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Abstract

The intriguing concept of a receptive field evolving through Hebbian learning, mostly during ontogeny, has been discussed extensively in
the context of the visual cortex receiving spatial input from the retina. Here, we analyze an extension of this idea to the temporal domain. In
doing so, we indicate how a particular spike-based learning rule can be described by means of a mean-field learning equation and present a
solution for a couple of illustrative examples. We argue that the success of the learning procedure strongly depends on an interplay of, in
particular, the temporal parameters of neuron (model) and learning window, and show under what conditions the noisy synaptic dynamics
can be regarded as a diffusion process. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Spike-based learning; Hebbian learning; Delay selection; Temporal receptive field

1. Introduction

A receptive field is defined classically as the set of stimuli
that alters a nerve cell’s response (Hartline, 1940). The
receptive-field description of neuronal responses to an
external stimulus has since been a very successful approach
to understanding the brain’s function from a neurophysio-
logist’s point of view (e.g.Aertsen & Johannesma, 1980;
DeAngelis, Ohzawa & Freeman, 1995; Eckhorn, Krause
& Nelson, 1993; Kowalski, Depireux & Shamma, 1996;
Theunissen, Sen & Doupe, 1999). From a modeler’s
perspective, however, the notion of a receptive field
includes a severe problem. Almost none of the neurons in
the brain are directly exposed to an external stimulus.
Instead, they are part of a high-dimensional and strongly
interacting dynamical system. A neuron’s receptive field
is, consequently, no inherent property to the cell under
consideration. It is a projection of the network’s topology
and dynamical state upon a specific cell’s activity. A model
of the local topology surrounding a single cell is, therefore,
unable to explain its classical receptive field. Since almost
every neuronal model is a local one, the notion of a recep-
tive field has undergone a reinterpretation (MacKay &
Miller, 1990; Roberts, 1999; Wimbauer, Wenisch, Miller
& van Hemmen, 1997). A modeler’s receptive field is the
set of spike trains, or the set of neurons behind them, that
serves as input to a subsystem of the brain. Different classes
of spike trains are then related to different stimuli, which
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leads to an effective model of the sensory periphery. This is
what we mean by ‘receptive field’ in this paper.

One popular approach towards an explanation of how a
local receptive field emerges is the analysis of Hebbian-type
learning rules in a feed-forward synaptic topology as
proposed by Linsker (1986) for the visual pathway. A
synaptic weight J,,, between input cell n and output cell m
is assumed to change according to the dynamic equation

%Jm,, = ws + wyv,, + wzv, + w,C,,,, @))
where v, is interpreted as the respective cell’s spike rate,
C,., 1s a measure of the correlation between the activities of
cell m and n, and the w; are constants. Eq. (1) is called
Hebbian-type since the w, term on the right combines pre-
and postsynaptic activity.

In spite of the considerable success of rate-based learning
equations in explaining orientation selectivity (Erwin &
Miller, 1998; Linsker, 1986; MacKay & Miller, 1990),
ocular dominance (Miller, Keller & Stryker, 1989), and
even directional selectivity (Wimbauer et al., 1997), these
learning rules fail whenever a temporal aspect of a receptive
field has to be learned at a neuronal timescale as in e.g. the
auditory system (Carr, 1993). This failure has been reme-
died by spike-timing dependent learning equations (Bartsch
& van Hemmen, 2001; Eurich, Pawelzik, Ernst, Cowan &
Milton, 1999; Gerstner, Kempter, van Hemmen & Wagner,
1996; Kempter, Leibold, Wagner & van Hemmen, 2001;
Kempter, Gerstner & van Hemmen, 1999; Kistler & van
Hemmen, 2000; Roberts, 1999; Ruf & Schmitt, 1997;
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Senn, Markram & Tsodyks, 2001; Song, Miller & Abbott,
2000; van Hemmen, 2000).

In analogy to Eq. (1), the change of synaptic weights
under the influence of spikes can be derived as a function
of pre- and postsynaptic rates and the time-averaged corre-
lation function C,,,(t,1 + s),

d .
— ], = 7I|:WmVn + Womvm +J

(o)

d t mn

dsC,,,(t,t + s)W(s)]
(2)

where the integral kernel W is called the learning window. For
a detailed explanation we refer to Section 2; Kempter et al.
(1999); van Hemmen (2000). Experimental evidence for the
existence of W is steadily growing; see e.g. Bell, Han, Suga-
wara and Grant (1997); Bi and Poo (1998, 1999); Debanne,
Gihwiler and Thompson (1998); Feldman (2000); Levy and
Stewart (1983); Markram, Liibke, Frotscher & Sakmann,
1997, and Zhang, Tao, Holt, Harris & Poo (1998), reviewed
in Bi and Poo (2001); Linden (1999); and Paulsen and
Sejnowski (2000).

The present paper gives a brief derivation of Eq. (2) from
a learning algorithm based on spike timing. We then indi-
cate a strategy of how such a learning rule can be treated
analytically and apply our results to a number of standard
paradigms.

2. Self-averaging learning equations

Since Eq. (2) comprises only temporally averaged quan-
tities, it is insensitive to the exact temporal location in an
averaging interval of length 7 but not to time differences of
pre- and postsynaptic spikes that induce the actual modifi-
cation of the synapse, provided they occur within the learn-
ing window. We therefore suppose that each pre- and
postsynaptic spike gives rise to an immediate change of
the synaptic weight J,,,, say a pre-synaptic spike at time
tﬁ,f) alters J,,, by mw'™, a postsynaptic spike at time t,(,{') by
nw™" and, additionally, for every pair of pre- and postsy-
naptic spikes the weight is changed by an amount W —
t,(,{)) where 7) is assumed to be very ‘small’ in the sense that
0 < nwr < 1 for all occurring rates w and all neuronal time
constants 7. After a time 7, we then find the change of the
synaptic weight between input cell n and output cell m to be

AJmn([) = Jmn(t) - Jmn(t - *9‘) 3)

— nl: Z Win + Z Woul +

(—T=P<t t—T=tD<t t— 7=t D <
Since m is small, we can assume J,, to be approximately
constant in [r — 7, t], and, taking single spike events to be
independent, we apply the strong law of large numbers
(Lamperti, 1996), i.e. we replace AJ,,,(f) by its expectation
value. Exploiting once more the fact that n is small, we
introduce the temporal average @) = 1/T) f i_f; dr'f(t)

W) - zﬁP)].

and assume 7 to greatly exceed the width of the learning
window so as to obtain to fair approximation (Sanders &
Verhulst, 1985)

AJmn _ <AJmn> _

> 7 n[w‘“<sn<r)> + WS, (1)

+ ro dsW(s)XS,, (S, + s — Amn)>]7

“

where the spike trains S(¢) can be written as sequences of
delta pulses S(t) = > ,» 8(t — /), cf. Gerstner and van
Hemmen (1994). Since we are interested in weight changes
on a time scale beyond 7, we place AJ,,,/7 — dJ,,,,/dt and
end up with Eq. (2); cf. Kempter et al. (1999). As a result,
we have found a spike-based interpretation of the quantities
vand Cin Eq. (2). We note that Egs. (1) and (2) are equiva-
lent as long as the time-averaged correlation function C is
constant in time, which quite often does not hold. This is
what we now focus on.

3. Poisson neurons

The learning equation (2) depends on statistical proper-
ties of pre- and postsynaptic spike trains. They can be calcu-
lated in explicit form for Poisson neurons (Kempter et al.,
1999; van Hemmen, 2000), whose firing-probability density
pr is a function of the instantaneous membrane potential
v(t), so that we can write pg[v(?)] for the density at time 7.
The probability that a neuron fires once during [¢, ¢ + Az) is
prlv()]At, firing twice or more has a probability o(Ar) while
the events in disjoint intervals are taken to be independent.
For a straightforward introduction to inhomogeneous Pois-
son processes and mathematical details and derivations of
results used below, the reader may consult Appendix A of
Kempter, Gerstner, van Hemmen and Wagner (1998); the
‘inhomogeneity’ of the process stems from an explicit
dependence of pg[v(#)] upon .

Probability theory (Kempter et al., 1999, 1998; van
Hemmen, 2000) now leads us to an explicit expression for
the correlation function

Com(t + 1,8) = et + )P (0). ®)

In order to calculate the time-averaged quantities v,, and C,,,
in Eq. (2), we have to find an expression for the mean
(Pp(v,(1)) and the average (-+-))|,, under the condition of
an input spike of cell » at time ¢. [If we are precise, a Poisson
process assigns probability zero to an event at time £. What is
meant is a spike occurring during the interval [z, ¢ + Af)
where the limit Ar — 0 is taken afterwards.] Both expressions
can be calculated for a Poissonian probability measure p on
the set of Poissonian input spike trains 2= Up, _ r Op F.,
where (2, denotes the set of all spike trains with axon 1
conducting F spikes, axon 2 conducting F, spikes, and so on;
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all this is to happen during a period of duration 7 . Since the

subsets {2p, g, are disjoint, we can write

@F(U'"»:J dpprvn) = 3 J du pp(v,). (6)
o FroFy Y Oy

Though their occurrence is correlated through pg, the indivi-
dual spike events of a Poisson process are independent and,
hence, the probability measure p can be restricted to the
subsets {2g, g, SO as to give

J d/"L pF(vm(t))

=

:( J dt(”) U D), (D)
n=1 f=1

where, given the individual Poisson intensities p,,

' o ds n(s)

Pyt (V) =e &

is the probability density for N Poissonian input spike trains
with {F,} spikes at times {tﬁ,f )}. If we model the membrane
potential v,, as a linear superposition of response kernels €
triggered by input spikes at time /" and delayed by A, (cf.
Gerstner & van Hemmen, 1994), we get

Vm(t) = Z Jmn E(t - tﬁzf) - Amn)- (9)

m(f)

The particular choice of the ‘gain function’
Pr(v) = voexp(Bv) (10)
then yields

N 0
(Pr@, ) = VoeXP{Z j ds p(t = 5 = A [P — 1]}.
0

n=1
(1D

The calculation of the conditional mean can be performed
analogously. We find

PEUu + s = Pp((t + 1)))ePlm e 4m) (12)

so that we end up with an explicit expression for the learning
equation (2).

4. Linearization of the learning equation

By means of an expansion of the exponentials in Eq. (11)
it is easy to see that a small 8 accounts for a learning
equation that is approximately linear in J,,, whereas a
steep pg, i.e. large B, yields a nonlinear dynamics. In
other words, there is a nonlinear ./ so that Eq. (2) reads

d
E|J> = AJ). (13)

Our strategy is as follows. First, we will show that under

rather general conditions, Eq. (13) has the fixed point
|3y = Ji¥|1), where [1) is the constant unit vector with
X)) = 31 Jn- Second, we will give the linear differential
equation for the deviations |¢) = |J) = [J™) from the fixed
point,

d
9= (14)

Linear equations can be solved exactly. We therefore only
need to determine the eigenspaces of D/,

and, assuming a diagonable D./", we can stick to expanding
the solution to Eq. (14) in terms of eigenvectors,

)= a)|®,). (16)
A

Here, the time dependence of a,(¢) is given by Eq. (19).

eigenvectors of the hermitian adjoint operator (D.4")* with
eigenvalues A, satisfying

(®N®,) = 8}, (17)

we find that the coefficients a, evolve independently of each
other according to

d d
A = — =

(cb T0= 0 = A (18)

and thus

a,(t) = exp(tA) a,(0). (19)

In conclusion, the emerging synaptic structure reflects the
eigenvectors with largest positive real part of A, at least as
long as the growth of the coefficients a,(f) is unlimited.
Since in the real synapse resources are restricted, synaptic
growth saturates. In other words, if the initial conditions are
such that one a, has too much of a head start it dominates
structure formation, even if there is another eigenvalue with
larger real part. That is to say, both the spectral properties of
DV and the initial conditions have to be checked in order to
make predictions concerning the resulting structure; cf.
MacKay and Miller (1990); van Hemmen (2000).

4.1. Fixed point of the nonlinear dynamics

In order that the ensuing theory unfolds, we introduce a
few biophysically motivated and highly plausible postu-
lates.

Postulate 1. The distribution of latencies is broad in the
sense that, to excellent approximation, the average
membrane potential for |J) := [J™) = J™|1) is constant.
This holds, for example, in the barn owl (Kempter et al.,
2001). We can, therefore, take

1217 (t = A,,) =" (20)
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meaning that the delay distribution totally smears out the
temporal structure of the input process. Since we have
announced a discussion of paradigms of delay selection,
we refrain here from a more general analysis and, addition-
ally, restrict the input processes to those having identical
input rate v = v'".

Application of Postulate 1 to Eq. (11) yields the tempo-
rally constant output rate

5= @) = wexp{W” [ [ate™ 0~ ). @n
0

with v stemming from Eq. (10), and correlation function

Com(t + 7,0) = pr P (vt + P,

out_ in fix

=VmV eXP[BJ €(r — Amn)]~ (22)

If we insert Egs. (21) and (22) into Eq. (2) the ﬁxed point

condition .4”|J™) = 0 is an implicit equation for BJ™,
_Win _ V;;,Ut

vt [ dsW(s)exp[e(—s)BJIX] + wout yin

Y= (23)

Postulate 2. The learning parameters w™, w™ as well as
the learning window W and the response kernel € are such
that the fraction y given by Eq. (23) is positive.

Postulate 3. We have y™"/vy = 1v2"/vy > 1.

Postulates 2 and 3 are more a restriction for reasonable
model parameters than real biological constraints. They
enable us to combine Eqgs. (21) and (23) so as to get

In(yy™ v ) (Nv'™) :J ds[eP" ) — 1] = w(pI™), (24)
0

where the left-hand-side is a positive number and ¢ is a
monotonically increasing positive function of BJ fix >0
with /(0) = 0. Consequently, ¢ is invertible and 3J X js
unique.

4.2. Linearized dynamics

The total differential D.4" of Eq. (14) contains partial
derivatives of rate and correlation function. Defining an
effective learning window and response kernel,

wet '(s;x) = W(s)exp[xe(—s)], eeff(s;x) = e(s)explxe(s)]

(25)
we find
d Z[k + 6,,0ks + Ol (26)
— = / 1Ly
dr mn - 2 nn' "3 nn'1%mn’>

where the constants k, and k3 are given by

out_in_ out

ky = vy vIw,
A ; A 27
ky = pBvoy™ ste(—s)we”(s; BJ™).

The Hebbian matrix reads

Q,m/ — nBv;)nut J dsWeff(s; BJle)

X st/eeff(S; :B-Iﬁx)pj{‘(t - Amn + S)P;lnl(f - Amn/ - SI)-

(28)

Defining a basis |e,,) by the property that it singles out

components, viz., (€""|¢) = t,,, we can write Eq. (26) in a

more sophisticated and, thus, mathematically more mean-
ingful way,

d !
(5 - ks)lb) = (k1] + D leyn)Qpr€™ [1]0). (29)

5. Examples 1. No delay section

In this section we specify the Hebbian matrix Q for the
case of two simple Poissonian input processes in order to
discuss the nature of Eq. (26) and |Jﬁx). Both subsections
can also be discussed in rate description (1), i.e. they do not
provide examples of delay selection as present in, say, the
barn owl (Carr, 1993) and discussed in Section 6.

5.1. Homogeneous Poissonian input

The simplest Poisson process is a homogeneous process
with intensity v"". From Eq. (28) we see that Q,,, = Q, is
merely a constant so that the dynamics is given by

d
(5 - k3)|'v> — |1k + Qo)1]1. (30)

In this case, the operator is highly degenerate. It has eigen-
vectors

[®,) =N expmiuniN)le,,) (31)

with eigenvalues Ay = NOyolky + Qo) + ks, for
0= <N. That is to say, there are N — 1 eigenvectors
(n # 0) with the same eigenvalue k3 and there is only one
eigenvector |®g) = 1) with a different eigenvalue
Ao = N(Qo + kp) + ks.

Two points ought to be stressed. First, if the system
should be capable of selecting delays, N has to be quite
large; in reality it nearly always is. Then, the absolute
value |k;| is negligibly small compared to N|(Q, + k,)|.
Second, we find that the coefficient (®°|y = N2, 1.,
represents the dynamics of the mean synaptic weight.
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Because of
(D)) = exp(tA (D *[u)(0), (32)

a positive eigenvalue Ay > 0 means that the learning rule
gives rise to an alteration of the mean synaptic weight on the
time scale [N(Q + kz)]fl.

If, in contrast, Ay = N(Qy + k,) < 0 and k3 > 0, Eq. (32)
shows that the average synaptic weight N 71/2(<IJ0|J) stays
constant asymptotically, and coefficients a, = (®"[t) with
w # 0, change at the same rate k3 . Then Eq. (31) tells us
we end up with plane waves and random phases giving an
uncoordinated development of the individual synaptic
weights: some grow, others decrease.

We conclude that in the present situation the fixed point
|J%) is in general a saddle point having Jacobian eigenva-
lues with negative and positive real parts. Eigenvectors with
positive real parts are degrees of freedom for structure
formation, though without any delay selection, negative
real parts give lim,_o(®*|e)(r) = 0.

5.2. Correlated subpopulations

A more exciting situation originates if we divide the set of
input cells .# into two subpopulations .#, and .#_ with
N, = N_ = N/2 neurons, respectively. We assume that the
former group behaves in a more coherent way than the
latter. In terms of the matrix Q this situation is described by

{Qo + 0
Qo else

with Q| > 0. There are four subclasses of eigenvectors,

@00 = (Y2 + 1))_l(a+ S et Y Iemn>)

for n,n' € B2

an’ = (33)

nes ney _

(34)

[@.,) =N > expl2miun/N-]le,,). w#0 (35)
ne.s .
with eigenvalues
Ao = 8,0[N12(ky + Qop)(1 + a)] + ks, (36)
where
0, \/( 0, )2
oy = =+ +1. 37
2(ky + Qo) 2(ky + Qo)

Again, k; can be neglected if N_ = N, = N/2 is large. The
two eigenvectors |® .. ;) with non-zero eigenvalue represent
mixtures of the average synaptic weights in either subpopu-
lation, <(I) t’0|"> oc (ai Z.nEf+ binn + ZnEJ/, Lmn)- Since Ql
was assumed to be positive, Eq. (37) yields a+ =0 for
any choice of Qy+ k,. In terms of the eigenvectors,
|®_ ) represents changes of the mean synaptic weights of
both subpopulations into different directions, whereas
|® . () represents changes into the same direction. In the

case of negative Q, + k,, the corresponding eigenvalues
A+ = 0 have different signs, so that the importance of
the eigenstate |®_ ;) of structure formation increases and
that of |(I>+,0> decreases. In the case of positive Qg + k,, both
eigenvalues are positive and a growing coefficient (® +’O|L>
leads to a trivial saturation.

To summarize, in a regime of Hebbian plasticity depend-
ing on spike timing, temporal correlations in a subpopula-
tion of input cells give rise to a coherent synaptic
development among synapses of this subset, if
Qo+ k< 0; cf. Kempter et al. (1999); van Hemmen
(2000).

6. Examples II. Delay selection

We now turn to input regimes that allow selection of
synapses according to their transmission delays A,,,. From
now on, as a consequence of Section 5.1, we put k3 = 0 and
N(Qy + k) <O.

6.1. Temporally correlated input

A Hebbian matrix Q that depends on transmission delays
A, requires that the temporal average of the correlation
function does so too. For instance, we could take a kind of
‘low-pass filtered white noise’. This is an inhomogeneous
Poisson process; cf. Appendix A of Kempter et al. (1998). It
is constructed as follows. We start with a homogeneous
Poisson process # that has rate constant v > 0 and, thus,
generates a series of random event times #,. We then take
such a series, fix it once and for all, and define the rate
function

Puy® = 7. exp[—(t — 1,)/7]. (38)

t,<t

The above sum is over all n with 7, < . The resulting rate
function p, y of our new process depends on a specific
realization {z,} of the underlying stationary Poisson process
2. We call our new process ‘time-correlated Poisson’
(TCP). It is very convenient for doing explicit calculations
and grasps part of the stochasticity of the biophysics
involved. It is easy to see why. Each time a new ¢, appears,
Py, (t,) makes a jump +1/7., inducing more ‘spikes’ than
before in dependence upon the correlation time 7.. Because
the rate constant v"" of the underlying Poisson process 2 is
de facto a constant rate, we get little groups of TCP spikes
each time a 1, appears; it is doing so at a rate v™".

For a TCP process with rate constant v'" > 0 and correla-
tion time 7, we obtain

P}f(f - Amn + S)p;n’(t - Amn’ - S/)
= (™) + V@21 )expl—|s + 5" + Ay — Apl/7e]. (39)
Due to Eq. (28), this leads to

an’ = QO + Ql(Amn’ - Amn) (40)
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ai- b 4,
= o0 w
—1 T 1 0 1
—4t, 0 4t 0 10t
time difference time
C1n
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] \
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=
~
QO » _
0 5 10 15 0 5 10 15
2nut,/A 2rut,/A

Fig. 1. A learning window (a) with exponential decay v and a response kernel € (b) with rise and decay time 75 = Tw/5 (see the Appendix for details) yield
eigenvalues N Ql, which have been plotted for BJ™ = 0 (c) and BJ™ = 0.5 (d); real parts are shown as solid lines, imaginary parts as dashed lines.

where
QO — nV?nUl(Vin)ZJdSWeff(S)IdS/Eeff(S/),

0,(A) = p2™V™/(21,) J dswe (s) J ds’ e (s") (@D

exp(—|s + 5" + Al/,).

If 7. is far beyond the maximal delay A and the width of
wet, say Tw, O is nearly constant and we have arrived at the
case of Section 5. If, on the other hand, 7. is small enough,
Q, varies distinctly with A and so does D./" in Eq. (14), i.e.
the learning dynamics depends on the delay coordinate A.
Consequently, we are in a regime that is capable of delay
selection in that synaptic weights are strengthened or
weakened depending on their delay A. The most accurate
temporal resolution of delay selection is restricted to the
width of W so that, for 7. — 0, the resolution of delay selec-
tion is O(Ty).

To discuss structure formation on the set of delays A,
we introduce an ordered discrete topology. The simplest
and, nevertheless, in many cases realistic (Carr, 1993)
manner to do this is
Ay = n(AIN) (42)
for positive integers 0 =< n < N. Here, A denotes the maxi-
mal latency present. Because of Eq. (42), the matrix Q is a
circulant (Bellman, 1970) and, hence, its eigenspaces are

given by

[®,) =N~ expl2mipn/N]le,,).
" (43)
Ay = N[8,(ky + Qo) + 01 (W],

where O (n) = | dsQ (s)exp[—2mius/A] denotes an ordin-
ary Fourier transform.

We now discuss synaptic structure formation by means of
Ql(,u); see Fig. 1c and d. Because

<emn|(I)M><(I) H|L>([) = exp{[‘ﬁ()\(ﬂ,)) + l[fS()\(M))

+ 27 un/N1H® #[0)(0), 44)

real parts quantify the growth rate of the spectral component
2mu/A whereas imaginary parts measure its drifting velo-
city. A positive S (A(w)) for u >0 yields a drift toward
shorter delays (smaller n), a negative .#(A(uw)) results in a
phase drift toward longer delays (larger n).

The real part Z(A(w)) shows band-pass character (Fig. 1c
and d) as a function of 2mu/N. As a consequence, it gives
rise to a coordinated development of synaptic weights on the
domain of transmission delays A,,, and it does so in such a
way that the eigenvector with largest real part dominates
structure formation; cf. Song et al. (2000).

6.2. Periodic input processes

We now turn to an input regime that is biologically rele-
vant especially in early auditory brainstem processing. Since
the auditory system is tonotopically organized, i.e. different
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locations process different frequency components, each cell is
exposed to spike input with a predominant periodicity. The
idea behind this is—simply stated—that the cochlea is a kind
of ‘inverse piano’. Input correlation functions have temporal
correlation lengths of a couple of periods. If the memory time
scale 7y of the Hebbian learning rule (2) does not exceed the
input correlation width, the input spikes can be modeled by a
strictly periodic Poisson process. If we then focus on a period
T,, we obtain

P}f(f - Amn + S)P;?(f - Amn' - SI)

= (") |8 expl2mip(A,, — AT, (45)
p
and, hence,
Quv = > expl2mip(Ayy — AT, 10(w) (46)
1
where
O(w) = v ™2, W () (). (47)

For the discrete delay topology A,,, = n/NT,, we obtain
eigenspaces and eigenvalues of the form

@) =N~ expl2min/Nle,,),
n (48)

Ay = [8,0(ky + Qp) + 01 (w].

Here, Qo= enzQ) and  Qi() = (1 = 8,)
XY weuprnz Q(w). A glance at Fig. 1c and d suffices to reveal
that, for a sufficiently small period T}, the largest real part
belongs to w = 1 and, thus, structure formation reflects the
periodicity of the input.

In view of the above periodic-delay selection, it is handy
to introduce a quality measure for quantifying a particular
parameter’s capability to generate the required delay selec-
tivity. Using the Heaviside step function @(x) (=1 for
x>0 and =0 for x = 0), we call

M(wy, 0) = (@, — wo)_lj | dwORA ) DRI @)/ A()

@

(49)

the average periodic momentum (APM) between w, and
w;. It is the average ratio of positive real part and total
length of the leading eigenvalue for input signals with
periods between 2m/w; and 2m/w,. For each period 2w/
o, the ratio OR[Aw))R[AMw))/|A(w)| quantifies the
fraction of synaptic modification that is responsible for
an increase of the leading eigenvector—and not for its
oscillation.

In Fig. 2, we show the dependence of .#(m/Ty,4m/Ty)
upon the shift sp.,; of the positive peak of the learning
window (see Fig. 2a), the time constant of the response
kernel e (Fig. 1b) and steepness B of the gain function pr.
Two features are evident. First, the APM increases with 3;
see Fig. 2e. Second, the time constant 7g of the membrane

response kernels has to be adapted to the shift sp., of the
positive peak of the learning window in such a way that
short response kernels come along with short spe,; cf. Fig.
2f. In conclusion, periodic-structure formation is a result of
an intricate cooperation of the temporal features of a neuron
(model) and the synaptic learning window. Nonlinearities
generally improve structure formation.

7. Noise

Eq. (2) is an ensemble-averaged mean-field equation. Its
solution describes the mean trajectory of a noisy system.
The mean-field description is valid, if the variance is
small enough so as to avoid disturbing the mean trajectory
‘too much’. It has been shown by Kempter et al. (1999) that
this is indeed the case, if 7 is small enough. The reason is
that the variance scales with nz, whereas structure forma-
tion, i.e. the eigenvalues, scale with 7.

We now present an alternative noise model. If we knew
the eigensystems |®,) of the linear operator D./" in Eq.
(14), we could write down an effective stochastic dynamics

for the coefficients a, = (P L),
icz = Aa) + & (50)
a4 = A A

where &, denotes the fluctuations of the coefficients, and, as
a result, @, are now stochastic variables. Using the identity
1 =3, |e.nm)e™| we then calculate the average variance
of the synaptic weights,

Var(J) := N! z ) = o)D)

= > (aray) = (aXa))®@ e, )€™

n,AA

= 3 o) = Kawf) = S expenh) | as
) X 0

X JO ds’exp[—A(s + sHKENSENS)- (51

Synaptic growth is often thought of as random walk, an
approximation of a diffusion process (Lamperti, 1996).
We therefore postulate &, to be white noise with
(Ex()ENS)) = 038(s — s') and obtain for the average
variance

2
Var(h =Y %(em — 1. (52)
A

For small Az, Eq. (52) yields Var(J) =3, o3[1 + O(Ar)]
and, thus, on the time scale of ming~q,[1/R(A)] spike-
based learning is, indeed, a diffusion process.
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Fig. 2. Average periodic momentum (AMP) is a measure of the quality of periodic-structure formation and quantified by .#. It depends on the interplay
between learning window W, membrane response kernel €, and the gain function pr. We define spe, to be the shift of the positive peak of W (a) and plot .Z (w/
Tw, 4m/7y) for different values of 7 as a function of sp,, for B8 J fix<0 d),BJ fix—0.2 (c), and BJ fix— 0.4 (d): black lines from large to small peaks denote r
75 = 0.27y, 0.37y, 0.47y [thick line], 0.57y, 0.67y, 0.8 7y, Tw. All graphs have a local maximal value of approximately —0.757yw and another one for sp.y >
— Tw/2. The former is more significant for small 8 and large 7, whereas the latter increases with smaller 7 and larger . (e) Shows the dependence of the
global maximum .4 ™" of the APM on the membrane time constant 7. Diamonds denote B8J™ = 0.5, circles 8J™ = 0, while the other lines are obtained with
BJ™=0.1,0.2,0.3, 0.4 and show a monotonic increase of .#™>. In the same way, (f) shows a monotonically decreasing dependence of the shift s at .#/™
upon 7g. A sharp decrease reflects a transition (arrows) of .#™" from the short-7 (right) to the long-7g (left) peak in (b)—(d).

8. Discussion

Delay selection by means of Hebbian learning (Gerstner et
al., 1996; Roberts, 1999; Song et al., 2000) can account for
the emergence of temporal receptive fields on a time scale Ty
and, hence, for temporal maps (Kempter et al., 2001) on the
very same time scale set by the width 7y of the learning
window W. We have shown that synaptic structure formation
is a result of an interplay between neuron (model) and learn-
ing window. So, the following, natural, question comes up:
how, then, are learning window and neuron properties
adjusted to each other in the real brain? As far as we know,
there are as yet mere speculations only. Amongst those are
ideas of meta-plasticity, i.e. the learning parameters some-
how tune themselves by means of second-order ‘meta’ learn-

ing rules. Disregarding the lack of experimental evidence,
meta-plasticity simply postpones the key question: how is a
meta learning rule adapted to fit physiological reality?

A second way of looking at the above problem may be
more promising. Learning parameters as well as spike
generation are both results of the electrophysiological prop-
erties of one and the same nerve cell. Fast cells should be
fast in spike generation as well as in learning. It would,
therefore, be fruitful to find out whether and to what extent
both timescales reflect a common physiological origin.

Appendix

Learning window W and membrane response kernel e
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that have been used in Figs. 1 and 2 are given by

expl—(s ~ Strougn)/ Tw] $ > STrough
W(s) = 1 a{expl—(s = Strougn)/Tw] — €Xpl—(s = Strougn/Twl}  Speak < 5 = STrough
expl—(s = Spear)/Tw] § = Speak

and

s

{S/(’TE)ZGXP(—S/’TE) §>0
e(s) =

0 else

for Strough = Tw/S and Spe,x = 0 unless mentioned otherwise.
The factor a = 1/{1 — exp[—(Strough — Spear)Twl} 18
chosen so that W is a continuous function.
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