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Temporal Map Formation in the Barn Owl’s Brain
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Barn owls provide an experimentally well-specified example of a temporal map, a neuronal repre-
sentation of the outside world in the brain by means of time. Their laminar nucleus exhibits a place
code of interaural time differences, a cue which is used to determine the azimuthal location of a sound
stimulus, e.g., prey. We analyze a model of synaptic plasticity that explains the formation of such a
representation in the young bird and show how in a large parameter regime a combination of local and
nonlocal synaptic plasticity yields the temporal map as found experimentally. Our analysis includes the
effect of nonlinearities as well as the influence of neuronal noise.
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Many animals have in their brain neuronal representa-
tions of the outside world, which we call maps. These
representations are due to sensory organs. Vision, for in-
stance, provides a direct map through the lens of the eye
onto the retina and, accordingly, is dominantly spatial. Au-
dition, on the other hand, has far fewer cues but time is one
of them, a very important one. Here we face the question
of how a temporal map can arise and provide an answer
by considering a specific example, the barn owl’s sound
localization.

Barn owls are nocturnal predators that are able to catch
mice in complete darkness. In so doing they reach an
amazing azimuthal resolution of 2±. Interaural (inter-ear)
time differences have been shown [1] to be their only cue.
The spatial resolution implies a temporal precision at least
as good as 40 ms [2,3].

We focus on the laminar nucleus as the first station in the
brain receiving input from both ears. Interaural time dif-
ferences (ITDs) are represented there by means of a place
code. That is to say, the azimuthal position is mapped
one-to-one onto corresponding neuronal sites in the lami-
nar nucleus, each neuron signaling its preferred azimuthal
location through a maximal firing rate. As the stimulus
location is varied, so is the maximal ITD response in the
laminar nucleus [2]; cf. Fig. 1. Henceforth the resulting
map is a neuronal representation of azimuthal stimulus lo-
cations. We can now ask two questions. How does it func-
tion, in particular, why is the precision that good (40 ms),
and how does it arise? As we will see, the answers to both
questions are interrelated in that the map as it evolves leads
to firing precision.

Here we analyze how a novel mechanism of synaptic
plasticity [5] gives rise to a temporal map. As was in-
dicated by a numerical study [5], local so-called Hebbian
learning depending on spike timing of the pre- and postsyn-
aptic neuron [6,7], which precede and follow the synapse
under consideration (hence Hebbian), and small, axonally
propagated, synaptic modifications [8] together induce a
temporal map. One may call the underlying mechanism
“axon-mediated spike-based learning” (AMSL). We now
present an analytic solution to the proposed synaptic dy-
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namics and explain the model’s performance in depen-
dence upon the learning procedure, biological constraints,
and neuronal noise.

The basic, though often questioned, idea of an ITD
map dates back to Jeffress [9]. He proposed an array of
coincidence-detector cells with a topology as the one in
Fig. 1; we return to it in Fig. 4. If, at a specific neuron,
the difference of conduction delays between the axon
bundles originating from left and right ear compensates for
the acoustic time difference that occurs between both ears

FIG. 1. (a) Interaural time difference (ITD) map in a barn
owl’s laminar nucleus, after Sullivan and Konishi [4]. Iso-ITD
contours (solid lines) consist of neurons with maximal response
at ITDs as indicated; e.g., 225 corresponds to the left ear leading
by 25 ms. The vertical dashed line is the cut shown in (b), where
neuronal activity is conveyed by spike trains in axon bundles
(thin lines) that come from left and right ear, run in parallel to
the dorso-ventral direction (arrow), and contact neurons through
synapses (small white balls). Measuring firing rates of neurons
(large grey spheres) along this direction, one finds the neuronal
site where the firing rate is maximal to vary continuously with
the stimulus angle. Neurons are taken to be equidistant with
du � 10 mm, a typical value.
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and is caused by the sound source location, then the cell
receives spikes that are temporally highly correlated and
thus [10] fires at high rate. In the young animal each axon
carries phase-locked input but the temporal dispersion of
all spikes arriving at each neuron [2] has a width of 1 ms,
i.e., one to several periods of the frequencies involved
(1–9 kHz). We now show why nonetheless Jeffress was
right. In so doing we exploit that temporal (in)coherence
of spike arrival leads to synaptic potentiation (depression)
and in this way to a selection of axonal delays.

The spike-generating potential ym of laminar neuron m
(1 # m # M) is taken to be [11] a sum of postsynaptic
potentials e of the form as in Fig. 2(a), and

ym�t� �
NX

n�1

Jmn

X
t

f
n

e�t 2 tf
n 2 Dmn� . (1)

Here the input spikes are generated at times tf
n and delayed

through axon 1 # n # N by Dmn. The coefficients Jmn

are called synaptic weights and act as dynamical variables
for map formation.

Axonal selection is implemented by means of a learning
rule depending on spike timing initiated by (1) but such
[5] that a synapse-specific weight change � d

dt Jmn�local, due
to pre- and postsynaptic spikes at the very same synapse,
also has a small effect on all other (m0 fi m) synaptic
weights Jm0n connected to the same axon n. The total
change dJmn�dt is then given by

d
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where r is small and positive, say 0.01 , r , 0.1.
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FIG. 2. Excitatory postsynaptic potential e�s� � s�t2 3
exp�2s�t� for s $ 0, e�s� � 0 for s , 0 with t � 0.1 ms (a)
and learning window W [5] (b), as they have been used in nu-
merical simulations. The normalized temporal eigenvalues lT ~
Ŵ effêeff for bJfix � 0 (c), 1�3 (d), and 2�3 (e) show bandpass
properties. Real parts (solid lines) get broader as b increases,
whereas imaginary parts (dashed lines) approach zero.
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The local dynamics is governed by a Hebbian term
that involves the temporally averaged correlation function
Cmn�t, t0� between pre- and postsynaptic spike trains. In
addition, it has two stabilizing terms involving the tempo-
rally averaged pre- and postsynaptic firing rates nin

n and
nout

m , respectively,µ
d
dt

Jmn

∂
local

� h

∑
winnin

n 1 woutnout
m

1
Z `

2`
ds W �s�Cmn�t, t 1 s 2Dmn�

∏
.

(3)

This equation is exact as long as 0 , hnT ø 1 for firing
rates n and times T as they often occur in praxis, typical
changes of Jmn being too small to effect the momentary
neuronal dynamics [12,13]. The integral kernel W of the
correlation term in (3) is meanwhile widely known as the
learning window [6,7]; cf. Fig. 2(b).

In order to specify nin, nout, and C in Eq. (3), we take
an inhomogeneous Poisson process [10] that is suitable
for modeling the input spike trains stemming from acous-
tic stimulation. Since the auditory system is tonotopically
organized, i.e., different frequency components of a sound
are processed at different locations of the basilar mem-
brane, the array of Fig. 1(b) is preferentially exposed to
input with one prominent period Tp .

At least at the neuronal time scale of e and W [see
Figs. 2(a) and 2(b)], it is justified to deal with a peri-
odic input process whose intensity [10] is defined through
pin�t� � pg�t� where

RTp

0 ds g�s� � 1 and p � ninTp ad-
justs the process to a mean firing rate nin. Since the
distribution of delays at the borders of the laminar nu-
cleus D0n is about 1 ms wide, ITD-sensitive neurons have
best frequencies 1�Tp $ 1 kHz, and we consider delays
mod Tp , we put D0n � nTp�N with 1 # n # N . With
N between 100 and 1000, equidistant delays are a good
approximation to a homogeneous distribution [2] so that
Dmn � D0n 1 mdu�c. Here c � 5 m�s denotes the ax-
onal conduction velocity; cf. Fig. 1(b).

The explicit shapes of both the correlation function C
and the postsynaptic rate nout are a direct consequence of
the neuron model. In the present work, we use Poisson
neurons [10–13] whose firing probability density pF is
a function of the instantaneous membrane potential y�t�.
The probability that a neuron fires once during �t, t 1 Dt�
is pF�y�t��Dt; firing twice or more has a probability o�Dt�,
while the events in disjoint intervals are taken to be inde-
pendent. Here we take

pF�y�t�� � n0 exp�2by�t�� . (4)

A more general formulation will be given elsewhere.
The resulting dynamics dJ�dt � N �J� is nonlinear in

J � �Jmn�. To solve this nonlinear problem we proceed as
follows. First, we show that, under rather general condi-
tions, Jfix

mn � Jfix � const is a fixed-point configuration,
248101-2



VOLUME 87, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 10 DECEMBER 2001
i.e., N �Jfix� � 0. Second, we linearize the dynamics
about the fixed point and analyze the system’s temporal
evolution by means of a spectral analysis of the first deriva-
tive DN [13–15].

With J � Jfix, the mean firing rate is constant in time
and independent of the position m of the laminar neuron,

nout � n0 exp

Ω
Nnin

Z `

0
ds�exp ���bJfixe�s���� 2 1�

æ
. (5)

The correlation function is independent of time,

Cmn�t 1 r, t� � noutnin exp�bJfixe�r 2 Dmn�� . (6)

The fixed-point equation N �Jfix� � 0 gives

nout

nin
�

2win

nin
R

ds Weff�s,bJfix� 1 wout
�: g , (7)

where the effective learning window is defined to be
W eff�s, x� :� W�s� exp�xe�2s��. In neuronal networks
the ratio g between input and output rate is of order 1.
An arbitrary value of g . 0 can be obtained by adjusting
win and wout in (7), whatever the value of nin and bJfix.
We thus postulate a fixed positive value g and, due to (5),
we can write

ln�gnin�n0�
Nnin �

Z `

0
ds�exp�bJfixe�s�� 2 1� , (8)

which we define to be c�bJfix�. Here c is a monotoni-
cally increasing function of bJfix with c�0� � 0. Hence,
for ln�gnin�n0� . 0, there is a unique fixed-point solu-
tion bJfix.

Linearizing the equations of motion makes sense as the
negative spectrum tells us what the domain of attraction
looks like. Furthermore, typical initial conditions can be
shown to be here. Hence the system first approaches the
fixed point before the “positive” eigendirections take over.
The linearized differential equation reads in the neighbor-
hood of the fixed point

d

dt
imn � h̃

X
m0n0

�dmm0 1 r� �k 1 Qnn0�im0n0 , (9)

where h̃ � hbnoutnin. This is just a rewriting of
di�dt � DN i. Defining the effective response kernel
eeff�s, x� :� e�s� exp�xe�s�� and Fourier transform f̂m :�R

ds f�s�e22pim�Tps , we find k � woutê
eff
0 and

Qnn0 � nin
X̀

m�2`

jĝmj
2êeffm Ŵ eff

m e2pim�Tp�Dmn2Dmn0 �. (10)

Qnn0 does not depend on m since due to a constant axonal
conduction velocity c � 5 m�s [2] the delay difference
Dmn 2 Dmn0 � D0n 2 D0n0 between axon n and n0 is in-
dependent of the position m of the laminar neuron. Hence
Eq. (9) is separable in space �m� and time �D0n� so that
eigenfunctions f and eigenvalues l are products of a spa-
tial and a temporal component, viz., fmn � fS

mf
T
n with

l � lSlT.
We now turn to structure formation. The spatial eigen-

value with largest real part lS � 1 1 rM belongs to the
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constant vector fS
m � 1, whereas the temporal eigenvalue

lT � h̃ninjĝmj2êeffm Ŵeff
m with the largest real part has to

be determined through an analysis of the Fourier com-
ponents êeffm Ŵeff

m ; see Figs. 2(c)–2(e). For sufficiently
high v � 2p�Tp (the minimal best frequency of lami-
nar neurons is about 1 kHz, which yields v � 6 kHz),
we find the maximal real part for m � 61 and, there-
fore, in the Dmn-m plane of Fig. 3, the prominent eigen-
vector is fmn � exp�2piDmn�Tp�, which is consistent
with numerical simulations [5] and explains experimental
findings [2].

Let us imagine that, after a few days of learning, the
learning rule (2) has produced the synaptic structure that
is shown in Fig. 3. Then the ensemble-averaged mem-
brane potential 	ym�t�
 is a standing wave, with wavelength
cTp�2. The neuronal position of maximal amplitude is de-
termined by the phase difference F between input from
the left and right ears. As is indicated in Fig. 4, we have
obtained a place code representing the interaural time dif-
ference TpF��2p�. Because of the (nonlinear) firing prob-
ability given by (4), the standing-wave amplitudes of the
neuronal input (1) are transformed into spikes, hence firing
rates, and yield a place code of sound-stimulus azimuth as
found in experiment [2,4] and shown in Fig. 1(a). A neu-
ronal timing precision as good as 40 ms is a direct conse-
quence of the synaptic delay selection [6].

Imaginary parts of eigenvalues of the operator DN in
(9) lead to oscillations and are as such disadvantageous
to structure formation. A closer look at Figs. 2(c)–2(e)
reveals, however, that imaginary parts are suppressed by
increasing b. That is to say, nonlinearities in pF can
stabilize synaptic learning.

Another interesting result of the present analysis is that
the axonal interaction strength r contributes to the spatial
eigenvalue lS as 1 1 rM. In other words, r � 1�M
already affects the synaptic dynamics distinctly. There
is experimental evidence [8] that such contributions may
indeed be very weak.
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FIG. 3. The leading eigenvector of the operator DN from
Eq. (9), for a 5 kHz input, an axonal conduction velocity of
5 m�s [2], and du � 10 mm distance between neighboring neu-
rons. The eigenvectors of left- and right-ear afferents differ by
the direction of spike conduction. They give a temporal map as
in Fig. 1(a); D is to be taken mod Tp .
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FIG. 4. Coincidence detector array of neurons (grey shaded
circles) as proposed by Jeffress [9]. Auditory stimuli are trans-
duced to cells in the barn owl’s laminar nucleus. They are de-
layed by (i) the spatial distance between the sound source and
the ears (dot-dashed lines) and (ii) the physiological conduction
from the ear to the cell (solid lines). In reality, many more axons
than one are involved. After delay tuning, the averaged mem-
brane potential 	y�t�
 � y0 1 y1 cos�vpum�c 1 F� cos�vpt�
is a standing wave across the laminar nucleus with wavelength
cTp�2, and constants y0�1 depending on the choice of parame-
ters. Its phase F is defined by the interaural time difference.
The azimuthal position of the sound source in auditory space is
thus mapped onto the position um of maximal amplitude yamp �
jy1 cos�vpum�c 1 F�j of the membrane potential within the
laminar nucleus. The brighter the circle, the higher the mem-
brane potential amplitude. (b) For comparison, we show the
simulated amplitude of the membrane potential (dots with er-
ror bars) and its theoretical prediction (solid line) for an ITD of
50 ms, interaction parameter r � 0.7�30, and synaptic weights
after 875 s of formal learning time. Other parameter values have
been taken from Kempter et al. [5].

In spite of that, one might argue the higher r the faster
structure formation. This holds true as long as Eq. (2) is
valid. Since, however, it is an ensemble-averaged equation
we have to investigate the effect of r on the standard
deviation and, hence, the variance of the trajectory of Jmn

due to jittery spike input and output. We obtain [12]

Var�Jmn� �t� � t��1 1 rM�2D1 1 �1 1 2r 1 r2M�D2

1 O �N21�2�� , (11)

where D1 and D2 are of order O �h2� and give the diffusion
constant D :� t21Var�Jmn�. In this way we find the time
scale of weight changes evoked by input noise to be of the
order of �Jfix�2�D and end up with two scenarios. Both
follow from the requirement that terms involving r in (11)
be of order 1.

First, if D1 * D2, the leading power of the interaction
terms in (11) is �rM�2. Therefore r & M21 gives a con-
straint for the order of magnitude of the interaction parame-
ter. A number of, e.g., M � 30 postsynaptic cells, which
is roughly the number of neurons along the ITD gradient in
the laminar nucleus, yields r & 3% as a maximum for the
axonal interaction. Second, if D1 ø D2 the leading power
is r2M, which yields an upper limit r & M21�2. Hence
for M � 30 we get the condition r & 18%. An in vitro
experiment on hippocampal cells [8] suggests r � 1%.
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In conclusion, the present work shows how the forma-
tion of an interaural time-difference map depends on an
interplay of the parameters of the learning rule, such as the
shape of the learning window and the non-Hebbian contri-
butions win and wout, and neuronal properties, such as the
shape of the response kernel and the firing-probability den-
sity. In particular, we have proven that an unspecific axonal
modification of order r � O �1�M� is sufficient for map
formation. We have also shown how nonlinearities in spike
generation stabilize synaptic learning and, with Eq. (7), we
have given an explicit expression that relates the quotient
of input and output rate of map neurons to the parameters
characterizing their synaptic learning rule. In so doing we
have recovered the temporal map as it occurs in the lami-
nar nucleus of the mature barn owl. Further along the
auditory pathway, the two “one-dimensional” interaural
intensity level difference and ITD maps are combined [16]
so as to give a mental representation of the prey’s position
in spherical coordinates �u,f�.
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