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We develop a minimal time-continuous model for use-dependent synap-
tic short-term plasticity that can account for both short-term depression
and short-term facilitation. It is analyzed in the context of the spike re-
sponse neuron model. Explicit expressions are derived for the synaptic
strength as a function of previous spike arrival times. These results are
then used to investigate the behavior of large networks of highly inter-
connected neurons in the presence of short-term synaptic plasticity. We
extend previous results so as to elucidate the existence and stability of
limit cycles with coherently �ring neurons. After the onset of an external
stimulus, we have found complex transient network behavior that man-
ifests itself as a sequence of different modes of coherent �ring until a
stable limit cycle is reached.

1 Introduction

Short-term synaptic plasticity refers to a change in the synaptic ef�cacy on
a timescale that is inverse to the mean �ring rate and thus of the order of
milliseconds. It is therefore natural to inquire whether and to what extent
this has functional consequences and to elucidate the underlying mech-
anisms (Markram & Tsodyks, 1996; Abbott, Varela, Sen, & Nelson, 1997;
Senn, Segev, & Tsodyks, 1997). The experimental observation underpinning
short-term synaptic plasticity is the fact (Zucker, 1989) that the transmission
of an action potential across a synapse can have a signi�cant in�uence on
the height of the postsynaptic potential (PSP) evoked by subsequently trans-
mitted spikes. In some neurons, the height of the postsynaptic potential is
increased by spikes that have arrived previously (short-term facilitation,
STF). In others, the postsynaptic potential is depressed by previously ar-
rived action potentials (short-term depression, STD).

Short-term synaptic plasticity, or simply short-term plasticity, is different
from its well-known counterpart long-term plasticity, in at least two crucial
points. First, nomen est omen, the timescale on which short-term plasticity
operates is much shorter than that of long-term plasticity and may well
be comparable to the timescale of the network dynamics. Second, short-
term plasticity of a given synapse is driven by correlations in the incoming
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spike train (presynaptic correlations), whereas classical long-term plasticity
is driven by correlations of both pre- and postsynaptic activity; a prominent
example of the latter is Hebb’s learning rule (Hebb, 1949; Gerstner & van
Hemmen, 1993).

The article is organized as follows. We start by analyzing a simple model
of short-term plasticity that is an adaptation of the model of Tsodyks and
Markram (1997) to the spike response model (Gerstner & van Hemmen,
1992). In section 3 we analytically discuss the implications of short-term
plasticity for the behavior of a homogeneous, strongly connected network
and show that the dynamics exhibits attractive limit cycles of coherent neu-
ronal activity. This is illustrated in section 4, where we present computer
simulations and discuss the transient behavior of the network that shows
up before the dynamics has settled down in its limit cycle. Beforehand we
de�ne the difference between coherence and synchrony. “Coherently �ring”
means “periodically�ring with constant phase difference,” while �ring syn-
chronously” implies phase difference zero.

2 Short-Term Synaptic Plasticity

Modeling short-term plasticity is based on the idea that some kind of “re-
sources” is required to transmit an action potential across the synaptic cleft
(Liley & North, 1953; Magleby & Zengel 1975; Abbott et al., 1997; Tsodyks
& Markram, 1997; Varela et al., 1997). The term resource can be interpreted
as the available amount of neurotransmitter, some kind of ionic concen-
tration gradient, or the postsynaptic receptor density or availability. We
assume that every transmission of an action potential affects the amount
of available synaptic resources and that the amount of available resources
determines the ef�ciency of the transmission and therefore the maximum
of the postsynaptic potential.

We intend to discuss short-term plasticity in the context of the spike
response model, of which we give a short review; details can be found in
Gerstner and van Hemmen (1992) and Kistler, Gerstner, and van Hemmen,
(1997). It will turn out that this formalism is very convenient in deriving
closed analytic expressions for the synaptic strengths as a function of spike
arrivals and time.

2.1 Spike Response Neurons. The spike response model (Gerstner &
van Hemmen, 1992) does not concentrate on the details of the synaptic
transmission but focuses on the effect of an incoming action potential on
the membrane potential at the soma. There it is described by an response
function 2 [with 2 (t < 0) D 0] that represents the time course of a postsy-
naptic potential. Several postsynaptic potentials are assumed to superpose
linearly in space and time so that the membrane potential at the soma of
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neuron i is given by
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where the t f
j are the �ring times of the presynaptic neuron j, Jij is the strength

of the synapse connecting neuron j to neuron i, and D ij is the axonal delay
from neuron j to neuron i.

A spike is triggered as soon as the membrane potential reaches the �ring
threshold # from below. Refractory behavior is implemented by increasing
the threshold for some time after the neuron has �red or, equivalently, by
adding a negative afterpotential g(t) to the membrane potential whenever
the neuron has �red. Altogether we have
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The spike response model is a generalization of the standard integrate-and-
�re model. This can easily be seen if the response functions 2 and g are
replaced by exponentials (for details, see Kistler et al., 1997).

If we want to include short-term plasticity, we have to replace the con-
stants Jij by functions of time, Jij(t), which give the strength of the synapse
at time t. The relevant quantity for synaptic transmission is the synaptic
strength at the time of the arrival of a presynaptic spike,
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The time-dependent synaptic strength Jij(t) is a function that depends on
both time and the moments of arrival of the spikes from neuron j. This
function will be computed in the next subsections.

2.2 Modeling Short-Term Depression. Simple models based on �rst-
order reaction kinetics have repeatedly been shown to allow for a quantita-
tive description of short-term plasticity at neuromuscular junctions (Liley
& North, 1953; Magleby & Zengel, 1975) and cortical synapses (Tsodyks
& Markram 1997; Varela et al., 1997). The model of Tsodyks and Markram
(1997) assumes three possible states for the “resources” of a synaptic con-
nection: effective, inactive, and recovered. Whenever an action potential
arrives at a synapse, a �xed portion R of the recovered resources becomes
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�rst effective, then inactive, and �nally recovers. Transitions between these
states are described by �rst-order kinetics using time constants tinact and trec.
The actual postsynaptic current is proportional to the amount of effective
resources.

In the context of the spike response model, the three-state model can be
simpli�ed since the time course of the postsynaptic current, as it is described
by the transition from the effective to the inactive state, is already taken
care of by the form of the postsynaptic potential given by the response
function 2 . The only relevant quantity is the maximum (minimum)1 of the
PSP determined by the charge delivered by a single action potential. Since
transitions from the effective and the inactive to the recovered state are
described by linear differential equations, the maximum of the PSP depends
on only the amount of resources that are actually activated by the incoming
action potential. We may thus summarize the two-step recovery of effective
resources by a single step and end up with a two-state model of active (Z)
and inactive ( NZ) resources. Each incoming action potential instantaneously
switches a proportion R of active resources to the inactive state from where
they recover to the active state with time constant t ; see Figure 1A. Formally,

dZ(t)

dt
D ¡R Z(t) S(t) C t ¡1 NZ(t) , NZ(t) D 1 ¡ Z(t) , (2.4)

with S(t) D
P

f d(t ¡ tf ) being the incoming spike train. This differential
equation is well de�ned if we declare Z(t) to be continuous from the left—
Z(tf ) :D Z(tf ¡ 0).

The amount of charge that is released in a single transmission and there-
with the maximum of the PSP depends on the amount of resources that
are switched to the inactive state or, equivalently, on the amount of active
resources immediately before the transmission. The strength of the synapse
at time t is then a function of Z(t), and we simply put J(t) D J0 Z(t) where
J0 is the maximal synaptic strength with all resources in the active state.

Let us now suppose that the �rst spike arrives at a synapse at time t0.
Immediately before the spike arrives, all resources are in their active state,
and Z(t0) D 1. The action potential switches a fraction R of the resources to
the inactive state so that Z(t0 C 0) D 1 ¡ R. After the arrival of the action
potential, the inactive resources recover exponentially fast in t, and we have

Z(t > t0) D 1 ¡ R exp [¡(t ¡ t0)/t ] .

At the arrival time t1 of the subsequent spike, there are only Z(t1) resources
in the active state, and the PSP is depressed accordingly (see Figures 2A
and 2B).

1 We henceforth drop the alternative minimum, which takes care of an inhibitory
postsynaptic potential, and assume an excitatory one, the modi�cations for inhibition
being evident.
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Figure 1: Schematic representation of the present model of short-term depres-
sion (A) and short-term facilitation (B). With short-term depression, every in-
coming action potential switches a proportion R of active resources Z to the
inactive state NZ. This is symbolized as a �rst-order reaction kinetics with the
time-dependent rate R S(t); here S is the incoming spike train. From the inac-
tive state, resources relax to the active state with time constant t . The model
for short-term facilitation emerges from the model for short-term depression
simply by inverting the directions of the arrows. NA represents the ineffective re-
sources, which are decimated by incoming spikes with a rate Q S(t). The active
resources A relax back to the inactive state with a rate t ¡1 .

From the �rst few examples we can easily read off a recurrence relation
that relates the amount of active resources immediately before the nth spike
to that of the previous spike,

Z(t0) D 1

Z(t1) D 1 ¡ R exp [¡(t1 ¡ t0)/t ]

Z(t2) D 1 ¡ [1 ¡ (1 ¡ R) Z(t1)] exp [¡(t2 ¡ t1)/t ]
...

Z(tn) D 1 ¡ [1 ¡ (1 ¡ R) Z(tn¡1)] exp [¡(tn ¡ tn¡1)/t ] . (2.5)

In passing we note that instead of Z(t0) D 1, we could have taken any desired
initial condition 0 < Z0 · 1; the ensuing argument does not change.

The recurrence relation (see equation 2.5) is of the form Z(tn) D an C
bn Z(tn¡1) with an D 1 ¡ exp[¡(tn ¡ tn¡1)/t] and bn D (1 ¡ R) exp[¡(tn ¡
tn¡1)/t ]. Recursive substitution and a short calculation yield the following
explicit expression for the amount of active resources,

Z(tn) D an C bn an¡1 C bn bn¡1 an¡2 C ¢ ¢ ¢

D
1X

kD0

an¡k

k¡1Y

jD0

bn¡j
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Figure 2: Membrane potential (solid line) and synaptic strength (dashed line)
as a function of time in case of short-term depression (A, B) and facilitation
(C, D). In (A), only a small portion R D 0.1 of all available resources is used
during a single transmission, so that the synapse is affected only slightly by
transmitter depletion. In (B), the parameter R is increased to R D 0.9. This
results in a pronounced short-term depression of the synaptic strength. Short-
term facilitation is illustrated in the lower two diagrams for A0 D 0.1, Q D 0.2
(C) and A0 D 0.1, Q D 0.8 (D). For all �gures, the time constant of synaptic
recovery is t D 50 ms, and the rise time of the EPSP equals 5 ms. The spikes
arrive at t D 0, 8, 16, . . . , 56 ms, and �nally at t D 100 ms.

D
1X

kD0

an¡k(1 ¡ R)k exp[¡(tn ¡ tn¡k)/t ]

D 1 ¡ R
1 ¡ R

1X

kD1

(1 ¡ R)k exp[¡(tn ¡ tn¡k)/t ] . (2.6)

The synaptic strength at time t as a function of the spike arrival times t >
tn¡1 > tn¡2 > ¢ ¢ ¢ is given by

J(tI tn¡1, tn¡2, . . .) D J0

(
1¡ R

1 ¡ R

1X

kD1

(1¡R)k exp[¡(t¡tn¡k)/t ]

)
. (2.7)

This is a key result for what follows.
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2.3 Periodic Input. The synaptic strength J is a nonlinear function of the
spike arrival times tf . We can give a simpli�ed expression for J in the case of
a sudden onset of periodic spike input. Let tn D n T for n ¸ 0 and tn D ¡1
for n < 0. We obtain from equation 2.6 for n > 0,

Z(tn) D 1 ¡ R
1 ¡ R

nX

kD1

(1 ¡ R)k exp[¡k T/t ]

D 1 ¡ R
eT/t ¡ (1 ¡ R)

n
1 ¡

h
(1 ¡ R) e¡T/t

ino
. (2.8)

The behavior of Z(tn) for large n can be read off easily from the above
equation. Since 0 < e¡T/t (1 ¡ R) < 1, the braced expression converges to
unity exponentially fast, and the rest, which is independent of n, gives the
asymptotic value of Z(tn) as n ! 1.

2.4 Modeling Short-Term Facilitation. In a similar fashion, we can de-
vise a model that accounts for short-term facilitation instead of depression.
To this end, we assume that in the absence of presynaptic spikes, the fraction
of active synaptic resources A(t) decays with time constant t . Each incoming
spike recruits a proportion Q from the reservoir NA of ineffective resources;
see Figure 1B. Then the dynamics of A(t) is

dA(t)

dt
D Q NA(t) S(t) ¡ t ¡1 A(t) , NA(t) D 1 ¡ A(t) , (2.9)

with S(t) D
P

f d(t ¡ tf ) as the incoming spike train and A(t) being con-
tinuous from the left. Magleby and Zengel (1975) used a similar model to
describe synaptic potentiation at the frog neuromuscular junction.

For a discrete set of spike arrival times tf D t0, t1, . . . the amount of
effective synaptic resources immediately before the nth spike as a function
of that before the previous spike is

A(tn) D an C bn A(tn¡1), (2.10)

where

an D Q exp
³

¡ tn ¡ tn¡1

t

´
and

bn D (1 ¡ Q) exp
³

¡ tn ¡ tn¡1

t

´
. (2.11)

In a similar way to equation 2.6, we obtain an explicit expression for the
amount of effective resources. We adopt a simple linear dependence of
the synaptic strength J on the amount of effective resources A of the form
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J D J0 [A0 C (1 ¡ A0) A], 0 · A0 · 1, with J0 being the maximal synaptic
strength and (J0 A0) its minimalstrength (see Figures 2C and 2D). Altogether
we have

J(tI tn¡1, tn¡2, . . .)

D J0

(
A0 C (1¡A0)

Q
1¡Q

1X

kD1

(1¡ |!Q)k exp [¡(t¡tn¡k)/t ]

)
. (2.12)

In the case of periodic input with tn D n T for n ¸ 0, and tn D ¡1 for n < 0,
the above equation reduces to

J(tn)/ J0 D A0 C (1 ¡ A0)
Q

eT/t ¡ (1 ¡ Q)

n
1 ¡

h
(1 ¡ Q)e¡T/t

ino
. (2.13)

This implies that as n ! 1, the synaptic strength converges exponentially
fast from below to the asymptotic value

J STD
1 D J0

µ
A0 C

(1 ¡ A0) Q
eT/t ¡ (1 ¡ Q)

¶
. (2.14)

3 Consequences for Network Dynamics

Short-term plasticity introduces a second timescale into the dynamics of a
neural network. In this section we analyze the implications of short-term
plasticity for a homogeneous network of excitatory neurons. We assume
that each neuron is connected to all the other neurons, with all couplings
and delays being identical. This setup can be thought of as an idealization
of a large network of heavily interconnected neurons.

3.1 Locking and Short-Term Depression. A homogeneous network of
N spike-response neurons can show coherent oscillations (Gerstner & van
Hemmen, 1993). In the simplest case of constant synaptic strength, all neu-
rons �re synchronously with period T provided

N
1X

kD1

J 2 (k T ¡ Dax) C
1X

kD1

g(k T) D # . (3.1)

Here, 2 and g are postsynaptic potential and refractory �eld of an SRM
neuron, J is the synaptic ef�cacy, Dax is the axonal delay, and # the threshold.

There are other periodic solutions of the network dynamics that involve
a partition of the neurons into n subpopulations of N/n neurons each (Ger-
stner & van Hemmen, 1993). The subpopulations �re their action potentials
in an alternating way so that each neuron �res with period T, but the activity
of the network has period T/n, which is given by

N
n

1X

kD1

J 2 (k T/n ¡ Dax) C
1X

kD1

g(k T) D # . (3.2)
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A coherent oscillation is stable if the spikes are triggered within the rising
phase of the synaptic contribution of the local �eld (Gerstner, Ritz, & van
Hemmen, 1996), that is, if

d
dt

"
1X

kD1

2 (t C k T/n ¡ Dax)

#

tD0

> 0 . (3.3)

The period T of the oscillation is a root of equation 3.2 and thus a func-
tion of the synaptic strength J. On the other hand, if we include short-term
depression in our model, then the synaptic strength depends on the past
spike arrival times. The �xed points of the dynamics are determined by the
solutions of equation 3.2, if we replace J by its asymptotic value J STD

1 (T) as
it follows from equation 2.8,

J STD
1 (T) D J0

µ
1 ¡ R

eT/t ¡ (1 ¡ R)

¶
, (3.4)

or, alternatively, by the simultaneous solutions of equation 3.2 and

J D J STD
1 (T) . (3.5)

Figure 3 shows the solution to equation 3.2 as a function of J together with
the graph of J STD

1 (T) or, more precisely, the graph of the inverse function
J 7! T(J) D (J STD

1 )¡1(J). The intersections of the graphs are the limit cycles
of the network dynamics.

Stability deserves closer attention. We will �rst discuss the case of a
slowly (adiabatically) changing synaptic strength, that is, (1 ¡R) e¡T/t close
to unity; see equation 2.8. With an adiabatically changing synaptic strength,
the network will remain in the locked state unless this state becomes even-
tually unstable. This is the case if equation 3.3 is no longer ful�lled.

The period T of the locked state is a monotonically decreasing function
of the synaptic strength J, and the asymptotic value J STD

1 is a monotonically
increasing function of T. The simultaneous solutions of equations 3.2 and
3.5 that obey equation 3.3 are thus stable �xed points. To see why, imagine
that the neurons lock with a period T smaller than the period T¤ at the
�xed point in Figure 3. Since locking is fast compared to the relaxation of
the synaptic strength, this can be the case only if the actual value of the
synaptic strength J is larger than that at the �xed point and, because of
the monotony of J STD

1 , larger than the corresponding equilibrium strength
J STD
1 (T). Synaptic strength is thus declining, and the period T is increasing

until the �xed point is reached. A similar argument holds for periods larger
than that of the �xed point in Figure 3.

We now turn to the case where the synapses are substantially affected
by the transmission of a single spike, that is, (1 ¡ R) e¡T/t ¿ 1. In this case
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Figure 3: (A) This plot combines the graphs of J STD
1 D J STD

1 (T) for various values
of J0 (see equation 3.4, solid lines) with graphs of the solutions T of equation 3.2
as a function of the synaptic strength J and n D 1 (lower trace), n D 2 (upper
trace), and n D 3 (middle trace). A dashed line indicates those regions where the
stability criterion, equation 3.3, is not ful�lled. The neurons are de�ned by an
excitatory postsynaptic potential 2 (t) D 55/4(e¡t/5 ¡ e¡t) H(t)/4 and a refractory
�eld g(t) D ¡5 e(2¡t)/5 H(t ¡ 2), where H denotes the Heaviside function with
H(t) D 1 for t > 0 and H(t) D 0 for t < 0. The threshold is # D 0, the axonal
delay is Dax D 8, and the parameters of short-term depression are R D 0.05 and
tsyn D 200. (B) As (A), but with short-term facilitation (tsyn D 200, Q D 0.05,
A0 D 0.1) instead of short-term depression. Here too dashed lines indicate that
stability is lost.

the synaptic strength can be taken as a function of the very last interspike
interval only, and a calculation similar to that of Gerstner et al. (1996) shows
that stability is solely determined by the criterion equation 3.3 independent
of synaptic plasticity. Details can be found in the appendix.

3.2 Locking and Short-Term Facilitation. The arguments of the previ-
ous section go through almost unchanged if the synapses show short-term
facilitation instead of short-term depression. We only have to replace the
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asymptotic synaptic strength J STD
1 by

J STF
1 (T) D J0

µ
A0 C (1 ¡ A0)

Q
eT/t ¡ (1 ¡ Q)

¶
I (3.6)

see equation 2.3.
The stability analyses for rapidly adapting synapses with short-term fa-

cilitation and short-term depression are equivalent. That is, stability of the
limit cycle is given by the locking theorem represented by equation 3.3.

The argument for the adiabatic limit with short-term facilitation, how-
ever, is slightly more complicated than with short-term depression because
both the period T(J) and the asymptotic value J STF

1 (T) are monotonically
decreasing functions. The stability of the �xed points depends on the slope
with which the graphs of (J STF

1 )¡1(J) and T(J) intersect.
To see why the slope is the factor determining stability, let us assume

that the neurons lock with a period T smaller than the period T¤ of the
�xed point or, equivalently, that the synaptic strength J is larger than J¤.
Whether the corresponding equilibrium strength J STF

1 (T) is larger or smaller
than J depends on the slope of (J STD

1 )¡1(J) relative to the slope of T(J). If
(J STD

1 )¡1(J) is steeper than T(J), then the equilibrium strength is smaller than
the actual strength, and the synapses will be weakened and the period will
increase until the �xed point (J¤, T¤) is reached. Otherwise, if the equilibrium
strength is larger than the actual strength, the synapses will be strengthened
even more, and, thus, the �xed point is unstable.

4 Simulations

In order to illustrate the analytic considerations of the previous section, we
have performed simulations on a network consisting of 100 spike response
neurons. We have included noise in that we have replaced the sharp �ring
threshold # by a �ring probability that depends on the actual value of
the membrane potential h(t); that is, we have assumed an inhomogeneous
Poisson process with

Prob fspike in [t, t C dt)g D exp[b (h(t) ¡ #)] dt . (4.1)

The parameter b controls the overall amount of noise in the system; for
b ! 1 the �ring threshold is sharp.

The simulations con�rm the predicted stability properties of sections 3.1
and 3.2. Furthermore, they show that the network can have a fairly compli-
cated transient behavior before it settles down in its limit cycle. For example,
in the case of slowly developing short-term facilitation, the synaptic weights
grow as soon as the network starts �ring because of the onset of some ex-
ternal stimulus. We have seen that there are several solutions to the locking
equation 3.2, depending on the value of the coupling strength. The network
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Figure 4: Transient behavior of a network of spiking neurons and short-term
facilitation. (Top) A spike raster of 20 neurons randomly selected from the 100
neurons contained in the network. (Center) A plot of the network activity. (Bot-
tom) The averaged synaptic strength as a function of time. Closer inspection
of the �ring patterns reveals intricate network behavior. From t D 50 ms to
t D 150 ms, the neurons are organized in n D 2 subpopulations, which �re al-
ternatingly. For t D 250 ms to t D 400 ms, there are n D 3 subsequently �ring
subpopulations. The stable state with n D 1, that is, with all neurons �ring in
phase, is not reached before t D 550 ms. The simulation has been performed
with noise parameter b D 20; see equation 4.1. All the other parameters are
identical to those of Figure 3B.

may thus pass through a series of different �ring modes until a stable limit
cycle is reached.

The network behavior is illustrated in Figure 4, which shows a spike
raster, the mean network activity, and the averaged synaptic strength. As
can be seen from the spike trains, the network passes through a coherent
�ring mode with two (50 ms < t < 150 ms) and later with three (250 ms <
t < 400 ms) alternatively spiking subpopulations before it settles in a stable
limit cycle where all neurons are �ring synchronously. Figure 5 shows that
the trajectory of the averaged synaptic strength and the averaged interspike
interval is attracted by the stable solutions of equation 3.2 (locking) and
follows these lines until the corresponding solution eventually becomes
unstable and a transition to another �ring mode occurs. As can be seen from
Figure 5, limit cycles with different n-values may show up as asymptotic
states of the network. We have n D 1 in Figure 5A and n D 3 in Figure 5B.
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Figure 5: (A) Plot of a curve de�ned by the averaged coupling strength hJi
and the averaged interspike interval hTi parameterized by the time t for the
simulation data shown in Figure 4, with short-term facilitation. The curve has
been smoothed by a moving average with a time window of 10 ms. The gray
lines represent the asymptotic values of the synaptic strength and the solutions
of equation 3.2; see Figure 3B. As can be seen from the graph, the network passes
through a series of transient states before it �nally reaches the stable limit cycle
at the intersection of the lines n D 1 and J0 D 3. (B) Similar plot as in (A) but
for a simulation with slightly weaker synapses (J0 D 2.5). Note that the system
ends up in the �xed point with n D 3 and not in n D 2. This is due to the noise
that partially destabilizes the (n D 2) mode and causes the network to leave this
branch before the �xed point is reached.

5 Discussion

We have presented a simple model for short-term synaptic plasticity that,
in conjunction with the spike response model, allows for an analytic treat-
ment of the dynamics of a highly connected network in the presence of
short-term depression or facilitation. Previous results on pulse-coupled
oscillators (Mirollo & Strogatz, 1990; Kuramoto, 1991; Tsodyks, Mitkov,
& Sompolinsky, 1993; Bottani, 1995; Gerstner, van Hemmen, & Cowan,
1996), are extended so as to include time-dependent synaptic weights and
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arbitrary response functions. We have found that short-term depression
does not affect the stability properties of a state with coherently �ring neu-
rons. Apart from transients, a network with short-term depression has the
same long-term behavior as a network with static weights that are tuned to
the corresponding equilibrium value of the dynamic synapses. With short-
term facilitation, the stability properties depend on the slope of the J STF

1 (T)-
curve relative to the curve corresponding to the locking equation. We have
performed an extensive parameter search but found no realistic parame-
ter setting that would destabilize a solution of the locking equation that is
stable in the absence of short-term facilitation. In any case the dynamics is
dominated by attractive limit cycles with coherently �ring neurons. This
result is also con�rmed by computer simulations.

In addition to the stability properties, the transient behavior of the net-
work can be predicted as well. In the case of a slowly developing depression
or facilitation, the dynamics evolves along the lines of the stable solutions of
equation 3.2 in a diagram of the mean coupling strength and the mean �ring
period. A transition to another �ring mode occurs as soon as the solution
becomes unstable. Depending on the parameter values, a cascade of these
mode transitions can produce a rich structure in the spike activity of the
network.

Appendix

We show by means of a linear stability analysis that the stability of the co-
herent state in case of a rapidly evolving synaptic depression or facilitation
does not depend on the details of the synaptic plasticity but is completely
determined by the kernels 2 and g, which represent postsynaptic potentials
and refractory behavior. In the present case, the synaptic strength depends
on only the very last interspike interval, and we de�ne for short-term de-
pression

J(tI tn¡1, tn¡2, . . .) D J(t ¡ tn¡1) D J0 [1 ¡ R exp(¡(t ¡ tn¡1)/t )] , (A.1)

or, for short-term facilitation,

J(tI tn¡1, tn¡2, . . .) D J(t ¡ tn¡1)

D J0[A0 C (1 ¡ A0)R exp(¡(t ¡ tn¡1)/t )]. (A.2)

We assume that the neurons �re in perfect synchrony up to time t D 0. At
t D 0 we apply some external perturbation so that neuron i will not �re
at t D 0, as it should, but at t D di, with |di/T| ¿ 1. With this setup, we
calculate the resulting jitter of the �ring times in the next period at t D T.
We de�ne d 0

i to be the deviation of the �ring time of neuron i from t D T. Ifd0
i
< |di | for all i, the coherent state is said to be stable.
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In order to determine d0
i we note that the local �eld of neuron i crosses

the threshold # at time t D T C d0
i ,

hi(T C di) D
NX

jD1

"

J(T C di )2 (T C d0
i ¡dj ¡ D ) C

1X

kD2

J(T)2 (kT C d0
i ¡ D )

#

C g(T C d0
i ¡ di) C

1X

kD2

g(d0
i C k T) D #. (A.3)

We linearize with respect to d and d 0 , use hi(0) D #, and obtain after short
calculation

d0
i D

g0 (T)di C [J(T) 2 0(T ¡ D ) ¡ J0 (T) 2 (T ¡ D )]
PN

jD1 dj /NP1
kD1[ J(T) 2 0 (k T ¡ D ) C g0 (k T)]

, (A.4)

where, except ford 0
i , primesdenote a derivative with respect to the argument.

The result, equation A.4, can be interpreted easily if we assume g0(k T)
and 2 0 (k T ¡D ) to vanish for k > 1. Furthermore, we assume

PN
jD1 dj/N D 0,

which is a consequence of the strong law of large numbers if the network is
suf�ciently large and perturbations are random variables with zero mean.
Then the deviation of the next �ring time from t D T equals

d0
i D

g0 (T)

2 0 (T ¡ D ) C g0 (T)
di . (A.5)

It is less than the initial perturbation di, if 2 0 (T ¡D ) > 0. This condition is the
well-known result of the locking theorem proved by Gerstner et al. (1996).

Acknowledgments

The authors thank Nancy Kopell for helpful criticism concerning the man-
uscript. W. M. K. gratefully acknowledges �nancial support from the Boeh-
ringer-Ingelheim Foundation.

References

Abbott, L. F., Varela, J. A., Sen, Kamal, & Nelson, S. B. (1997).Synaptic depression
and cortical gain control. Science, 275, 220–224.

Bottani, S. (1995).Pulse-coupled relaxation oscillators. Phys. Rev. Lett., 74, 4189–
4192.

Gerstner, W., & van Hemmen, J. L. (1992). Associative memory in a network of
”spiking” neurons. Network, 3, 139–164.

Gerstner, W., & van Hemmen, J. L. (1993). Coherence and incoherence in a glob-
ally coupled ensemble of pulse emitting units. Phys. Rev. Lett., 71, 312–315.

http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-9007^28^2974L.4189[aid=218621,nlm=10058438]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29275L.220[aid=215133,nlm=8985017]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-9007^28^2974L.4189[aid=218621,nlm=10058438]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-9007^28^2971L.312[aid=218622,nlm=10055239]


1594 Werner M. Kistler and J. Leo van Hemmen

Gerstner, W., van Hemmen, J. L., & Cowan, J. D. (1996).What matters in neuronal
locking? Neural Comput., 8, 1689–1712.

Gerstner, W., Ritz, R., & van Hemmen, J. L. (1993).Why spikes? Hebbian learning
and retrieval of time–resolved excitation patterns. Biol. Cybern., 69, 503–515.

Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
Kistler, W. M., Gerstner, W., & van Hemmen, J. L. (1997). Reduction of the

Hodgkin-Huxley equations to a single-variable threshold model. NeuralCom-
put., 9(5), 1015–1045.

Kuramoto, Y. (1991).Collective synchronization of pulse-coupledoscillators and
excitable units. Physica D, 50, 15–30.

Liley, A. W., North, K. A. K. (1953).An electrical investigation of effects of repet-
itive stimulation on mammalian neuromuscular junctions. J. Neurophysiol.,
16, 509–527.

Magleby, K. L., & Zengel, J. E. (1975). A quantitative description of tetanic and
post-tetanic potentiation of transmitter release at the frog neuromuscular
junction. J. Physiol., 245, 183–208.

Markram, H., & Tsodyks M. (1996). Redistribution of synaptic ef�cacy between
neocortical pyramidal neurons. Nature, 382, 807–810.

Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse coupled biolog-
ical oscillators. SIAM J. Appl. Math., 50, 1645–1662.

Senn, W., Segev, I., & Tsodyks, M. (1997). Reading neuronal synchrony with
depressing synapses. Neural Computation, 10, 815–819.

Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability. Proc.
Natl. Acad. Sci. USA, 94, 719–723.

Tsodyks, M., Mitkov, I., & Sompolinsky, H. (1993). Patterns of synchrony in
inhomogeneous networks of oscillators with pulse interaction. Phys. Rev.
Lett., 71, 1281–1283.

Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L. F., & Nelson, S. B. (1997).
A quantitative description of short-term plasticity at excitatory synapses in
layer 2/3 of rat primary visual cortex. J. Neurosci., 17, 7926–7940.

Zucker, R. S. (1989).Short-term synaptic plasticity. Ann. Rev. Neurosci., 12, 13–31.

Received February 26, 1998; accepted December 10, 1998.

http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0340-1200^28^2969L.503[aid=215032,nlm=7903867]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299:5L.1015[aid=218623,csa=0899-7667^26vol=9^26iss=5^26firstpage=1015]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-2789^28^2950L.15[aid=214571]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3751^28^29245L.183[aid=218625,nlm=165286]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0985-0856^28^29382L.807[aid=217099]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2910L.815[aid=218626,cw=1,nlm=9573406]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2994L.719[aid=215296,nlm=9012851]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0270-6474^28^2917L.7926[aid=215298,nlm=9315911]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0147-006X^28^2912L.13[aid=215746]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299:5L.1015[aid=218623,csa=0899-7667^26vol=9^26iss=5^26firstpage=1015]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2994L.719[aid=215296,nlm=9012851]

