the postsynaptic membrane potential (lower panels

Re{W(w) €(
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synaptic weight's dynamics, we use a generalization of 48,9] it has been shown that synaptic changes propagating

local Hebbian rule for one postsynaptic cedl15,17,25. along axons are necessary for the evolution of a map of
An input spike arriving at synapseof neuronm changes interaural time differences in the barn owl’s laminar nucleus.
the weightJ,,,, by a constant amouny w", where 7 is a The presynaptic spread of weight modifications is imple-

small, positive scaling factor. Similarly, each output spike ofmented in a way that every local alteratiahJ(,,/dt) oca Of

neuronm results in a weight changew®" of all synapses of a synaptic weight in Eq(5) is propagated to all other syn-

that neuron. Pairs of input and output spikes at tit\8sand ~ apses at the same axanThis yields the learning equation

t{ respectively, lead to a weight chz}ng;]aW(tg)—tg)), g g

whereW is called the “learning window{15]. —]. = (8 + pb /)<_J , ) (6)
For Poissonian input spike trains, it is shown[1¥] that de ™" > mm' T POmm | g “m'n

the alterations ofl,, according to the above procedure can

be expressed as a differential equation solely depending Ofjhere 5,,,, denotes the Kronecker delta. The axonal cou-
the time averagessee below of ensemble-averaged input pling matrix pb,,,y also accounts for the spatial range of the
and output firing rates;; and vp," (defined in Sec. 1D}, presynaptic interaction. The positive scaling fagiodeter-
and the time-averaged correlation function between presymines the overall strength of the interaction between neu-
aptic spikes from neuron and postsynaptic spikes at neuron rons. We note thab,,.;~1 for all m and assumé
m, =0 for all m, m’. Below we will often setb,,,y =1 for all

m#m’.

m’ eaxon n local

t
Con(t+r,t)=7"1 dt’ lim (6t) 2
=T a0 D. Biological constraints
X Prooutput cell m fires in[t" +r,t"+r The solution to Eq(6) depends strongly on the topology
. . o of the network as well as on the statistics of the presynaptic
*4t) andinputcelin fires in[t",t"+ 5t)}. input activity. Specifying the axonal coupling mati,y
(4) and the input process", in order to mimic the anatomy and
) ) physiology of the laminar nucleus of the barn owl, provides
The dynamical equation froffi7] then reads us with a noteworthy simple example of temporal map for-

mation.
d in_in out, ou
&Jmn | |:77 Wiy (t—=App) +W th(t)

oca

1. Poissonian input

" According to the frequency decomposition in the ear, the
+f ds Ws)Cpn(t,t+s—A,)|. (5)  barn owl's auditory brainstem is tonotopically organized.
- Neurons, therefore, belong to a specific frequency layer and
) . , carry spike trains phase locked to the acoustic input within
Thls learning rule can'account for synaptic structure formaspe respective frequency band. We intend to model map for-
tion at the level of a single neuron. _ _ mation within one isofrequency layer. We, therefore, suppose
_The so-called learning windoW is a function of the time  hat 5| afferent axons are carrying similar temporal informa-
difference between a presynaptic and postsynaptic Spikgon in a way that spikes ai=100 presynaptic neurons are
[15]. One can define its temporal widi as the interval of  yenerated by identical Poisson processes with intensity
time differences, whereW(_s) is .not.negllg|bly sn_1a||. !t can  pin(t). Presynaptic neurons are assumed to be statistically
be shown[17] that Eq.(5) is valid, if the averaging im&  j,qependent. Axons to postsynaptic neurons may have differ-
greatly exceeds/V. Furthermore, the scaling factay>0  gnt delays. Therefore spikes from the presynaptic nearon
should be small in the sense that the alteration of the efficacy,rive at the postsynaptic neuron with delay A, i.e.

on the averaging time scalgis far below the efficacyl,, they are generated by means of the Poisson intepdi(y
itself. As a result, the upper limit of is the typical time —An).

scale of the dynamics of synaptic weights. . We model phase-locked afferent activity by an inhomoge-
. In addition to[17], we have .|ncluded the axonal transmis- yeous  Poisson process with periodical intensfil(t)
sion delaysA ,, that shift the time-averaged rat' and the =pg(t), where g=0 is a T,-periodic function with

correlation functionC,,,. The shift Ofvir? can be neglected prdrg(r)z 1. The parametep= vT, is adjusting the pro-
(see Sec. IID L The shift in the second argument of the cgss to a mean firing rate P

gglrrg:“c;grf?enrit'%Télh;ge\%rr’m\’:tl:(;gm out to be the essen- We have assumed that the averaging tithgreatly ex-
P P P ' ceedsT,. As a result, temporal averages are translationally
_ . _ invariant in time. The time-averaged firing rate"(t)
C. Axon-mediated spike-based learning =Em(t)=T_1fLTdt’pi“(t’)=v is constant and identical
In order to explain map formation we have to take intofor all input cells. Here, and elsewhere, an overbar denotes a
account an interaction between synapses of different neurorisne average ove?. The time-averaged correlation function
that coordinates the development of synaptic weights acrodsetween input spike trains at synapseandn’ (a detailed
the postsynaptic indem. By means of computer simulations deduction can be found ifl7], Appendix A),
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output population 3. Distance-dependent interaction
.. M

m =1

We further assume that the coupling mathy,,, only
depends on the spatial distardigm—m’| of the postsynap-
tic neurong33-34. In other words, the presynaptic interac-
tion is described through a symmetric and translationally in-
variant linear operator.

E. Linear learning equation

To explicitly write down a dynamics for the synaptic
weights, one has to specify expressions for the time-averaged

FIG. 4. Feed-forward topology input cells projected ontd firing rate y%“‘(t) and the time-averaged correlathn fun_ctlon
output cells. The axonal conduction latenciés (n=1, ..., N)  Cmn(t,t') in Eq. (5). Both depend on the synaptic weights
between theN input cells and the first output unit(=1) are dis- that may change during learning. For Poisson neurons de-
tributed over a temporal range that is at least as broad as the peri§§fibed by Eq(2), we obtain the output rate
T, of the input process. As a constant axonal conduction velacity N
is assumed, the spatial distangg=(m—1) d, between thenth
and the first output neuron defines the toutal axonal defay, V%Ut(t):B(O)WL'B(l)V;l Jmnn(1) (19
=A,+(m—1)d,/c between input neuron and output neurom.

and the correlation functiofil7]
Co (1, 0)=p" (1)) + ¥ Sy St —t), (7

N
Cmn(t',1) :ﬂ(O)V+:8(1) 2 I

is of the formC!" (t',t)=CI" (t'—t). This can be shown, n’=1

nn’
if the T,-periodic functiong is represented by a Fourier o n o

series.  Defining wy=27/T,, we wite g(t) X fo dse(s)Cpp(t' =s=Apy ). (1D)
=T,'S,0, expluwyt) with Fourier coefficients g,

= Jopdr g(r)exp(—iuw,7). Applying the Wiener-Khintchin We insert Eqs(7), (10), and(11) as well as the learning
theorem[38], we then find an expression fm in equathn(5) |_nt0 Eq.(6) and obtain a linear dynamics for the
Eq. (7) in terms of a Fourier series, synaptic weights,

d
S T = Smny T+ ,

pR(t)PM(D =12 X |g,l2exd 2mip(t—t)/Ty]. (8) e’ %‘( e £ D)
Pt M M pd-

N
. X|kit+ > (Kp+ Sanka+ Qnn)dmns |- (12)
As a consequence, the temporal average on the right-hand n'=1
side of Eq.7) is a function oft —t" only, which considerably
simplifies the following analysis. The constantk, k,, andk; are defined to be
2. Axonal topology ky= 7{ BO[WOU+W(0) v]+wW"p},
Within the laminar nucleus, axons run in parallel and con- " Ut A
tact postsynaptic cells. The network topology addressing this ko=n B v[W*+W(0) ],

issue is sketched in Fig. 4, which will be the basis of the

ensuing analysis. Each of thé axons is thought to contact and

all M output cells so that we can neglect the restrictioh

e axon n in Eq. (6) and sum over all the postsynaptic cells. ky= 77lgﬂ),,j ds Ws)e(—s), (13
In accordance with experimental d4fd, the axonal con-

duction velocityc within the laminar nucleus is taken to be

constant, cf. Fig. 4. The axonal delags, , are then unam- Where W(w)=[ds Ws)e '“® is the Fourier transform of
biguously defined by the learning window. We will neglect the; term in Eq.(12)

later because it is of ordeM ! compared tck, and Q. ,
andN has been assumed to be large. In B@), the tempo-

Amn=Ant+(m=1)dy/c, ©) ral structure of the input is hidden in
whereA , denotes the axonal latency between the input neu-
ron n and the first contacted output neurom=1). The Qnnr=7 | dsWs)q[s—(Aq=Ap)], (14)
spatial distance between output ceaifsand 1 is calledu,,
=(m—1)d,. where
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: : where fixed pointsdJ/dt=0) are defined by
a(r) ==B(1)f ds'e(s’)[p"(t=s") = v][p"(t+r)—v].

(15 L£I™=—] (20)

ande'“:=3;_(t£)¥/k!. The fixed pointd™ is unique if £ is
invertible. Otherwise Eq(19) has to be extended by contri-
butions from eigenspaces with eigenvalue 0 that grow poly-
nomially with t.
The coupling vectod and the inhomogeneity are both
% elements of an N1 X N)-dimensional linear spac®&. The
Q= E QMeXﬂ:iwa(An—Anf)] (16) operator/L is, therefore, an endomorphism over We sus-
== pend a more thorough specification & until Sec. 11l B
) = since all equidimensional linear spaces are isomorphic. Let
with coefficients us supposel is diagonalizable with eigenvalues and
. . eigenvectorsp, , which constitute a basis of the vector space
Q=1 BM?g,I°W,€,[1-68,0]. (17 R. Hence the deviation:=J(t=0)—J™ of the initial cou-

. A plings J(t=0) from the fixed point)™ can be written as a
HereW, ande, denote the Fourier transforms of the learn-linear combinationt=X, a, ¢, of these eigenfunctions. The
ing window W and the EPSP functios, taken at frequency time-dependent pare'“c of Eq. (19), therefore, reads
w=p w,, whereag, andQ, are coefficients of a Fourier =,€"a,¢, . The above consideration can also be general-
series. The linear driving forcé# for temporal structure ized to nondiagonalizable operators, but this will turn out to

L L, . be dispensable for our example.
formation is the power spectruth| of the input process Summarizing, solving the fixed-point equati¢®0) and
filtered through the learning window and the postsynaptic[he eigenvalue r,JrobIem
potential. Their temporal extent defines the bandpass perfor- '
mance of this filter. In Fig. 3 we show generic specimens of L=\ (22)
W and €, as they have been used[id], and their Fourier-

transformed convolutiolV e. Furthermore, it should be no- IS necessary and sufficient for analyzing the time course of
ticed thatQO vanishes. It will turn out tha@,, has, there- the linear synaptic dynamics. An explicit solution for the

fore, no effect on the average synaptic weight, see Seépecial case of .map.formation in the bqrn owl's Igminar
Y, C 1 ' nucleus will be given in Sec. IV. The remainder of this sec-

tion shows how the dynamics of weights of a single neuron

Typical values of the latencied., are assumed to be (also called the “temporal parj’can be separated from the
much smaller than the averaging tifiewhich makesQ,, : poral par P T
dynamics of map formation, i.e., the synchronization of all

dependent on a latency difference only, cf. Sec. Il D 1. Equaﬁeurons’ weight distributions across the arréispatial
tion (12) is fully specified so that we can proceed to analyz- art’) 9 P
ing its general structure and solution. P '

In the case of a periodic input densip)’(t)=p g(t) as in-
troduced in Sec. II D 1, applying E48) to Egs.(15) and
(14) leads to an expression @, in terms of a Fourier
series,

B. Spatiotemporal separability
Ill. SEPARABILITY OF THE LEARNING EQUATION

) ] ] ) ) We will show that both the linear operatdt and the
_ Equation(12) is an autonomous linear differential equa- jnhomogeneityj separate in spacém) and time ). We,
tion for the set of coupling strengthl,, (1=m=M,1<n  therefore, take the linear spa to be the direct-product
=<N) and hence its solution can be given explicitly. In this snacer=RM® RN and specify an isomorphisti that is to

section we show that the dynamics of the weights of a singl§ye ysed for embedding the set MFXN synaptic weights
neuron can be separated from the dynamics of map formay  jnio R,

tion. Before doing so in Sec. IV we briefly discuss the gen-
eral strategy for solving Eq12). 1. Embedding weights into tensor space

Let {e,;1<m=M} and{f,;1<n=<N} be a basis oRM
andRN, respectively. Consequentjg,,®f,} is a basis ofR.
Once the coupling vectal, the inhomogeneity, and the  If we introduce scalar products so that
linear operator” are identified, the differential equatigh2)

A. General structure and solution

reads Cn e = 6mm/ and fn' fn/ = (Snn/ , (22)

d we also obtain a scalar product on the tensor sgaceith

aJ=£J+j. (18  the property that

) . i ( ®f) r®f r): . r)f fr):5 1 Onny -

Th? general solution of Eq18) is given by Duhamel’s for- En®Tn) - (& @)= (€ &) (Tn-fn mmenn (23
mula

_ _ Our choice for the isomorphist is now as simple as it

J(t)=3™+e“[J(t=0) — I™], (199  can be,
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7: RMNR, The right-hand side of Eq34) is separable, as has to be the
left-hand side. This requirement can only be fulfilled if also
Mo N the fixed point)™ = 3™ % i separable. We then can read
HImn;I=m=M,1sn=<N}—>J= mzl nzl Jmr€m®Th, the spatial and temporal part separately so that we obtain two

independent fixed-point equations. With E§0) we find a

(24 spatial fixed-point equation
and thus L£636fx= 616 (35
i —
3= {(en®fn) -} ={Jmn}- (25 and with Eq.(31) a temporal one

The benefits of this transformation become clear after realiz- LTI = — 1T (36)

ing that both the operatof and the inhomogeneity are '

tensor products, whereJ® =3 3™ g andJ®*™ =3 J3¥™f  These equa-

S nx tions are unequivocal besides a constant multiplicative factor
L=L%) LT, (26)

a#0. Multiplying J*™ by « leads to a multiplication of
o J%™ by o~ 1. The position of the minus sign in Eq85) and
j=i%ej* @7 i i

' (36) is, therefore, arbitrary.

where the superscript indice® and ¥ denote spatial and

temporal components. The two parts of the linear operator )
read We now focus on the eigenvalue problg@l) for the

operatorL= £ °® £* from Eq.(26). If we insert a separable
ansatz for the eigenfunctions= ¢°® ¢* we obtain

3. Separable eigensystems

L= 2 (S Pbrrm) € (28
m L850 LG =\ %% 7. 37)
S kot S5 S ot v g s
while the two parts of the inhomogeneity can be written as LOP=\¢C, (38)
jS=,°18, (30) LEPp*=\"¢", (39)
T=k, 15, (31)  With the total eigenvalue. =\°\*. Let us suppose the ei-

genvalue problem&38) and(39) have been solved. Then the

with 15== e, and1¥=3f,. Then the action of onto the ~ ansatzé= ¢°® ¢ yields M XN eigenfunctions and hence
Coup”ng vector] is calculated as we have found the Complete e|gensystem of @q.)

IV. SPATIOTEMPORAL DELAY SELECTION
LI=2 I L)@ (L) (32
mn We separately solve the “spatial” and “temporal” parts of
: . . the differential equation33) as outlined in the preceding
In this way we obtain a fully separable version of Etg), section and discuss the biological relevance of the solutions.

d
aJ=j6®jT+(EG®£T)J. (33 A. Spatial solution

The solution of the spatial part of E¢33) is simple be-
We note that although this differential equation is fully sepa-cause the linear operatdr® as given by Eq(28) is a cyclic,
rable, its solution is generally not, i.el,,,#J5J does not  or circulant, matrix. We assume|<1, cf. Sec. VI. There-
factorize. Separable solutions occur if and only if the initialfore £ is invertible and has the unique fixed point in Eq.
values J,,(t=0) are separable. The next two paragraphg35),
demonstrate that a separable linear dynamics yields both a S xS
separable fixed point and separable eigensystems. 7= (40)

With equally spaced output cells and a translationally in-

] ) _ variant axonal couplingsee Sec. IID 8 £ is translation-
If we apply Eqgs.(26) and (27), the fixed-point equation g1y invariant as well. Translationally invariant, i.e., cyclic,

2. Separable fixed point

(20) yields operators are very common in quantum mechanics and solid
state physics and their spectral theory is completely under-
2 Jfix (L) (L,)=—]%j". (34) stood[39]. The eigenfunctiong®(1) of £ are plane waves
mn o A with wavelengthl e Z so that
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M =27a b C
i D
¢6(|):= E e277-|mI/Mem (41) 2
m=1 3 —
]
o
for 1=<I<M. The eigenvalues are g
o0
AS(1)=1+pby, (42 A (ms)
where FIG. 5. Structure formation at a single postsynaptic neukon.
M/2 =600 synapses with Gaussian distributed latendiggnean 1 ms,
B = 2 b e (27i/M)ml (43) width 0.3 mg are contacting output ceth. (a) Initially, the weights
! m=—“M/2+1 om Jmn (1=n=<N) are equally distributed with mean 0.9 and standard

deviation 0.01. The prominent contribution is yielded by the tem-
is the spatial Fourier transform of the coupling matrix. Thisporal eigenvectogp*(0) that describes the average weight, whereas
only holds exactly forM —c or periodic boundary condi- all other eigenspaces participate upto a small portionafter 15 s
tions, but as shown by LedermandQ], for finite M the  of learning, the prominent eigenspdck,=1/(3 kHz), horizontal
alignment of the spectrum df © remains unchanged. Since bar] is already noticeabléc) Temporal synaptic structure after 50 s.
we have assumed symmetric axonal coupli§(l) is sim-  Parameters are taken frof@].
ply a real number. We also note that the scalar product of the . ,
eigenvectors ispS(1)- ¢5(1')=M 3, _,., cf. Eq.(22). Becaus%)_nn, onI_y depends on the dlffergnwn , th_e_Op_

At this stage, two important aspects ought to be stresse@ator£ "~ is CVCQC- ;— he ne%d steps consist of examining the
First, in order to guarantee map formation, i.e., synchroniza€igensystemse-,A") of £* and calculating the fixed-point
tion of synaptic structures along the neuron array, we have tgolution of Eq.(36).
ensure that all synapses at a specific aragither grow or
decay, cf. Figs. 1 and 4. This means that synaptic modifica-
tions are to be associated with the axon indepather than The eigenvectors of * are plane waves,
with the postsynaptic indexm. The eigenvector¢®(0)
=2 €&n IS made up of equal contributions from all postsyn-
aptic cells =m=<M, and, thus, represents a homogenous
weight change along the axons. All other eigenvectors lead
to combined strengthening and weakening of the synaptifhe vectors ¢*(x) are normalized in such a way that
strengths at one axon and, hence, disturb the formation of ag*(.)- ¢ (u') = Ns" . where we define a modified
ITD map. Second, if we interpret an eigenvalue as the velo o
ity of growth of an eigenvector, Eq42) tells us that the
eigenvector¢®(0) exhibits significantly faster growth than

eigenvectors with #0, if pBOZ]. and|p5||<1 for#0. In
our example of the laminar nucleus of the barn owl we will

1. Temporal eigensystems

N
& ()=, f,e2™*N for O<spu<N—1. (46)
n=1

“Kronecker deltwlNW, to equal 1 foru=u’+ZN and 0 oth-
erwise. The eigenvectorg® can be defined for aljeZ
since p*(u)=¢*(n+N) and ¢*(— u) = ¢*(N— u).

To calculate the eigenvalues®(u) of eigenvectors
& (n), we exploitEnexp[ZTri(,u,—M')n/N]:Néfm,, apply

argue thaby~M, and, thusp~1/M is already large enough gqs (29), (45), and(46) to the eigenvalue proble89), and
for map formation. obtain

B. Temporal solution N () =N(K28, 0t k3/N+Q,), (47)

Handling£* as defined in Eq(29) is, in general, impos-
sible unless we specify the distribution of the latencles
We assume a uniform distribution of latencies in an interval
of lengthT,,

wherte,v::Eﬂ,QMﬁE’M,. From now onks/N will be ne-
Iglected, sinceN has been assumed to be large, see Sec.
IID 1.

Ap=nT,IN, (44) 2. Temporal fixed-point solution

. o o To calculate the temporal fixed point, we take a closer
which does not favor any phasepriori. Generality is not |50k at Eq. (36). We already know from Eq(46) that
restricted by introducing delays that only cover an interval of¢i(0): 1%. Thereforel® on the right-hand side of E¢36)
lengthT,, because the dynamical equations are strictly pejs an eigenvector of£® with eigenvalue A¥(0)=N(k

riodic, cf. Fig. 5. i int i
The definition of £% in Eq. (29) contains the matrix * Qo). cf. Eq. (47). Then the temporal fixed point is
Qv » Which acts as the driving force for structure formation < fix -k, .
as defined by Eqg14)—(17). We insert the latency distribu- J =m1 : (48)
tion (44) into Eq. (16) and obtain
. For a biologically reasonable choice \f and e with expo-
B - . , nentially decaying slopes as in Fig. 3, we can €gt=0
Qnn ”:E_oc Qu exp 2 w(n=n")/N]. “9 becauseQ,=0 [cf. Eq. (17)] and the coefficient®,, decay
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at a polynomial rate of at leagt™2 and thusQy=O(N"2). ™= —k, /(Nky). (53)
- . 2 _ 73 X
With parameters taken frof] we even findQy=O(N ") The fixed pointJ™ is a multiple of the eigenfunction

A prerequisite for structure formation is that synaptic ,s Ty N )
weights should neither all decay to zero nor increase to in-¢} e(s%)n?:jb rggzn:gsEqA E}Aég)é\t’ivvhécgi 'Zr?vﬁggl)f?ﬁet?‘r?nggtnie
finity, see also Fig. 1. Therefore stabilization of the zerothp y ) 9 9 ’

av i H ] H H
eigenvector$¥(0) due to a negative eigenvalug(0) is that J*¥ is asymptotically governed by the fixed point, viz.,

H av_ qfix fix i
necessary for structure formation. We will argue that thel'mtﬂoc‘] J7. ThereforeJ™ has to be positive so as to

growth of a synaptic structure is possible, if a few eigenvec-avoid vanishing of synaptic input. Equati¢s8) then implies

tors with u#0 have large positive eigenvalues. The follow- thatk; is restricted tgositivevalues. For a positivk; and a

ing section shows how both constraints can be achieved. negativek, in Eq.(13), the presynaptic contribution™ must
then be positive.

C. Synthesis of spatial and temporal solution .
y P P 2. Structure formation

The discussion of the general solutiti®) of an autono-
mous linear differential equation, e.g., Ed2), can be re-
duced to an analysis of the prominent directions of tempor
evolution, viz., the eigenspaces with largest eigenvalues,
all the other eigenvalues are significantly smal&t,41,42.
From Eqgs.(41) and (46) we find the product of spatial and
temporal eigenfunctions to be plane waves,

Synaptic strengths in the immature animal are assumed to

alpe uniformly distributed around a multiple 8% in Eq. (52);
gompare Fig. 5. This initial distribution strongly contributes
to the eigenspacep(0,0) with the negative real part of the
eigenvalue, whereas all contributions to eigenspaces with the
positive real part of the eigenvalue, i.e., all projections
&(—u,—1)-I™ are small, so that none of them has a head
&, )= P (1) start. The eigenspaces with the largest eigenvalues thus
dominate the dynamics. We are going to calculate its conse-
quences for the time course of the membrane potential and

:% En® fnex 2 (MM +np/N)] - (49) predict the capability of temporal processing in our model

network.
with eigenvalues given by Eq§2) and (47), As we have seen in the preceding section, temporal eigen-
_ values with positive real parts are restricted @
AL ) =N(DONF () =(1+pb))N(kz8,0+Q,). (500  =1,2,...N—1. For a sufficiently large interaction width

_ _ _ “along axons we find spatial eigenvalue$(0)>\S(1+0)
Let us first discuss the evolution of the average synaptlc:1+p5|, cf. Eq.(42). If, for instance, the interaction does

weight (=u=0). not depend on the spatial distance between synapsgs,
=1, we find\®(1)=1+pMé,,. The relevant eigenvalues
for structure formation are thus(O,u)=(1+pM)Q,, cf.
The average synaptic weight is defined as Eq. (50). The leading eigenfunctiogp(0,.) can now be in-
terpreted ag a synchronization of the phases of latency eigen-
av. _ -1 _ ~17.(1651% functions ¢p* among theM output neurons. We have, there-
JH=(NM) %‘1 Imo=(NM)7J- (17015, (51) fore, arrived at aselection of axongather than a selection of
synapses.
where the second equality follows from Eq&3) and (24). Taking into account the bandpass property of our learning
Requiring the average weight to be stable and positive, welynamics, as mentioned in the discussion of Edf) (see
obtain conditions for the parametdesandk, from Eq.(13).  also Fig. 3, it is likely that someu= " dominates the
Equation(49) shows thatl®® 1% in Eq. (51) equals¢®(0)  temporal eigenvalues. For sufficiently large input frequencies
® ¢*(0). Thetemporal evolution ol is, therefore, deter- wp=2m/T,, the optimal harmonic is the first ong"'=1.
mined by (0,0)=(1+ pbo) Nk, cf. Eq.(50). If the learning  Hence we expect the emerging structure to reflect the plane
dynamics is required to stabiliz#" to a finite value, then wave ¢(0,=1).
\(0,0) has to be negative.®(0)=1+ pb, is positive be- Traveling exc_itation wavedNVhat does_ the pror_ninent ei-
cause the elements of the axonal coupling mdix, in Eq. genve_ctor contribute to. the postsynap_t|c pofcen_tlal? The an-
(6) have been defined to be non-negative. This meanSWer i a plane-wave-like postsynaptic excitation traveling
AT(0)=N k, must benegative For a negativek, [see Eq. along the output array. As for the proof, we calculate the

(13)], either the integral over the learning windai(0) or :‘?grﬂt:[i\;eg/%ggti% é'l‘?i)car(]:n;:;?:bﬁ‘nfa?(tgqli()3) resulting
the postsynaptic contribution®, or both, have to be nega- T

1. Stabilization of the average weight

tive. _ fix . an 2 ; -1 _..(0)
t)=Nv[J™+ag.e.expf{Fiwy(t—Cc "u =
If we combine Eqs(40) and (48), we find the overall (o) (=N G161 @XP =1 wp( mi=w
fixed point +vWexg *iwy(t—c tuy)] (54)
Jix= gfix18g 1%, (52)  with constante(?9) andv ). The spatial wavelength, which
is the difference between two isophase lines, is, therefore,
with the average weight at the fixed point given by 2rcw, L
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3. Independent input populations Since only thek, term mixes up different population indices

Up to now, we have explored synaptic structure formation®N€ May suspect already at this stage, and in analogy to Sec.
with only one set of independent input procespéét). In IV C 1, that different populations do not interfere in structure
farmation.

the case of the laminar nucleus, however, there are two se i ) ,
of input populations representing the activity of the afferent Structure formationAll eigenspacesp(l, »), with u#0
remain unchanged as compared to those of the dynamics

fibers originating fromboth ears. Due to random variations '~ ,
of the spatial location of sound sources, these subpopulatioféth only one population. The ansatz
are assumed to be independent, see below.
To deduce the synaptic dynamics of the laminar nucleus o ;
(that is driven by two independent input populatipfr®m Al %) '_;1 En® fn X 2 (IM/M -+ un/N)
synaptic structure formation for one input population, as dis- (57
cussed above, we show thatndependent input populations,
denoted byx, with 1<x=<X, develop independent synaptic yields the eigenvameQ\(',M,X)=(1+PB|)(NXQM,X)- In
structures. other words, each populationcontributes to its own struc-
Two sets of input cells are defined to be independent, iture with its own driving forceQ,, « weighted with the re-
their spike trains are temporally uncorrelated on the timespective number of input cells, .
scale7. To be concrete, we require that, in extension to Eq. Fixed point and normalizatiorin analogy to Eq(48), the
(7), the time-averaged presynaptic correlation function readgemporal part of the inhomogeneify=—k;=}_,1; is an
eigenvector of£* and, with Qy,=0 (cf. Sec. IV B 2, we

Ci)?/x,n’n(t,'t)z V24 8, [ PP )pI() — 2] find the fixed point to be
+ U8Byt —1). 55 -k X
X' X¥n'n ( ) ( ) Jﬂx: < 1 16@2 13 (58)
x=1
This kind of correlation can be achieved, for example, by kZ);l Ny

random phase changes in periodically firing populations with
equal ratev. The periodsT, ,=2m/w, , Of the subpopula- Its ei lue i9.(0.0.0)= (14 oB) (koSN
tions do not have to be identical but must be significantly s eigenvalue i.(0,0, _)_( P 0)(_2 x! X')T'
In contrast to the single population casg; hasX—1

shorter then the averaging timfeThe typical time difference . h C .
between two phase changes, however, has to be of the san’ﬁ'@enveCtory_EX“YXf"'X with eigenvalue 0, defined by the

order of magnitude ag; so as to not destroy the temporal condltlonle\l_éYx:O. Sincel;- L= Ny, the vectorsy are
correlations within one population. orthogonal tg~ and, hence, do not influence the dynamics.
We are now dealing withX input populations. The
weightsJ.,,« of input line n, therefore, obtain a population
index x and, in analogy to Eq(14), we defineQ,, x by To see how a temporal-feature map can arise, we return to
using the attributes of input populatisnThese substitutions the example of a map of interaural time differen@dDs) in
again yield a spatiotemporally separable learning equation,the barn owl’s laminar nucleys,43]. Two sets of input lines
that correspond to the two ears are assumed to be indepen-
d dent as defined in Sec. IV C 3 but otherwise identical. The
ame: > (S + PPmy) two periodic input processes generate splke_ trains that are
m’ e axon phase locked to the acoustic stimulation of either of the two
ears. Auditory processing in the laminar nucleus is subdi-
x| ky+ 2 I xiKat S (K3Snm + Qunr 50} - vided into isofrequency layers, where the reciprocal of this
x'n’ frequency corresponds to the considered periodidity
(56) =2m/w,. The axons from both ears run along the array of
M output cells in opposite directions, interdigitate and, in
doing so, contact the laminar neurons, see also Fig. 1.
The sum ovek’ in Eq. (56) is obtained since all populations  After independent structure formation in both popula-

contribute to the postsynaptic potential. tions, the system faces two contrarily traveling excitation

The spatial component of the inhomogeneity and “neaKNaves,u',ﬁﬁ(t) anduﬂ?‘h‘(t) with c'ft=—c9ht cf. Eq. (54).

operator remain unchanged when compared to the equivaleftheir jinear superposition leads to a standing wave phenom-
equation for only one input populatiofLl2), whereas the enon,

temporal coordinates are embedded iatd_; RN« with N,
input lines in populatiorx. Then the temporal part of the (v'n‘iﬁ(t)Jrvﬂ?ht(t))
linear operator reads

4. Standing waves and temporal feature maps

=200+ 20™ cog wpup/c+P)cog wpt).  (59)

L, = E frr o [Kot 8yri(K3Snnt Qniny) ] The placesu™® of the interference maxima are then defined
Toanxt ' by the phase offse®b between both classes of input pro-
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a  sound source® b tween the cells. We deduce the order parameters from a
quantity called vector strength. The vector strength of a posi-
tive, T,-periodic function is definef45] to be the amplitude
left egr-~ right.ear of its first Fourier component divided by the Fourier compo-
i nent of order zero. This yields a quantification of the devel-
opment of the leading eigenfunctiap(0,=1).
The vector strength of weightd,,, of neuron m is

0 405 |= e 9P Mnd /2 1 dmnl - Then theaveragevector strength of
Uy (um) M cells is defined to be
FIG. 6. Map of interaural time differencéTD). (a) Schematic ) 2\ 12
drawing of the coincidence detector arreyray shaded disksas 1 M 2 e_'L"”A”Jmn
proposed by Jeffredd4]. Acoustic stimulation is delayed k) the vave— [ = 2 s, , (60)
spatial distance between the sound source and the (dashed M n=1 2 3
lines) and(ii) the physiological transduction from the ear to the cell ~ ~mn

(solid lines. After delay tuning, the theoretically predicted average

membrane potentialv(t)) is a standing wave across the laminar yyhich indicates the systems’ local order. We define the “ax-
nucleus with period lengtfi, c/2. Its phase offset is determined by onal weight” as the sum of all weights of some axon, e.g.

the interaural time difference. The azimuthal position of the sound2 I, for axon n. The axonal vector strength then is the
source in auditory space is thus mapped onto the positjprof memn : « ; "
maximal amplitude of the membrane potentidl® within the lami- vector strength of the *axonal weights,

nar nucleugthe brighter the disk, the higher the membrane poten-

tial amplitudg. (b) For comparison, we show the simulated ampli- 2 e—iprnJmn
tude of the membrane potentiéflots with error bars and the axon_ | MM

theoretical predictiofisolid line, see Eq(59)] for an ITD of 50 us VET= : (61)
and synaptic weights after 875 s of formal learning. The interaction 2 Jmn

strength in the simulation ig=0.7/30; the other parameter values mn
have been taken frofi8]. Each data point is obtained from a best fit
of the average time course of the neurons’ membrane potentials
Eqg. (59).

{f is as a measure of the systems’ global order.

B. Dynamics

cessesu™®=7cT,/2—cP/w,. We have thus obtained a  With the results from Sec. IV it is possible to analytically
place coderepresenting the time differenck/w, between  specify the time course of the above order parameters. The
both classes. The time difference is determined by the hardsums in Eqs(60) and(61) can be identified with projections
wired conduction delay between the auditory organ and thef the weight vector on eigenspaces of the linear operator
laminar cell, and by the azimuthal position of the soundf®. Due to Eq.(46) andJ,, = (e,®f,)-J from Eq.(25), we
source, i.e., the ITD; cf. Fig. 6 and4]. Since the conduc- find
tion delay is an anatomic constant for each neuron, we have
actually obtained a representation of the ITD in terms of the
positions of interference maxima in the laminar nucleus.
These interference maxima cannot be translated into firing
rate maxima with linear neurons, since the mean output ratExploiting the fact that the eigenvectogs'(u) in Eq. (46)
pOUt= gO)4 () Tefty gty — (04 B(124,(0) is indepen- and¢S(1) in Eq. (41) are a basis okN andRM, respectively,
dent of m. In Sec. VII, however, we show that nonlinear we can writeJ as a linear combination of eigenvectors
neurons lead to an identical synaptic structure and, thereforej(l, ) of the operatorZ,
to identical standing waves of the membrane potential. Be-
cause of the nonlinearity, these standing waves are then

En: e7i'upr"~]mn:[em® ¢T(_ﬂ)]"]' (62)

transformed into firing rates, i.e., an ITD map. J(t):% ay,(t) o(l,u),
V. ORDER PARAMETERS where the time course of the coefficients
We introduce two order parameters serving as quality 1
measures for the synaptic development in a single population &, (t)= o d(—1,— ) (1)
of input lines.
! > It 27 (Im/M + un/N
=—— exd —2i(Im n
A. Local and global order MN & mn()&XHL =2 #n/N)]
The “local” order parameter is to describe the average (63)

extent of delay selection at the single cells, and the “global”
one will indicate the synchronization of selected delays beis governed by the differential equation
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1 d and
A= o=d(—l,—p) =J
dt '* MN dt Vaxortt): ,yoet)\z(l-*-pM)' (69)
1
=ay,\(I, 1) = 808,00 (0,09, (64) vo:=laoy 0)/3%,
where we have usep= — £J™=X(0,01J™ ¢(0,0), cf. Eq. _ ) v
(52). As a result, they,,, evolve independently of each other, Y1i= |;|2¢o |22 (0)[*/(M=1)| /3™ (70

_ 1fi s _1fi e
ago(t) =™+ agy0) - I™], The initial valuesa,;(0) are reduced to the two numbeys

and y,. To estimate their order of magnitude, we calculate
expectation values. As initial conditions, we assuipg(0)
=J™+ &0, the &, being uncorrelated white noise with
mean zero and correlation function

a,(H)y=e"Mig (0) for (I,u)#(0,0. (65

The projection defined in Eq62) then yields

[%®¢T<—M>J-J=NZ e?mimMag, . (66) (Emnémnr) =28y S -

. ) With Egs.(49) and (25) we obtain the expectation value
If we assume the temporal evolution of the average weight to

be much faster than structure formation or, in other words, (|aj1(0)|2)=d?(MN).

the temporal eigenvalue@?7) comply with A*(0)<0 and

INT(0)[>NF(u°), then we are allowed to set the averageReplacing|a,,|? in Eq. (70) by (|a;;|?) we find
synaptic weigh{51) equal to the fixed point52). That is to

say, in terms of Eq(65), we substitutea, o= 8,,J™. Conse- Yo~ y1~d/(I™JMN). (72)
guently, the denominators of Eq$€0) and(61) are indepen-
dent ofm since, according to Eq$62) and (66), These approximations have been used for plotting the time

evolution of order parameters, viz., Eq§8) and (69), in
i . Fig. 7 for the set of parameters frof@]. A comparison be-
; Jmn= NEl e?mMMay=Nagy=NJI™. ®7  tween Figs. 7 and 8 shows that the theoretical predictions are
a reasonable approximation of the data obtained by numeri-
The numerator in Eq(60) can be calculated similarly if we cal simulations with the same set of parameters.
also usex,e2™MM=Mg,,
C. Optimal coupling

> [en® ¢S (—p)]- /2= MEI INay,|?, The global order is always below the local order since
m
axo 21—112
whereas the numerator in E@1) is obtained directly as vy =1+ w <1. (72
Vavg(t) e2th)\
‘% [en® ™ (— )] J‘ =[¢(0,—u)-J|=[MNag,(t)|. As t— o, the ratio of vector strengths in E€7.2) approaches
1 since bottp and\* are positive. So, if we wait sufficiently
Summarizing the above calculations we find long, we should gain a perfect globally ordered map. The
final quality of the map, therefore, seems to have only little
s N 172 i dependence upop. These considerations, however, only
VAYt) = EI: |ay1(0)e " J hold if the dynamics remains linear. For biological systems
this assumption is generally not fulfilled, as the resources
and available for synaptic modification are restricted. This re-
striction can be mimicked by introducing an upper bound for
VA1) = | ag,(0) e O1X] /X, the local order paramet&®'?. Once the boundary is reached

(at t=t?%>0) the whole dynamics is assumed to be fro-
For the sake of simplicity we assume the axonal couplingzen. The difference between local and global order at freez-
matrix (6) to beb,,,y=1 for all m,m’. Due to Eq.(42) this  ing time, however, has a strong dependence ypoef. Fig.
yields eigenvaluea (1,1)=A%(1)(1+pM8,p) and, withA® 7

=Rg\*(*1)], we obtain For fixedt=t™e?¢>0, Eq.(72) shows that the bigger the
axonal couplingp, the more the difference between the val-
2 1/2 L
VA1) = oA (1+pM) 14(M—-1) 71 o 2oMD\T ues of both order parameters diminishes. So one could argue
Yo Yo that map formation becomes more and more effective, the

(68 larger the axonal coupling strength. In Sec. VI we will show
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FIG. 8. Simulated dynamics of order parameters. The global

FIG. 7. Dynamics of order parameters. The global order param¢solid line) and local(dashed ling order parameters are plotted as
eterV®® (solid line) and the local on&#'9 (dashed lingare plotted  functions of time, compare Fig. 7. As the interaction strengéhis
as functions of time in units of the inverse real part of the leadingincreased, the difference between the saturation values of global
eigenvalue X¥) ! [see Eqs(68), (69) and (71)]. The interaction and local order diminishes. Saturation is realized by an upper bound
strengthpM s varied systematically fropM =0 (no interaction of 2 for the individual synaptic weights. Again, parameters are cho-
to pM=2/3 (strong interaction Once the local order parameter sen in accordance witf8].
reaches a saturation threshold, say vector strengtkdot8d hori-

zontal line, synapse growth stops. This can be achieved, e.g., by M
introducing an upper bound for the single synaptic weights. Hence —j_ = 2 (Smny +p){wi”8n(tAm,n)+W°”tSW(t)
at the same timédotted vertical ling also the global order param- dt m =1

eter stops increasing. Thus, the difference between global and local
saturation depends gnM. In accordance witlj8], the following +f dsWS)S.(t+S—A . )S.,(t } 73
parameters have been usdd)™=0.2, N=250, M =30. VUS) Sl m'n) S (1) (73

that this is not the case and that, due to noise, the upper limfdereS(t) ==2{t§j>}5(t—tg)) denotes the spike train originat-
for the axonal coupling strengih< O(M ~?). ing from the hillock of neurom. Its ensemble average is,
therefore, identified with intensity of the input proced¥t).
Supposing that the efficacies are all approximately equal to
VI. INPUT NOISE J™ at the beginning of learning, we obtaisee Appendix
Up to now all results are based on Ef). That is to say,
we have been dealing with a time-averaged mean-field de-  Var(Jy,,) (1) =t{[1+pM]?D;+[1+2p+p?M]D,}
scription, where the inherent temporal noise of the input pro- 1
cesses is neglected. Calculating the variance of the temporal +ONT), (74)
evolution of one synaptic weiglisee[17], Appendix B jus-
tifies the mean-field approximation for sufficiently small val- where
ues ofz: the diffusion constant i€(5?) and the eigenvalues
are O(7), which makes the time scale of synaptic modifica- D, = 52[ (W")2p+ 2wy 2°"\W(0) + 1(v°U)2W(0)?]
tion due to input noise longer by a factor@{» 1) than the (75
time scale of structure formation.
If we set up an axonal interaction like in E¢(), the  gnd
diffusion constant increases. Therefore, the time scale asso-
ciated with input noise decreases. Hence we can gain a con-
straint for the coupling strength, so as to avoid an increase D,= nz[(w"“l)zwr 2w OV (0) + 120U |G, |3 W, |2
of the order of magnitude of the input-noise evoked jitter. m
The variance Vat(y,) (t) :=(J2 ) (t) — (Jmn2(t) of a syn-
aptic weight forb,,,,=1 is governed by the dynamicsee + Womf ds Ws)?
also Secs. [IBand Il C

. (76)
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Since the variance turns out to be lineat,imve can define a vides us with important information concerning pattern for-
diffusion constantD:=t~Var(J,,,). For M>1, two sce- mation in the system of synaptic efficacies.
narios exist.

(i) If Dy;>D, or D;~D,, the leading power of the inter- A. Linearizing the learning equation
action terms in Eq(74) is (pM)?2. Forp=<M 1, D remains
of the same order of magnitude when compareg+d0. A
number of 30 postsynaptic cells like {18] then yieldsp

In contrast to the linear learning Equati¢t8), the above
activation function(77) yields a nonlinear synaptic dynam-

<3.3%. Ics,
(i) If D;<D,, the leading power in Eq(74) is p°M, d
which yields an upper limip<M Y2 For M=30 we get —J=NJ, (79
dt
p=18%.

As shown in Figs. 7 and 8, an interaction strength \\here A/ denotes a nonlinear operator mappiRg: R. Sup-
=1/2M=1.7% already suffices for an aligned developmentpose we have found the fixed poih®™=0 of the differen-

of local and global order witil =30, andp is small enough  {j5| Equation(78). We then expand Eq78) in deviationse
not to violate the upper limits in either scenario. Further._j_ jiix ¢4 a5 to obtain the linearized dynamics

more, calculating the fractiod,/D, with the parameters
used in[8] yields D;/D,~4x 10 2, which corresponds to
scenario(ii), and sop is about ten times smaller than its aFDH O(é). (79
possible limiting value.
To summarize, we state that in the limit>o map for-  Here ) is the total derivative of\ at positiond™:.
mation is prevented because a high valug @mplifies the
shot noise of spikes. Fgs=0 there is no map formation
either. As a consequence, there must be a valu8®, where
the synchronized development of temporal receptive fields is To obtain expressions fok/ and its total derivative, we
optimal. Already small values, e.gp<1/M can be suffi- have to find a way of calculating the time-averaged rate
cient. (1) =(pevm(t))) and correlation functiorC,(t+r,t)
=:Cmn(t+r,1), cf. Egs.(4) and(5). The correlatiorc,,, can
VIl. MAP FORMATION WITH NONLINEAR NEURONS be rewritten using Bayes’ formuléfor a proof, see[47],

Appendix A),
So far we have dealt with linear Poisson neurons, cf. Eq. ,

(2). We now extend the theory of spike-based Hebbian learn- Conn(t+1,0) = (P m(t+1))) 0. PM(1). (80)

ing and map formation from neurons with a linear firing

probability to those with an exponential firing probability The notatiory- - -)|, ; indicates an average over input spike

[46] trains given a spike of input cefl at timet. For the time
being, we leave the temporal averages aside.

pe(v)=voexfd Bu]. (77 Both v%" andc,, can be calculated by means of the Pois-

sonian probability measure on the set of Poissonian input

As already announced in Sec. Il A, we will derive a linear spike trainsQ=uFl ,,,,, FNQFl...FN, where QFl"'FN de-

learning equation equivalent to Eqd.2) and (18) for the  notes the set of all spike trains with axon 1 conductihg
deviation of the Syﬂaptlc Welght vectdrfrom a flxed-pOInt spikeS, axon 2 COﬂdUCtir@Z Spikes’ and so on; all this is to

solution inX of the nonlinear dynami_CS. The idea is Simple. happen during a period of duratioh Since the subsets
We linearize Eq(6) with respect ta)™ and will show that Qf_ . ¢ are disjoint, we can write
1 Fn )

certain eigenvalues; of the linearizationD:=D(J™) may,

and usually do, have a positive real part. The one with the

largest real part Ra,;}>0 will asymptotically dominate the <pF(Um)>:j dupe(vm) = X dupe(vm).

time evolution exp()). One, therefore, may wonder: Why @ Foo P SO py

study anunstablefixed point? 81)
The rationale underlying the above analysis is that th

evolution operator expl)) is exactly soluble while the

eigenspaces ob with Re{\;}<0 indicate the “domain of

attraction” of ™. Given the initial positiorJ(0), thesystem

stateJ(t) first approaches the fixed poidt* before the “ex-

panding” eigenvalues with Ra&;}>0 take over. Avoiding

any special assumption regardid¢0), we assume its com- f dupe( ()=

ponents to be independent random variables that are equid- Jog . ¢ "

istributed in a certain intervalas in Fig. 3 and because

J(0)’s part in the “expanding” eigenspaces is negligilitee X P{Fn}(t,{tff)})p,:(v m(1)),

Sec. IVC 3, it is bound to first approaci™. Hence the '

eigenvalue\; of D with the largest real part Re;}>0 pro-  where, given the individual Poisson intensitj&s,

B. Rate and correlation

eI'hough their occurrence is correlated throygh the indi-
vidual spike events of a Poisson process are independent
and, hence, the probability measurean be restricted to the
subsetsQFl,.‘FN SO as to give

N Fq t
i [ o
n=1f=1J-w
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PO m(t+)))nr ¢
3Jmn

t .
P{Fn}<t.{t}”}>=exp[—§ J_wdsri”(s) = B(PEum(t+1)))

Joocds»s(s)

XPN(t+r—s—Ap,,)elImne

X

N R
. ing ¢(f)
nl;[1 Fn!fljl Po(Y; ))

+ 5nn’€(r_Amn)}

is the probability density foN Poissonian input spike trains

with {F .} spikes at timegt{"}, cf. Appendix A 4 in[48]. X exd BImy €(r —App)]. (89
The dependence af,, on the input spike times can be

found in Eq.(3). Substitutingynn(t—t{")=8Jn,e(t—t{"

— A we find from Eq.(77),

The temporal averages of Eq82)—(85) will turn out to be

Jix .
N Fj
_ _ . Fixed point of the nonlinear dynamics
Pe@m(®)=vo [T TT exdym(t—t{)] C. Fixe
n=1t=l We will prove under very general conditions that EG8)
has the fixed-point solutiod™=J™ (1°®1%). We, there-
and, thus, fore, insertd,,,=J™ into Eq.(82) and due to
f du pe(vm(t)) ; pin(t_Amn):; pin(t_umlc_n Tp/N)
QFl"'FN
N
t : 1 = — _
— o ex _Nf ds p'(s) 1—[ 1 p; g(t—um/c—nT,/N)
— n=1 Fnl
Fn — 0O i —
y f’( i p’n(s)eymn(ts)) | _VHEM g,exd 27 u(t—uy/c
—nT,/N)/T,]

Taking advantage of Eq81) we end up with
=1, N6,09,=Nv,
“

the mean firing probability82) is constant,

No ey
(PEm(1)) =10 ex% n§=:1 Jﬂcds g"(s)[eYmn(t=9) — 1]]

N - * fix
=1, exp{ > ds pP"(t—s—Apmp v°”t=(p,:(vm(t))>=voeXp[Nufo ds[e” G(S)_l]]-
=1J0
’ (86)
x[ef Imne(s) — 1]] . (82 Consequently, also the correlation function is independent of
tl
The calculation of the conditional mean can be executed Con(t+1,0)=p"()(P £ m(t+1)))] e
analogously. We find — 1Oy, exd BI™ e(r — A, )], 87)
(PE@m(t+ 1)) = (P m(t+r)))e¥ml. (83  We insert Eqs(86) and (87) into Eq. (5) and obtain from
NI™=0,
The total derivativeD in Eq. (79 is determined by its ,
partial derivatives with respect —w" _v @9

’}/::
vf ds W(s; BI™) +wout

HPe(vy(t))
%wmwmam
mn where the effective learning window isWef(s;x)
oc . P :=W(s) (=9, In biological neural networks the ratig
Xfo dse(s) p"(t—s—Apyp)e”mn between the input and output rates is of the order of one. Any

arbitrary value ofy>0 can be obtained by adjusting" and
(84 wCon the left-hand side of E¢88) for any given values of
v and BJ™. Moreover, since it will turn out in Sec. VII D
and that the denominatow [ds WEf(s; BI™)+w° has to be
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negative in order to guarantee stabilization of the output rate
v>0 again requiresv">0. We thus postulate a fixed posi-

PHYSICAL REVIEW B5 051915

tive valuey and due to Eq(86) we can write

In(y ! vg)l (Nw) = J‘ocds[eﬁjfixs(s) —1]=: lﬂ(ﬁ\]ﬁx).
0
(89

Here ¢ is a monotonically increasing function @f™ with
#(0)=0 and hence, for Infv/vy)>0, there is a unique
fixed-point solutionBJ™.

D. Linearized dynamics

The discussion of the eigensystems of the linearized dy2
namics(79) requires temporally averaged expressions of th

partial derivatives in Eqs(84) and (85) at J,,,=J™. We,

therefore, introduce an effective spike response kern

€(s:x) :=€(s) € and find

‘9<pF(U m(t))>

— out . ~effr . p 1fix
PA Brve®(0;8I™),

(90

where e®f(w;x) is the Fourier transform o&®f(s;x) with

a pJ"=0 b pf=1/3 c p=23
30 0 30-30 0 30-30 0 30
o, (kHz)

FIG. 9. Spectrum of temporal eigenvalues in dependence on the
nonlinearity 3™, Real parts are drawn as solid lines, dashed lines
re imaginary parts. The eigenvalues are normalized with respect to
he maximum value of their real parta) 3J™=0. The leading

eigenvalue is equivalent to that of the linear model neurdbs.

efJ”X:l/:-}, (c) BI™=2/3. As BJ™ increases from@) to (c), the

andpasgfor BJ™=0) becomes a low pass, and the imaginary
parts approach zero.

in the case of the linear Poisson neuron we find that the
temporal evolution of synaptic couplings, as described by the
linear model, Eq(12), is equivalent to a linearization of a

nonlinear dynamics around the fixed-point solution. More-

respect to the first argument. The temporally averaged partigver, also the fixed-point couplings are equivalent.

derivative of the ensemble-averaged correlation funatign
from Eq. (80) is

ICrmu (1+1,1)

EXI ﬂVOUteXF{IBJﬂXG(r_Amn')]

X 5nn,ve(r—Amn)+J ds e®f(s; BI™)

XpM(t+r—s—Apm)p"(t)]. (92)

This yields a familiar form of the linearized dynami€z9),

d
—1=2, (en®f)X 2 (14p Smny)
dt mn m/n/

X[k2+ 5nnrk3+an/]Lmrn/ , (92)

where the constants, andk; equal
k,=nBr° 68ﬁ[\7vgﬁv+ wouT,
ky= 5Bv°" f dse(—s)Wefi(s; BI™)

and the Hebbian matri®Q,,, is

Qnn = WIBVOUtVZM;x |éﬂ|2%iﬁwftﬁ[l_ 5#,0]
Xexgiop(Ap—An)].

Here we have introduced the abbreviation\vf\/iff
=W pw,; 8I™) anded’= e (nw, ; 8I™). Proceeding as

In Eq. (50) for a linear Poisson neuron, the spectrum of
the latency dynamics is ruled By/e. In contrast, the Heb-

bian matrixQ, in Eq.(92) contains the factorgvfe*f. Its
spectrum is shown in Fig. 9 for different values@™. For
BJI™=0 we obtain the same result as in the linear case, see

Fig. 3. The reader may notice that the imaginary pan\f

in Fig. 3 is not small enough for biologically relevant fre-
guencies to neglect a drifting of the nascent structure. This is
to be expected, since the learning winddWis taken from

[8], where map formation is investigated with nonlinear
cells. However, in the above discussion we have shown that
nonlinearities change eigenvalues and, hence, for simulations
with linear neurons, other choices fa¥ and € have to be
made in order to produce nondrifting maps.

An increase of the nonlinearity3J™ has two conse-
quences(i) a smaller imaginary part so that the drifting ten-
dency of the structure decreases digan increasing low-
pass edge of the spectrum so that the sensitivity of the
learning rule to higher frequencies is enhanced, cf. Fig. 9. In
order to grasp how this works, we note that postsynaptic
firing is preferentially induced by presynaptic spikeeced-
ing output spikes by about the rise timefln Fig. 10a) we
have plotted the effective learning windowvef(s) for
BI™=0.1, 0.25, and 0.5. The maximum B is shifted to
the left (towards negative) by the rise time of. The larger
the positive peak, the more effective is the synaptic structure
formation, since eigenvalues of the synaptic dynamics are
provided by the Fourier transform &f [see Eq(47)] which
is a convolution ofWe with €, see Fig. 1(b). The maxi-
mum of Q is close tas=0, and the magnitude of the peak is
strongly affected by the nonlinearity. The more distinct the
peak ofQ ats=0 the larger the enhancement of its real parts
in Fourier space. This enhancement of the real part compared
to the imaginary part as a function 0™ is summarized in
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b _4q¢C learning equation represents the dynamics of delay selection
A = at a single neuron.
= The spectrum of temporal eigenvalues shows that the
S learning rule acts as a low-pass filter, causing the evolution
~ 2 . . .
R = of higher-order harmonics of the weight structure to be
A = slower than the increase of the principal harmonic. Similar
= g results have been found ji9]. The spatial part of the learn-
: . . , ®o . | ing equation mirrors the presynaptic interaction. Synchroni-
oLyt e 0 e 2 tion of the individual " best ITDs needs a |
s (ms) s (ms) pJ* zation of the individual neurons’ bes s needs a long-

range presynaptic interaction.
FIG. 10. Nonlinearities can stabilize structure formati@h.The If the Fourier-transformed Coup”ng mat[’fx as given by

H i H ff fix — H ~ ~
ﬁﬁ:)a'gzgegg's?}geg';ﬂzv%v; (;%rtt?(;eeszhf:f gf‘]Jﬁx_ (t)r‘é (f:]’c')'?e Eq. (42) has the propertp,~b. ;, for instance, because of a
ne . . o - gerpJ spatially restricted interaction, then synaptic efficacies arise
pronounced is the positive peak ¥f". (b) The functionQ as the - . A .
convolution ofWe' and * has a maximum at abost=0. (c) The with s.patl.ally oscnlatlng strengths. Thus, axonally mediated
ratio of real and imaginary parts of the leading eigenvaldél) coordlnat!on of synaptlc strengthening may break down at
smaller distances, which leads to a patchy pattern of afferent

from Eq. (47) for T,=1/3 ms(solid line) is a monotonically in- ) ) : -
creasing function of8J™. Diamonds are obtained from computer innervation and, thus, to a representation of stimulus diver-

simulations with parameters taken frd8i. We have calculated the Sity @long the direction of arborization. We note that in the
contribution of the leading eigenvector to the synaptic structuréc@se of the Jeffress map, diversity is a consequence of the
ay:=¢%(—1)-J(t)=exgt\*(1)]. Real and imaginary parts of the arrangement of laminar neurons along antiparallel axons and
leading eigenvalue are computed as a linear fit to the amplitud@ Tp-periodic tuning of their delay&Fig. 6).
Inja,(t)|=t Re(A*(1)}+const  and the phase  &ey(t)] The quality of the temporal-feature map has been shown
=t Im{\¥(1)}+const of the synaptic structure, respectively. Fitsto increase with the magnituge>0 of the presynaptic in-
have been performed at times before the amplitude has reachédraction along the axon. Because the spatial eigenvalues
twice its initial value. scale withpM and the numbeM of presynaptically coupled
neurons might be quite high, even small valuepsfM ~1
Fig. 10c). We have plotted the ratio of the real and thesuffice for map formation. This may be the reason for why
imaginary part of the leading eigenvalue as predicted by théhere are only a few papel83—37 experimentally verifying
present theory and as extracted from computer simulationfresynaptic propagation of synaptic learning. There is also a
This result confirms that nonlinearities may stabilize thecomputational reason for a small Presynaptic propagation

Hebbian structure formation. of synaptic learning supports map formation as long as
small enough to guarantee the validity of the temporally and
VIIl. DISCUSSION ensemble-averaged mean-field learning equatid@sand

(6). Both are violated, if the inherent noise of the stochastic

Synaptic plasticity plays an important role in the develop-processes gets too big. Sources of noise are the shot noise of
ment and ongoing modification of neuronal m@8]. Ear-  spike input and output and the temporal jitter of the stochas-
lier theories on map formatiob0—54 due to synaptic plas- tic input process. Each synaptic weight, therefore, performs a
ticity deal with rate-based linear neuron models. In spite ofrandom walk around the mean trajectory. If its standard de-
their success in explaining, e.g., visual orientation mapsyiation approaches the same order of magnitude as the mean,
ocular dominance columns, and even spatiotemporal maps tiie mean-field description breaks down. We found that the
visual directional selectivity, they are not capable of explain-presynaptic interaction amplifies noise because fluctuations
ing maps of stimulus features that are solely temporal. of synaptic weights are propagated to neighboring neurons.

Recently, spike-based learning rules have become monéd/e have obtained an estimate of the order of magnitude of
and more prevalen8,14—32. The present work is an at- the axonal coupling (Sec. V), where the standard devia-
tempt to understand the formation of temporal-feature mapson is small enough to keep the mean-field assumption in-
by means of a spike-timing dependent synaptic learning ruletact. As a consequence, the exact valug @ not critical to
As a facinating example, we have studied maps of interaurahap formation.
time differences(ITDs) in the laminar nucleus of the barn Most of our calculations have been performed using a
owl. (linean Poisson neuron. Real neurons are neither Poissonian

Synaptic learning at the level of a single laminar neuronnor linear. We have, therefore, shown that introducing non-
can result in the development of ITD tuning. The best ITDlinearity into the Poissonian dynamics leads to an almost
where a neuron has its maximum response depends on raidlentical learning equatiof®2) and very similar behavior of
dom initial conditions. If we set up an array of neurons, thethe synaptic dynamics, see alg®]. Furthermore, map for-
best ITDs can be ordered systematically through presynaptimation carbenefitfrom the nonlinearity, which, in our case,
nonspecific propagation of a local Hebbian learning along amends both to inhibit drifting of the synaptic structure and to
axon, called axon-mediated spike-based learrifsyISL), increase the temporal precision of the learning rule. In order
viz., Eq. (5). We have modeled this presynaptic interactionto discuss stabilization of the output rate in an even more
and have shown that the resulting learning equation separatggneral casécf. Sec. IV C 1, it has been shown elsewhere
into a temporal and a spatial part. The temporal part of th¢25] that nonlinear threshold dynamics and also refractori-

051915-16



HOW SPIKING NEURONS GIVE RISE TOA. .. PHYSICAL REVIEW B5 051915

ness yield similar learning equations. the learning parameten, which, e.g., in computer simula-
For map formation, there are various synaptic interactiortions[8] is supposed to be of the order of 10 In reality »

mechanisms, such as recurrent synaptic couplbiy-54, may even be smaller.

gap junctions, and diffusing messengers. Trying to explain In summary, we suggest that presynaptic unspecific

temporalmap formation by means of these mechanisms, weropagation of synaptic learninghMSL) is a key mecha-

have to bear in mind that the difference between best ITDs ofism to the formation of maps whenever there is a temporal

neighboring cells in the laminar nucleus and in our model isaspect. The simple reason behind this suggestion is that tem-

less than 1Qus. Then the abovementioned alternative inter-poral correlations of input activity are best preserved along

action mechanisms are unsuitable to achieve such an ITEhe afferent axons.

map. Gap junctions, though they cannot be ruled out in

young animals, have time constants of about the membrane

time constan{~100 us). Extracellular diffusion is spatially ACKNOWLEDGMENTS

isotropic and, therefore, cannot produce diversity. Recurrent R.K. has been supported by the Deutsche Forschungsge-

synaptic coupling, besides its nonexistence in the Iaminaﬁweinschaf’(DFG) under Grant Nos. Kl 608/10<EG Herob-
nucleus, is at least as slow as 1@, a drawback that also jekte) and Ke 788/1-1. '

applies to the time scale of population responggs. In
short, the temporal precision of ITD tuning at single neurons
is a result of the local Spike-based Hebbian Iearning rule, APPENDIX: CALCULATION OF THE VARIANCE
whereas the even higher temporal precision of the map, i.e.,
the gradient of best ITDs, is warranted by the axonal topog- To estimate the effect of shot noise due to spike trains, we
raphy and the presynaptic nonspecific propagation of locagalculate the variance of a single synaptic weight
Iearning. Var(Jmn)(t) :=<‘]ﬁm>(t) - <‘]mn>2(t) = <[Jmn(t) - Jmn(o)]2>

We note that, although our learning rule is capable of—{Jnn(t) —JImn(0))?, at the beginning of learning, i.e., when
forming structures that suffice for temporal information pro-all strengths],,, are randomly distributed around the fixed-
cessing in a submillisecond range, the actual weight changeppint valueJ™. Here(---) denotes the ensemble average
induced by temporally precise interactions between presymaddressing the stochastic nature of both the input and the
aptic and postsynaptic activity, may occur at a time scale obutput spike train$(t). Referring to the stochastic differen-
minutes. The time scale of structure formation depends otial equation(73), we find the variance to be

Var(Jn) (=72 2 [Smmr + o1l S+ p]

m'm”

) t t
w2 [ av [ dvis s -2

) t t t t
+2w'”w°”‘f dt’f dt”[(Sn(t’)Sm/(t”»—VV°“‘]+(W°“‘)2f dt’f At [( S (1) S (1)) — (1°492]
0 0 0 0
oIt t o
+2w'“f dt’f dt”f dS WS)[(Sy(t")Sn(t"+5— A ) S (7)) — v2°4]
0 0 —®
t t 0
+2w°“tf0dt’fodt”fixds WIS)[(Sn(t + 5= Apyr) S (1) S (7)) — (124 20]
+f;dt’f;dt"f:ds’ W(s’)f:ds” W(S")[{Sa(t’ +8" = Apyr) Sol(t"+8" = A )

X S (1) Sy (1)) — yz(yw‘)z]] . (A1)

Here we assumed the output rat®" to be independent of =Prol B} Pro B,|B,}- - - Prod B,|U!Z1B;}, where
the postsynaptic locatiom, which we will show to be a Prolf B;|B;} means ProfB; under conditionB;}. Since we
good approximation for randomly distributed weights, pro-are dealing with Poisson processes, the conditional probabil-

vided the number of input lineld is very large. ity densities can be computed according1a@], Appendix A.
Let us now perform the six ensemble averages in(Ed)

step by step by recursively applying the definition () .<31(t’)8n(t”))=pi“(t’)[pi”(t”)f5(t’—tt”)]__In addi-
of the conditonal  probability, ~ PrdhJ!_,B}  tion, if we assumet>T,, we obtaint™*[odt'p"(t')~v
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and, therefore, the first term inside the curly brackets of EqApplying again Eq(A2) we find that both temporal integra-

(A1) equals @")?vt. tions are straightforward. So we write the fifth term
(i) (S(t)Sm (t")=p"(t")lim _ [t~ 'Profm’ fires  2woU, 1,OUA(0) S, .
in [t”,t”+ 8t) if nfires att’}]. Applying expansior(2) to the (vi)

conditional firing probability, we find

(Sa(t!+8" = A ) Syt 48" = A Sy (1) (1)
<Sn<t'>smf<t">>=pi“<t'>[ﬁ<°>+ﬁ‘”2 Jvn =P+ = An) [P+ 8"~ A + (Lt
" +8' 8"+ {Upy— U }/©) I pC(E) + O(1N) ]
Xfds’f(s’)pi”(t"—s’—Am'n) X[ P(t") + O(LIN) + Sy e S(E =) ]

We split up the above expression into four parts, apply
Eqg. (A2), and insert it into Eq(A1). We then end up with
_ four integrals over timéa)—(d),
=:p"(t")[ppy (") + O(LN)]. @

+:8(l)‘]n E(t”_t, _Amn)}

The last term of the first equality ©(1/N) as compared to
the summation over alN synapses. The output intensity
p(t) can be calculated explicitly if we plug in the Fourier

t t . )
(V°“52fodt' fodt"p'”(t' +8" = A ) P+ 87+ A )

series of the periodic input proceps'=p g introduced in = (2?2
Sec. IID 1,
(b)
out +\ _ (0) (1) S t t )
Pm (D=BT+PB V% 9u fu; Jmn (VOU’)Zdet' fodt" Pt +8" —App) 8t —t"+s' — 8"

XeXF{i,u,wp(t—Amn)]. +[um’,_um']/c):(voul)2vt.

We consider the system to be in the initial state where syn- ©
aptic weights are randomly distributed aroutis. We, there-

fore, apply the central limit theorem t&,Jy,,=NJ™[1 t t . .

+O(14/N)], and due taS,e'*»*n=~N5,, o, we obtain i fodt’ fodt” p(t" +8" —Ap)p"(t"+8"
pomm(t):ﬂ(o)+ﬂ(l)VN\]ﬂX: . Vom. (AZ) +Amrrn)6(t, _t")

This also justifies the above assumption of the output rate out C o e

being independent of the spatial positionWe thus end up =V Odt Pt +8" = Amn)

with

. ><pin(t/—'—s/,_Am”n)
(Sa(t") Sy (1)) =p™(t") "+ O(1/YN).

_ out 2 3OA
The second term on the right of E€A1) is, therefore, of =V Sy V2 2 9,0,

’
o

orderO(1/yN). t
il () S (1)Y= p°(t ) [p°i(t") + S(t’ , ; rot
—tg’) ;m,m”]. With<|§a.((A%)S,mth(e t)rzirdpte;(m,)t[k?er;(fOZe, eEquaIs % fodt expliop[pu(t'+s" —Any,)
(WOLH) 2 VOUtémr mrrt .
(V) (S(t")Sa(t"+5= Agy) S (1)) =" (¢ N P(L” TS A ]}
+s— A+ ot —t’ +S—Amrn)][p21u,t(t")+O(1/N)]}. R
Equation(A2) and both time integrals yield the fourth term, = VOUtVZtEM: 19,17 exti pwp(s' =) Sy -

2wy 1°2UW(0)t. Here we assumed the integration titrte
be much larger than the width of the learning windBwand  pere we have exploitedidt’ e/#ont’ =t 5, , for t>T,.
the typical values of\ . d) 0 a P
v)
t t )
(Sa(t" + 5= Ay ) S (1) Sep(1")) R fodt' fodt" Pt +S" — Apyin)

— iy’ _ out . s
=P+ 5= A {[PEL) + O(IN) ] 8888t

X[ P(t") + O(LIN) + Sy St —t") T} =1t 8(S" = S") Sy
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Executing both integrals over the learning windog/ ( ) 5 . R 5 out P
and ') vyields the sixth term of Eq. (A1), D2=7°[(W*)?r+2w* " W(0)+v Voug 19,15 /W,
tVOUtV{W(O)Z[ U ]+ 5mrmu[VElu|\ANM|2|é'u|2
+de V\(S)Z]} out 2

Adding (i)—(vi) leads to a much simpler expression for Ty ds W(s)
Eq. (A1),

The double sum in EqA3) then yields
Var(Im) =t 2 [D1+ S mrD 2] Sy + 1 S+ 1,

o (A3) Var(Jmn) () =t{[1+pM1?D;+[1+2p+ p?’M]D,},

where (A4)

D, = 72 (WM 2p+2 wp " W(0) + (1 2W(0)?], as announced in Eq74).
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