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A general statistical mechanical analysis is presented for networks of graded-response neurons
whose dynamics is described by a system of differential RC-charging equations. The analysis re-
quires that the dynamics is governed by a Lyapunov function, a condition that is met for networks
whose synaptic matrix is symmetric, and whose neurons have monotonically increasing input-
output characteristics. Apart from this, the input-output relations may be arbitrary. In particu-
lar, they may vary from neuron to neuron. As examples, we study networks with synaptic cou-

plings as in the Hopfield model:

two homogeneous networks consisting of neurons with a sig-

moidal or a piecewise linear input-output relation, and a network containing a random mixture of

these two neuron types.

Recent years have witnessed an intense effort among
physicists to understand the dynamics of large networks of
mutually interacting neuronlike elements.!”® A major
breakthrough was accomplished by Hopfield,>? who
demonstrated that a noiseless asynchronous threshold dy-
namics of a network of formal two-state neurons with
symmetric synaptic couplings is governed by a Lyapunov
or energy function which takes the form of an Ising spin-
glass Hamiltonian. Peretto® then established that the na-
ture of attractors in the presence of noise is amenable to
analysis by the tools of equilibrium statistical mechanics.
The feasibility and the power of this program has been
demonstrated in a series of papers by Amit, Gutfreund,
and Sompolinsky,* and countless variations on the theme
have appeared since then. For recent comprehensive re-
views, the reader may consult Refs. 5 and 6.

Most of the results so far obtained pertain to networks
of two-state neurons, equipped with a stochastic dynamics
of Glauber or heat bath type. There are a few excep-
tions,” ~!'? mainly dealing with neurons that can take on
more than two discrete states; see, however, Ref. 13 for a
recent study of asynchronous stochastic networks of ana-
log neurons with threshold-linear response. Invariably,
though, networks were assumed to be homogeneous in
that all neurons behave identically. In the present paper
we drop both the homogeneity assumption and the
discreteness constraint on the output states of the neurons.
We study networks of graded-response (analog) neurons
with a deterministic continuous-time dynamics described
by a set of differential RC charging equations
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that has been proposed by Hopfield'* in an attempt to
capture the influence of capacitive input delays, of
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transmembrane leakages and graded input-output charac-
teristics that is always present in a system of real neurons.
In (1), C; denotes the input capacitance of the ith neuron,
R; its transmembrane resistance, U; its postynaptic poten-
tial (PSP), and V; its instantaneous output. The input-
output characteristics of a neuron is described by its gain
function g; as in (1b), where 7, is a gain parameter. The
I; represent external current sources and the synaptic
weights are, as usual, denoted by J;;. Networks of graded
response neurons, though with a (parallel) discrete-time
iterated map dynamics, have been studied by Marcus and
Westervelt; '> see also Refs. 16 and 17, and the comments
below.

In the present contribution, we analyze the collective
behavior of networks of graded response neurons de-
scribed by (1) in the spirit of statistical mechanics. The
necessary condition for our approach to be applicable is
the existence of a Lyapunov function for (1)—a condition
that is satisfied for networks whose synaptic matrix is
symmetric and whose neurons have monotone increasing
input-output relations.'* The input-output characteris-
tics may be otherwise arbitrary, and may vary from neu-
ron to neuron. By continuity, nondecreasing input-output
relations are covered as limiting cases. Moreover, '* self-
connections are allowed, in contrast to the situation in sto-
chastic models. Up to stability, the fixed points of the
iterated map and of the continuous-time dynamics should
be identical, and in some respects, our findings confirm the
results of Marcus, Waugh, and Westervelt.'® There are,
however, also a number of differences and discrepancies.
They will be discussed as we go along.

The Lyapunov function governing (1) is given'* by
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where G; is the integrated inverse input-output relation of

2084 ©1991 The American Physical Society



43 STATISTICAL MECHANICS FOR NETWORKS OF GRADED- . . .

neuron i,
14
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and ¥V, denotes the output voltage of the neuron at zero
transmembrane potential U, ie., Vo=g;(0). The ex-
istence of a Lyapunov function entails that the dynamics
of networks described by (1) always converges to fixed
points, which are global or local minima of # . This ob-
servation immediately tells us how our analysis of the col-
lective behavior of neural nets described by (1) should
proceed. We have to compute the zero-temperature
(B— o) limit of the free energy

v ==@N) "'in [Tldo(Wexp(—p#n), (&)

and analyze the nature of its stable and metastable
phases. This provides a general method to find the fixed
points of (1) which are separated by extensive energy bar-
riers and to characterize them macroscopically. As for
the possibility of other, locally stable, fixed points of (1),
it will be discussed later on. In (4), dp(V) denotes an a
priori measure of the output voltage of the individual neu-
rons, which we take to be uniform on its support. It will
turn out that, as long as we are interested in deterministic,
i.e., zero-temperature properties of our system, the sup-
port of dp is indeed all that matters.

We now specify the details of our system. To facilitate
comparison with the perhaps most well-known and best-
understood model, our first choice will be a soft-neuron
version of the Hopfield network. Thus, we assume that
the couplings are given by

Jfﬁiﬁlé,-“ f i, Ju=0, )

designed to store a set of g unbiased binary random pat-
terns {€#}. For simplicity and as a first step, we shall take
the network to be homogeneous. That is, all neurons are
assumed to attain output voltages V; in the interval
[—1,1], and R; =C; =1 (in suitable units) throughout the
network. Moreover, the input-output relation g will be
taken to be the same for all neurons, i.e., g; =g for all i.
Since the mean-field analysis below can be carried out
without specifying the gain function g, we will, however,
J
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not restrict generality by choosing a specific input-output
relation until it comes to the numerical solution of the
fixed-point equations describing the attractors of (1).

The above homogeneity assumptions are by no means
necessary to keep the analysis feasible. They can and will
be relaxed later on. In particular, nonzero self-inter-
actions and input-output relations varying from neuron to
neuron are easily dealt with. They introduce nothing but
an extra element of on-site disorder, the analytic descrip-
tion of which presents no additional difficulties of princi-
ple. All this will eventually allow us to study, for instance,
networks consisting of several types of neurons.

For the time being let us, however, stick to homogene-
ous networks and to the Hebbian synapses (5). For such
systems, the free energy (4) may be expressed as

v == BN 1o [ TIdpDexp [ﬂzﬁzmg] NG)
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where we have introduced the overlaps
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and where the integrated inverse input-output relation as
well as a correction term taking account of the vanishing
self-interactions in (5) have been absorbed in the single-
site measure for the V;, i.e.,

my, =
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There are two essentially different limits to investigate,
the limit of finitely many patterns, and the limit of exten-
sively many patterns, ¢ =aN, a>0. The evaluation of
the free energy closely follows Amit, Gutfreund, and Som-
polinsky,* with a few modifications to cope with the con-
tinuous nature of our fundamental variables. To deal with
these, the large deviations techniques outlined, e.g., in
Ref. 18, come in handy.

In the limit of extensively many-stored patterns, the
free energy per neuron is evaluated by the replica method
(see, e.g., Refs. 4-6, and 18). For states which have mac-
roscopic overlaps with, at most, finitely many, say p, of the
aN stored patterns, the replica-symmetric approximation
gives

f(B)=1% £m3+%{ﬂ_lln[l —B(go—q )1+ (qo—q)F+B(go—q1)r}
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Here, the large double angular brackets represent a com-
bined average over the £ associated with the (at most) p
macroscopically condensed patterns, and the Gaussian
random variable z with zero mean and unit variance. The
measure dp(V) has been defined in (8), and
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The m,, qo, and ¢, in (9) must be chosen so that they
satisfy the fixed-point equations

m, =& Ve, , (102)
go=IV2,.), (10b)
g1 =KIVIE.N, (10¢)
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where we have introduced the shorthand notation

fdﬁ(V)F(V)exp{ﬁ[ [Zmﬂé“+\/ﬁz] V+ i—aFVz] }
"
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Let us recall at this point that for the description of the
attractors of the deterministic dynamics (1), we have to
investigate these equations in the limit 8— co. In this
limit the average (11) is easy to compute. Provided that
the a priori measure dp(V) is sufficiently smooth on its
support, we find, using (8), that the effective probability
measure used to evaluate [F(V)],; in Eq. (11) converges,
as f— o, to a Dirac measure at the point(s) V=V ({,z)
where

exp|—aV¥2—y G+ [Zmy.f“+\/arz] V+ %r”V2
u

is maximal. It is (they are) determined implicitly as a
solution(s) of the fixed-point equation

I7=g[7[2mpé‘“+\/¢72+a(f‘1)’}” (12)
7

on the support of dp. For a > 0, the dependence of Von &
and z as described by (12) implies that, in an attractor,
the PSP experienced by individual neurons has a non-
Gaussian distribution.

The case of finitely many-stored patterns can be
recovered by taking the limit a— 0 in (8)-(12). In this
limit the m, alone are sufficient to characterize the macro-
scopic state of the system and must be chosen to satisfy
(10a). Moreover, the Gaussian average in (9) and (10)
becomes trivial, and V'in (12) can be determined explicit-
ly, yielding V(&) =g(yX,m,E"). For sigmoidal input-
output relations g, having g(0)=0 and g'(0) =1, the
“paramagnetic’ null solution m, =0 at low gain will lose
local stability, as the gain y increases above y, =1.

Depending on higher-order derivatives of g at x =0, the
phase transition in the vicinity of y =1 may be continuous
with critical exponent 3 for the order parameter, tricriti-
cal or higher-order critical, or discontinuous.

For the special choice g(x) =tanh(x), the system is for-
mally equivalent with its stochastic Ising-spin counterpart
at inverse temperature §=1y. This result corresponds to
related findings of Marcus et al. 16 However, in contrast
to what has been found for the iterated map network, this
formal equivalence does not persist in the limit of exten-
sively many stored patterns, a > 0, to which we now re-
turn.

As y— o (recall that we have to take the f— oo limit
first), Eqs. (10) reduce to a set of fixed-point equations
which are formally equivalent with those describing the
zero-temperature limit of the Hopfield model,* provided
that g(x) is monotone increasing from —1 to +1 as x in-
creases from — oo to + oo, This equivalence does not per-
sist as one moves away from the infinite gain limit, not
even if the input-output relation is taken to be g(x)
=tanh(x); see the phase diagram Fig. 1. In particular,
the ‘“paramagnetic” null state at high inverse gain be-

fdﬁ(V)exp{ﬁ[ [Zm“§“+\/572] v+ ;—afvz] }

T
comes locally unstable against spin-glass-type ordering
with g0, as the inverse gain is decreased below ¥, !
=1+2va. This curve is universal among standardized
input-output functions with g(0) =0 and g'(0)=1. It
should be contrasted with the line ﬁg“l =1+Va separat-
ing the paramagnetic and spin-glass phases in the stochas-
tic Hopfield model. Here, our results agree with the
findings of Marcus et al.'®

Upon closer inspection, however, there are several
differences. For instance, the self-consistency equations of
Marcus et al.'® which characterize the stationary attrac-
tors of the iterated map network (if they are stable), differ
from those derived in the present work [Egs. (10), respec-
tively the — oo limit thereof]l. On the other hand, the
fixed points of the iterated map and of the continuous time
dynamics should, up to stability, be identical. The origin
of the discrepancy is twofold. First, Marcus ez al. failed
to introduce correction terms that would take the absence
of self-interactions into account. Second, the analysis of
Ref. 16 is de facto a signal-to-noise ratio analysis, and
therefore only approximate.'® B6s®® has extended the
present analysis to the case of pseudoinverse couplings.
The analysis follows Ref. 21; it is complicated by the fact
that ¥?=1 which calls for the introduction of further or-
der parameters beyond those in Ref. 21. The resulting
fixed-point equations are also different from the corre-
sponding signal-to-noise ratio approximation of Ref. 16.

Equations (6)-(12) are for systems which are homo-
geneous in the sense described above. If we have nonzero
self-interactions, J;#0, and input-output relations V;
=g;(y;U;) as well as transmembrane resistances R; vary-
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FIG. 1. Phase diagram for soft-neuron versions of the
Hopfield model. Boundaries between retrieval and spin-glass
(SG) phases have been marked tanh and p-l for the models with
gain functions g(x) =tanh(x) and the piecewise-linear function
g(x) =sgn(x)min(|x]|,1), respectively. The boundary between
the null-state and the spin-glass phase is the same for both mod-
els. Dashed lines give Ising model results for comparison.
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ing from site to site, the single-site measure dg(¥) in (8)
must be replaced by the site-dependent measure

dp; (V) =dp(Mexpipl s Ui — )V —1"'G; (N, (13)

where A; =¥;R;, and where G; denotes the integrated in-
verse input-output relation for g; as in (3). It is then fair-
ly straightforward to see that, if the J;;, R;, ¥, and g; are
randomly selected according to some distribution satisfy-
ing rather mild regularity conditions (finiteness of the
family of possible input-output relations suffices), Egs.
(9)-(12) remain formally unaltered, except that the dou-
ble angular brackets in (9) and (10) now imply an addi-
tional average over the random measure dp;(V); for an
example, see Fig. 2.

Finally, as stated above, the T=0 limit of (4) can, in
general, only give fixed points of (1) which are “macro-
scopically stable” in the sense that they are surrounded by
extensive energy barriers. However, for the soft-neuron
Hopfield model, it is easy to establish that, for finitely
many patterns (@ =0), all stationary points of the micro-
scopic dynamics (1) are also solutions of the 7=0 mean-
field equations [in casu (10a)], i.e., they are all either ma-
croscopically stable, or unstable. At extensive levels of
loading (a > 0), numerical investigations of the micro-
scopic equations also confirm the picture presented by
mean-field theory, up to finite-size rounding of the phase
transitions and remanence effects in the spin-glass phase,
of course—in complete analogy to what is found in sto-
chastic neural networks (at 7=0).*

The virtue of the present contribution is perhaps not so
much in having produced surprising results about the two
systems we have studied as examples. Our main idea was
to show that the continuous-time dynamics (1) is amen-
able to analysis by the tools of statistical mechanics. We
do, however, believe that our ability to study networks
consisting of several types of neurons fairly easily might
carry some potential for the integration of further neuro-
physiological detail into neural-network models, although
admittedly, synaptic symmetry remains as one of the ma-
jor unrealistic features of the systems that can be handled
by our approach. For networks of operational amplifiers
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FIG. 2. Phase boundaries between retrieval and spin-glass
phases for a network in which half of the neurons have a piece-
wise linear, the other half a hyperbolic tangent input-output re-
lation. For several values of the gain parameter of the
piecewise-linear neurons, the critical inverse gain of the hyper-
bolic tangent neurons has been plotted as a function of storage
level @. From top to bottom we have ¥p.1=2.0, y,.1=1.5, and
¥p-1=1.0, respectively.

our analysis is quantitative. It might thus be used in the
process of optimizing the design of such devices. We have
as yet not studied the stability of our results with respect
to replica symmetry breaking (RSB). However, in the re-
trieval phase, we expect RSB to occur only at fairly high
gains, where the system is already almost fully ordered, so
that the effects should be small. With additional concep-
tual and technical input, one can also tackle noisy variants
of the dynamics (1). Results as well as further details
about the present investigation will be presented else-
where.
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