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A correlation-based“Hebbian™) learning rule at a spike level with millisecond resolution is formulated,
mathematically analyzed, and compared with learning in a firing-rate description. The relative timing of
presynaptic and postsynaptic spikes influences synaptic weights via an asymmetric “learning window.” A
differential equation for the learning dynamics is derived under the assumption that the time scales of learning
and neuronal spike dynamics can be separated. The differential equation is solved for a Poissonian neuron
model with stochastic spike arrival. It is shown that correlations between input and output spikes tend to
stabilize structure formation. With an appropriate choice of parameters, learning leads to an intrinsic normal-
ization of the average weight and the output firing rate. Noise generates diffusion-like spreading of synaptic
weights.[S1063-651X99)02804-4

PACS numbdps): 87.19.La, 87.19.La, 05.65b, 87.18.Sn

I. INTRODUCTION In contrast to the standarate models of Hebbian learn-
ing, we introduce and analyze a learning rule where synaptic
Correlation-based or “Hebbian” learningl] is thought modifications are driven by the temporal correlations be-
to be an important mechanism for the tuning of neuronatween presynaptic and postsynaptic spikes. First steps to-
connections during development and thereafter. It has beedards a detailed modeling of temporal relations have been
shown by various model studies that a learning rule which igaken for rate models if84] and for spike models if22,35—
driven by the correlations between presynaptic and postsyrfl?’]-
aptic neurons leads to an evolution of neuronal receptive
fields[2—9] and topologically organized map$0-17.
In all these models, learning is based on the correlation
between neuronal firingates that is, a continuous variable A. Specification of the Hebb rule

reflecting the mean activity of a neuron. This is a valid de- We consider a neuron that receives input frsim 1 syn-

scription on a time scale of 100 ms and more. On a timeapses with efficacied;, 1<i<N; cf. Fig. 1. We assume
i == y . . .

scale of 1 ms, howevgr, neuronal activity consists of a seq 4 changes of; are induced by presynaptic and postsyn-
guence of short electrical pulses, the so-called action pote

! . ) . r};iptic spikes. The learning rule consists of three péitd.et
tials or spikes. During recent years experimental and theore{-_f be the arrival time of théth input spike at synapse The
ical evidence has accumulated which suggests that temporal

coincidences between spikes on a millisecond or even sub-
millisecond scale play an important role in neuronal infor-
mation processinfl3—24. If so, a rate description may, and
often will, neglect important information that is contained in
the temporal structure of a neuronal spike train.

Neurophysiological experiments also suggest that the
change of a synaptic efficacy depends on the precise timing
of postsynaptic action potentials with respect to presynaptic
input spikes on a time scale of 10 ms. Specifically, a synaptic
weight is found toincreasg if presynaptic firingprecedesa
postsynaptic spike, and to decrease otherf&&26]; see
also[27-33. Our description of learning at a temporal reso-
lution of spikes takes these effects into account.

II. DERIVATION OF THE LEARNING EQUATION

input s"

FIG. 1. Single neuron. We study the development of synaptic
*Electronic address: Richard.Kempter@physik.tu-muenchen.de weightsJ; (small filled circles, &i<N) of a single neurorflarge
"Electronic address: Wulfram.Gerstner@di.epfl.ch circle). The neuron receives input spike trains denotedSByand
*Electronic address: Leo.van.Hemmen@physik.tu-muenchen.deproduces output spikes denoted 83/t

1063-651X/99/564)/449817)/$15.00 PRE 59 4498 ©1999 The American Physical Society



PRE 59

arrival of a spike induces the weighit to change by an

amountyw™ which can be either positive or negative. The

guantity >0 is a “small” parameter(ii) Let t" be thenth

output spike of the neuron under consideration. This event

triggers the change of aN efficacies by an amoungw°"
which can also be positive or negativ@i) Finally, time

differencesbetween all pairs of input and output spikes in-
fluences the change of the efficacies. Given a time difference

s=tif—tn between input and output spikek,is changed by
an amountpyW(s) where thelearning window Wis a real-

valued function. It is to be specified shortly; cf. also Fig. 6.

Starting at timet with an efficacyJ;(t), the total change
AJ;(t)=J,(t+7)—J;(t) in a time intervalZ, which may be
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FIG. 2. Hebbian learning and spiking neurons—schematic. In

mterpr'eted as the 'Iength of a learning trial, is ce_llculated bYhe bottom graph we plot the time course of the synaptic weight
summing the c_ontrlbutlons of input and output spl!(es as yveIIJi(t) evoked through input and output spikeper graphs, vertical
as all pairs of input and output spikes occurring in the timenarg. An output spike, e.g., at timé, induces the weighg; to
interval[t,t+7]. Denoting the input spike train at synagse change by an amount® which is negative here. To consider the

by a series ofs functions, S"(t)=35(t—t!), and, simi-
larly, output spikes bys®{(t)==,6(t—t"), we can formu-
late the rulegi)—(iii) explicitly by setting

t+7

AJi(t)znft dt/ [wnS"(t’) +wOoUISPU(t)]

t+7 t+7 .
+ nf dt’f dt"W(t"—t")S"(t")SU(t")
t t

(1a

=g 2w+ WO S w(tf -t |
tf t"

th "

(1b)

In Eq. (1b) the prime indicates that only firing timeai%andt”

in the time intervalt,t+ 7] are to be taken into account; cf.

Fig. 2.

effect of correlations between input and output spikes, we plot the
learning windowW(s) (center graphsaround each output spike,
wheres=0 matches the output spike timégertical dashed lings
The three input spikes at times, t?, andt? (vertical dotted lines
increasel; by an amountv™ each. There is no influence of corre-
lations between these input spikes and the output spike attfime
This becomes visible with the aid of the learning winddWcen-
tered att'. The input spikes are too far away in time. The next
output spike at?, however, is close enough to the previous input
spike attis. The weightJ; is changed by°"'<0 plus the contribu-
tion W(t?—t?)>0, the sum of which is positivéarrowheads
Similarly, the input spike at tim¢' leads to a change/™+W(t;'
-t?)<0.

discrete events that trigger a discontinuous change of the
synaptic weight; cf. Fig. Zbottom). If we assume a stochas-

tic spike arrival or if we assume a stochastic process for
generating output spikes, the changé, is a random vari-
able, which exhibits fluctuations around some mean drift.
Averaging implies that we focus on the drift and calculate
the expected rate of change. Fluctuations are treated in Sec.

Equation(1) represents a Hebb-type learning rule sinceVI.
they correlate presynaptic and postsynaptic behavior. More

precisely, here our learning scheme depends on the time se-

quence of input and output spikes. The parametétsyo!
as well as the amplitude of the learning windéwmay, and
in general will, depend on the value of the efficay Such

a J; dependence is useful so as to avoid unbounded grow
of synaptic weights. Even though we have not emphasize
this in our notation, most of the theory developed below i

valid for J;-dependent parameters; cf. Sec. V B.

B. Ensemble average

1. Self-averaging of learning

Effective learning needs repetition over many trials of
length7Z, each individual trial being independent of the pre-

t\f/1ious ones. Equatiofi) tells us that the results of the indi-

&ldual trials are to be summed. According to {lsgong law
of large number$44] in conjunction withn being “small”

S[45] we can average the resulting equation, viz., Eq,

regardless of the random process. In other words, the learn-
ing procedure isself-averaging Instead of averaging over
several trials, we may also consider one single long trial

Given that input spiking is random but partially correlatedduring which input and output characteristics remain con-
and that the generation of spikes is in general a complicatestant. Again, ify is sufficiently small, time scales are sepa-

dynamic process, an analysis of Ef)) is a formidable prob-
lem. We therefore simplify it. We have introducedsenall

rated and learning is self-averaging.
The corresponding average over the resulting random pro-

parameterp>0 into Eqg. (1) with the idea in mind that the cess is denoted by angular brackéjsand is called aren-
learning process is performed on a much slower time scalsemble averagein agreement with physical usage. It is a

than the neuronal dynamics. Thus we expect that ambyr-
agedquantities enter the learning dynamics.

probability measure on a probability space, which need not
be specified explicitly. We simply refer to the literatyiref].

Considering averaged quantities may also be useful in orSubstitutings=t”—t’ on the right-hand side of Eq1a) and

der to disregard the influence of noise. In Eb). spikes are

dividing both sides byZ; we obtain



4500 KEMPTER, GERSTNER, AND van HEMMEN PRE 59

occur on average in a time interval of length Then, using

the notationf(t)=7"1f"7dt'f(t'), we may introduce the

meanfiring ratesy!"(t)=(S"(t) and v°U{t) = (S°")(t). We

call »\" and»°"' meanfiring rates in order to distinguish them

from the previously definednstantaneousrates(S") and

N TN (S°™ which are the result of an ensemble average only. Be-
1 2

cause of their definition, mean firing ratesalways vary
slowly as a function of time. That is, they vary on a time
scale of the order of. The quantities)|" and v therefore
FIG. 3. Inhomogeneous Poisson process. In the upper graph wearry hardly any information that may be present in the tim-
have plotted an example of an instantaneous x&{g) in units of  ing of discrete spikes.
Hz. The average rate is 10 Hdashed ling The lower graph shows For the sake of further simplification of E(R), we define
a spike trainS"(t) which is a realization of an inhomogeneous the width)V of the learning windoww(s) and consider the
Poisson process with rate"(t). The spike times are denoted by case7>)V. Most of the “mass” of the learning window
vertical bars. should be inside the intervhl- W,V]. Formally we require
I dsW(s)|> [ ds|W(s) |+ [ 5, ds|\W(s)|. For 7>W
the integration oves in Eq. (2) can be extended to run from
—oo to o, With the definition of a temporally averaged cor-
relation function,

t[s]

AJi t T i i
#:gﬁ dt’ [w(S") (") + WS (t')]

n (T (teT-t .
Wﬁ at ft_tf dsWes) Ci(si)=(S(t+s) ™), 3
X(S:”(t’+s) SUEY). ) the last term on the right in Eqg.2) reduces to

JZ..dsW(s)Ci(s;t). Correlations between presynaptic and
postsynaptic spikes, thus, enter spike-based Hebbian learning
) ) ] ~__ throughC; convolvedwith the windowW. We note that the
_Averaging the learning equation before proceedlng is justorrelation C;(s;t), though being both an ensemble and a
tified if both input and output processes will be taken to betemporally averaged quantity, may change as a functios of
inhomogeneous Poisson processes, which will be assumegh 5 much faster time scale thanor the width W of the
throughout Secs. IV-VI. An inhomogeneous Poisson projearing window. The temporal structure 6f depends es-
cess with time-dependent rate functio(t)=0 is character- gengially on the neurofmode) under consideration. An ex-
ized by two facts(i) disjoint intervals are independent and ample is given in Sec. IV A.

(i) the probability of getting aingle event at timet in an We require learning to be a slow process; cf. Sec. I B1.
interval of lengthAt is A (t)At, more events having a prob- \ore specifically, we require that values do not change
ability o(At); see alsd46], Appendix A for a simple eXpo-  ych in the time interval. Thus7 separates the time scale
sition of the undgrlymg mathematics. The mteg_rals in EQ-)y (width of the learning windowV) from the time scale of
.(13) or the sums in Eq(lb) therefore decompose into many iy learning dynamics, which is proportional 40 1. Under
independent events and, thus, the strong law of large nuUMpge conditions we are allowed to approximate the left-hand
bers applies to them. The output is a temporally local Processige of Eq.(2) by the rate of changdJ, /dt, whereby we

as well so that the strong law of large numbers also applief,ye omitted the angular brackets for brevity. Absorbing

to the output spikes at times$ in Eq. (1). __into the learning parameterg”, w°, andW, we obtain
If we describe input spikes by inhomogeneous Poisson

processes with intensityx"(t), then we may identify the d i in out. ou o

ensemble average over a spike train with the stochastic in- g¢Ji(t) =W" v () +w™w -+ J_wdSV\(S)Ci(S;t)'
tensity, (S")(t) =\["(t); cf. Fig. 3. The intensity\{"(t) can (4)

be interpreted as the instantaneous rate of spike arrival at

synapsei. In contrast to temporally averaged mean firing The ensemble-averaged learning equatién which holds
rates, the instantaneous rate may vary on a fast time scale f@r any neuron model, will be the starting point of the argu-
many biological systems; cf. Sec. Il C. The stochastic intenments below.

sity (S°“%(t) is the instantaneous rate of observing an output

spike, where( ) is an ensemble average over both the input IIl. SPIKE-BASED AND RATE-BASED

and the output. Finally, the correlation function HEBBIAN LEARNING

(S"(t")S™(t")) is to be interpreted as the joint probability | this section we indicate the assumptions that are re-
density for observing an input spike at synapse the time  qyjired to reduce spike-based to rate-based Hebbian learning

2. Example: Inhomogeneous Poisson process

t” and an output spike at tinte. and outline the limitations of the latter.
C. Separation of time scales A. Rate-based Hebbian learning
We require the lengtd of a learning trial in Eq(2) to be In neural network theory, the hypothesis of HdHR is

much larger than typical interspike intervals. Both many in-usually formulated as a learning rule where the change of a
put spikes at any synapse and many output spikes shouknaptic efficacyd; depends on the correlation between the
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mean firing ratev§” of the ith presynaptic neuron and the
mean firing ratev®" of a postsynaptic neuron, viz.,

d‘]i k in t
HEJi = a0+ a]_Vi + a2V°“

0 +H—F—————1—

+agy"v™ay (1)) >+ as(v™)?, (5 ° 250 [m:]o ©

. . FIG. 4. The postsynaptic potentialin units of[e’lrgl] as a
where a,<0,a;, az, as, a4, and as are proportionality  function of times in milliseconds. We have=0 for s<0 so thate
constants. Apart from the decay teap and the “Hebbian”  is causal. The kernet has a single maximum a=7,. For s
term v{"v°“ proportional to the product of input and output —« the postsynaptic potential decays exponentially with time
rates, there are also synaptic changes which are driven sepanstantry; cf. also Appendix B 2.
rately by the presynaptic and postsynaptic rates. The param-

etersay, . .. s may depend oq; . Equation(5) is a general IV. STOCHASTICALLY SPIKING NEURONS
formulation up to second order in the rates; see, e.g.,
[3,47,12.

A crucial step in analyzing Eq(4) is determining the

correlationsC; between input spikes at synagsand output
B. Spike-based Hebbian learning spikes. The correlations, of course, depend strongly on the
To get Eq.(5) from the spike-based learning rule in Eq. neuron model_ under considergtion. To highlight the main
(4) two approximations are required. First, if there are noPoInts of learning, we study a simple toy model. Input spikes

correlations between input and output spikes apart from th® generated by an inhomogeneous Poisson process and fed

Cocltons Contaned n . e s we 15, SSsaSicall s ewon ol For s seenar
write (S"(t’+5)SPU(t")) ~(SM(t’ +s)(S°(t'). Second, y b

if these rates chanae slowly as compared tthen we have lations between input and output spikes. The introduction of
! in g Wiy as compared,lohen We Nave e model and the derivation of the correlation function is the
Ci(s;t)=v"(t+s)»°(t). In addition, v=(S) is the time

) h ) ) topic of the first subsection. In the second subsection we use
evolution on a slow time scale; cf. the discussion after Edne correlation function in the learning equatieh and ana-

(3). Since we hav@>W, the rates" also change slowly as lyze the learning dynamics. In the final two subsections the
compared to the widthV of the learning window and, thus, relation to the work of Linskef3] (a rate formulation of

we may replaces"(t+s) by »{(t) in the correlation term Hebbian learningand some extensions based on spike cod-
[Z.dsW(s) Ci(s;t). This vyields [Z_.dsWs)Ci(s;t) ing are considered.

~W(0)r"(t) »°U(t), whereW(0):=/  dsW(s). Under the
above assumptions we can identify(0) with aj. By fur-
ther comparison of Eq4) with Eq. (5) we identifyw" with
a, andw®'with a,, and we are able to reduce Hg) to Eq.
(5) by settingag=a,=as=0.

A. Poisson input and stochastic neuron model

We consider a single neuron which receives inputNia
synapses £i=<N. The input spike trains arriving at thé
o . ] synapses are statistically independent and generated by an

C. Limitations of rate-based Hebbian learning inhomogeneous Poisson process with time-dependent inten-

The assumptions necessary to derive Gjjfrom Eq.(4),  sities(S")(t) =\{"(t) with 1<i=<N [46].
however, are not generally valid. According to the results of In our simple neuron model we assume that output spikes
Markram et al. [25], the width W of the Hebbian learning are generated stochastically with a time-dependent rate
window in cortical pyramidal cells is in the range of 100 ms. \°“{(t) that depends on the timing of input spikes. Each input
At retinotectal synapsesV is also in the range of 100 ms spike arriving at synapseat timetif increasesor decreases
[26]. the instantaneous firing rate® by an amountl;(t/) (t

A meanrate formulation thus requires that all changes of_tif), wheree is a response kernel. The effect of an incom-
the activity are slow at a time scale of 100 ms. This is noting spike is thus a change in probability density proportional
necessarily the case. The existence of oscillatory activity ing J;. Causality is imposed by the requiremexfs)=0 for
the cortex in the range of 40 He.g.,[14,15,20,48 implies  s<0. In biological terms, the kernelmay be identified with
activity changes every 25 ms. Retinal ganglion cells firean excitatory (or inhibitory) postsynaptic potential. In
synchronously at a time scale of about 10 [#8]; cf. also  throughout what follows, we assunexcitatory couplings
[50]. Much faster activity changes are found in the auditoryJ, >0 for alli ande(s)=0 for all s. In addition, the response
system. In the auditory pathway of, e.g., the barn owl, spikekernel ¢(s) is normalized tof dse(s)=1; cf. Fig. 4.
can be phase-locked to frequencies of up to 8 Kkbiz-53. The contributions from alN synapses as measured at the
Furthermore, beyond the correlations between instantaneowson hillock are assumed to add up linearly. The result gives

rates, additional correlations between spikes may exist.  rise to alinear inhomogeneous Poisson model with intensity
Because of all the above reasons, the learning (&)lén

the simple rate formulation is insufficient to provide a gen- N
erally valid description. In Secs. IV and V we will therefore AU ) = 3+ J(the(t=th. 6
study the full spike-based learning equati@i. (®=ro Zl Ef: (te(t=t) ©
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Here, v, is the spontaneous firing rate and the sums run over

all spike arrival times at all synapses. By definition, the spike %
generation proces$6) is independent of previous output 3 —_———
spikes. In particular, this Poisson model does not include }% _T
refractoriness. Y <ST)S™W>11"1)
In the context of Eq(4), we are interested in ensemble © —— Ve ZJHOA®
averages over both the input and the output. Since®&ds 2 — - J{)e(tt)
a linear equation, the average can be performed directly and = ST
yields 0 T
time t
N ee)
(S (t)=vo+ >, Ji(t)f dse(s)\"(t—s). 7 FIG. 5. Spike-spike correlations. To understand the meaning of
i=1 0 Eg. (9) we have sketchedS"(t’)S*(t))/\{"(t") as a function of

time t (full line). The dot-dashed line at the bottom of the graph is
In deriving Eq.(7) we have replacedi(tif) by J;(t) because the contributionJ;(t")e(t—t") of an input spike occurring at time
efficacies are assumed to change adiabatically with respect to Adding this contribution to the mean rate contribution,
the width ofe. The ensemble-averaged output rate in @y.  +=iJi()A'(t) (dashed ling we obtain the rate inside the square

depends on the convolution efwith the input rates. In what brackets of Eq(9) (full line). At time t”>t’ the input spike at time
follows we denote t’ enhances the output firing rate by an amout’)e(t”"—t’)

(arrows. Note that in the main text we have takEn-t'= —s.

A:n(t)=f dSE(S))\:n(t—S). (8) B. Learning equation
0 Before inserting the correlation functiofl0) into the

. . ) learning rule(4) we define the covariance matrix
Equation(7) may suggest that input and output spikes are

statistically independent, which is not the case. To show this q--(S't)::[)\i”(tJrs)— V!n(t+s)][Ain(t)_ Vi_n(t)] (11)
explicitly, we determine the ensemble-averaged correlation S ! ' J J
(S'(t+5)S(1)) in Eq. (3). Since(S'(t+5)S™{1)) corre-  anq its convolution with the learning window,
sponds to a joint probability, it equals the probability density
\{"(t+s) for an input spike at synapseat timet+s times

Qjj(t)= f

o:cdS\MS)Qij(S;t)- (12

the conditional probability density of observing an output
spike at timet giventhe above input spike dt+ s,

(Si”(t+s)S°“‘(t)) Using Eqgs.(7), (10), and(12) in Eqg. (4), we obtain

+\7V(0)v2n1/0

N - . .
=\(t+9)| ot (D e(=9)+ 2 JJ-(t)A}“(t)}. H=whw ‘{vﬁ? I
=

® +2 3,
J

The first term inside the square brackets is the spontaneous
output rate and the second term is the specific contribution
caused by the input spike at tinte-s, which vanishes for
s>0. We are allowed to writd,(t) instead of the “correct”
weight J;(t+s); cf. the remark after Eq.7). To understand
the meaning of the second term, we recall that an input spik(Fat
arriving beforean output spikdi.e., s<0) raises the output
firing rate by an amount proportional & —s); cf. Fig. 5.
The sum in Eq.(9) contains the mean contributions of all
synapses to an output spike at timd-or the proof of Eq. o outs & n i in
(9), we refer to Appendix A. ki =[W*+W(0) »"Jro+w"pT,
Inserting Eq.(9) into Eq. (3) we obtain

Qjj +\7V(O)v:nv}n+ &ij V:nJ'jo dsW(s)e(—s)

(13

For the sake of brevity, we have omitted the dependence
upon time.

The assumption of identical and constant mean input
es,v"(t)= " for all i, reduces the number of free param-
eters in Eq(13) considerably and eliminates all effects com-
ing from rate coding. We define

ko=[w"+W(0) """, (14

N
Ci(si) =2, J(OA(t+5)AT(D) A

=1 k3=V'“J’ dsW(s)e(—5s)

A (t+8) [+ Ji(De(=9)], (10
in Eq. (13) and arrive at

where we have assumed the weightgo be constant in the
time interval[t,t+7]. Temporal averages are denoted by a 3 =K.+ kot Ka 50T 15
bar; cf. Sec. Il C. Note that!"(t)=»I"(t). o 2 (Qy+katks ), 19
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Equation(15) describes the ensemble-averaged dynamics of ren

synaptic weights for a spike-based Hebbian learning (Lle W)

under the assumption of a linear inhomogeneous Poissonian :

model neuron. i L
|

C. Relation to Linsker’s equation | s [ms]

Linsker[3] has derived a mathematically equivalent equa- 20 20 & 20 ' 50
tion starting from Eq(5) and a linear graded-response neu-
ron, a rate-based model. The difference between Linsker’s
equation and Eq(15) is, apart from a slightly different no- gl
tation, the ternks &;; .

Equation(15) without thek; term has been analyzed ex-

FIG. 6. The learning windowV in units of the learning param-

. . . - eter » as a function of the dela};s:tif—tn between presynaptic
tensively by MacKay and MillefS] in terms of eigenvectors spike arrival at synapseat timet! and postsynaptic firing at time

f"md e'ge_nfunCt_'or_]S of the matr@ii tka. ln_ p”nc_'ple’ the'_‘e t". If W(s) is positive(negative for somes, the synaptic efficacy;
is no difficulty in mcorporatmg thek, 'germ in their gnalys[s, is increaseddecreased The increase ofl; is most efficient if a
becauseQ;; + Kk, + J;; ks containsks times the unit matrix  presynaptic spike arrives a few millisecortisforethe postsynaptic
and thus has the same eigenvectorQgstk,. All eigen-  neuron starts firingvertical dashed line a=s*). For|s|— we
values are simply shifted blg;. have W(s)—0. The form of the learning window and parameter
Thek; term can be neglected if the numbé¢of synapses values are as described in Appendix B 1.
is large. More specifically, the influence of thkg term as ) ) ) .
compared to thé, andQ;; term is negligible if for alli, depending on the sign ¢ Since firing rates are always
positive andk;=»"[dsWs) e(—s), the sign of the integral
JdsW(s)e(—s) is crucial. Hebb's principle suggests that for
; |Qij kel 3> [kslJi - (16) excitatory synapses, the integral is always positive. To un-
derstand why, let us recall thatis defined as the time dif-
This holds, for instance, ifi) we have many synapse@i) ference between input and output spikes. The response ker-
|ks| is smaller than or at most of the same order of magninel e vanishes for negative arguments. Thus the integral
tude as|k,+Qj;| for all i andj, and (iii) each synapse is effectively runs only over negative According to our defi-
weak as compared to the total synaptic weight<X;J; . nition, s<0 implies that presynaptic spik@secedepostsyn-
The assumptiong§)—(iii ) are often reasonable neurobiologi- aptic firing. These are the spikes that may have participated
cal conditions, in particular when the pattern of synapticin firing the postsynaptic neuron. Hebb’s princife sug-
weights is still unstructured. The analysis of E45) pre-  gests that these synapses are strengthened, Né(ge>0
sented in Sec. V and focusing on normalization and structuréor s<0; cf. Fig. 6. This idea is also in agreement with
formation is therefore based on these assumptions. In parecent neurobiological resul{25,26,33: Only those syn-
ticular, we neglecks. apses are potentiated where presynaptic spikes arrive a few
Nevertheless, our approach even withoutkhéerm is far ~ millisecondsbeforea postsynaptic spike occurs so that the
more comprehensive than Linsker's rate-based ar{Satee- ~ former arrive “in time.” We conclude thafds\W(s)e(—s)
cause we have derived E(@.5) from a spike-based learning >0 and, hence, thk; term is positive.
rule (1). Therefore correlations between spikes on time With k3>0 every weight and thus every structure in the
scales down to milliseconds or below can enter the drivingdistribution of weights is enhanced. This may contribute to
term Q;; so as to account for structure formation. Correla-the stability of structured weight distributions at the end of
tions on time scales of milliseconds or below may be esserlearning, in particular when the synapses are few and strong
tial for information processing in neuronal systems; cf. Sec[22,54. In this case, Eq(16) may be not fulfilled and th&;
Il C. In contrast to that, Linsker's ansatz is based on aterm in Eq. (15 has an important influence. Thus spike-
firing-rate description where the ter@;; contains correla- based learning is different from simple rate-based learning
tions betweemmean firing ratesonly. If we use a standard rules. Spike-spike correlations on a millisecond time scale
interpretation of rate coding, a mean firing rate correspondglay an important role and tend to stabilize existing strong
to a temporally averaged quantity which varies on a timesynapses.
scale of the order of hundreds of milliseconds. The temporal
structure of spike trains is neglected completely. V. LEARNING DYNAMICS
Finally, our ansatzl) allows the analysis of the influence ) o
of noise on learning. Learning results from stepwise weight M order to get a better understanding of the principal
changes. Each weight performs a random walk whose expet€atures of the leamning dynamics, we discuss @§) with
tation value is described by the ensemble-averaged equatidis =0 for a particularly simple configuration: a model with
(15). Analysis of noise as a deviation from the mean is de-WO groups of synapses. Input rates are homogeneous within
ferred to Sec. VI. each group but different between one group and the other.
Our discussion focuses on intrinsic normalization of output
rates and structure formation. We take lower and upper
bounds for thel values into account explicitly and consider
We now discuss the influence of thg term in Eq.(15).  the limiting case of weak correlations in the input. We will
It gives rise to an exponential growth or decay of weights,see that for a realistic scenario we need to requife-0 and

D. Stabilization of learning
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TABLE I. Values of the parameters used for the numericalarbitrary time-dependent inpuﬂ"(t)=)\i”(t), with the same

simulations(a) and derived quantitiegh).

(a) Parameters

Learning 7=10"°
win= 7
W= — 1.0475;
A =1
A_ —_
7.,=1 ms
7_=20 ms
™'=5 ms

EPSP 70=10 ms
Synaptic input N=50
M.;=25
M,=25

py"=10 st

5"=10 s

wl/(2m)=40 st

Further parameters =0

(b) Derived quantities
W(0):=fdsWs)=4.75x10"8 s
fdsW(s)?=3.68x10 s
fdsW(s)e(—s)=7.04x 106
Q=6.84x10"s !
ky=1x10*s?
k,=—1%x10"% s7%
ky=7.04x107°> s7¢
V=2x 10 s
'=2.93<10* s
o= 1 62} 10 s
JV=2x10"2
D=2.47x10"° st
D'=1.47x10"° s

mean input rate"=\"(t) as in groupM;. Without going
into details about the dependencendi(t) upon the timet,
we assumen"(t) to be such that the covariancg(s;t) in
Eq. (11 is independent of. In this case it follows from Eq.
(12) that Q;;(t)=Q for i,j e M;, regardless ot. For the
sake of simplicity we require in addition th@>0. In sum-
mary, we suppose in the following

Q>0 for i,jeMs,,

Qi ()= 0 (17)

otherwise.

We recall thatQ;; is a measure of the correlations in the
input arriving at synapses and j; cf. Egs. (11) and (12).
Equation(17) states that at least some of the synapses re-
ceive positively correlated input, a rather natural assumption.
Three different realizations of EqL7) are now discussed in
turn.

1. White-noise input

For all synapses in group1,, let us consider the case of
stochastic white-noise input with intensiy/"(t) and mean
fiing rate AM(t)=+»"(t)=0. The fluctuations are
[N (t+s) =" (t+s)][A"(t) — v"(t)]= o¢(s). Due to the
convolution(8) with €, Eq. (11) yields g;;(s;t) =oge(—S),
independently oft, i, and j. We use Eq.(12) and find
Qij()=Q=0ofdsWs)e(—s). We wantQ>0 and there-
fore arrive atfW(s)e(—s)=k;/v">0. We have seen be-
fore in Sec. IV D thatk;>0 is a natural assumption and in
agreement with experiments.

2. Colored-noise input

Let us now consider the case of an instantaneous and
memoryless excitationg(s) = 5(s). We assume thah™
— " obeys a stationary Ornstein-Uhlenbeck procg&3]
with correlation time r.. The fluctuations are therefore
aij(s;t)<exp(—|s/7), independent of the synaptic indices
andj. Q>0 implies fdsW(s)exp(—|s|/7)>0.

3. Periodic input

w°U'<0 and that we can formulate theoretical predictions of Motivated by oscillatory neuronal activity in the auditory

the relative magnitude of the learning parametetgwo"
and the form of the learning windoW. The theoretical con-

system and in the cortexf. Sec. lll Q, we now consider the
scenario of periodically modulated raten"™(t) — ']

siderations are illustrated by numerical simulations whose= 8v" cos?), wherew>2m/7. Let us first study the case
parameters are justified in Appendix B and summarized ire(s)=&(s). We find Q=(8v"™)?/2fdsW(s) cosws). Posi-

Table I.

A. Models of synaptic input

tive Q hence requires the real part of the Fourier transform
W(w):=[dsWs)exp(ws) to be positive, i.e., H&V(w)]
>0. For a general interaction kerne{s), we find q;;(s;t)
=(8v""?%2 [ds' e(s")codw (s+5')] and hence

We divide theN statistically independent synapses, all
converging onto the very same neuron, into two grougss,
and M, . The numbers of synapses & andM,, respec-
tively, where M;+M,=N and M;,M,>1. Since each
group contains many synapses, we may assumeMhatnd
M, are of the same order of magnitude. The spike input at
synapses in group M, is generated by a Poisson process
with a constant intensity;"(t)=»", which is independent of ~ Normalization is a very desirable property for any learn-
t. We therefore hav®;;(t)=0 fori or j e M;; cf. Egs.(11) ing rule. It is a natural requirement that the average weight
and (12). The synapses$ in group M, are driven by an and the mean output rate do not blow up during learning but

Q=(6v"22 R§W(w)e(w)], (18
independent of. ThenQ>0 requires RENV(w)e(w)]>0.

B. Normalization
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B} - U1 t=0 200s=1" 500s 10008
[t=0 | t=2008=
J*EV
0
1 1-s00s t=1000s
Ji
J av
0 0 . : . :
1 25 50 1 25 50 0 500 1000

FIG. 7. Numerical simulation of weight normalization with pa- . .
rameters as given in Appendix B. The four graphs show the tem-. FlG.' 8. I_Development of the_ average weight as a functlor_w of
. . . . time t in units of 1¢ s. The simulations we started &0 with
poral evolution of synaptic weight3;, 1<i<50, before {=0) five different aver weights]®e [0, 0.01, 0.0 J%. 0.05, 0.1
and during learningt( 200, 500, and 1000)sBefore learning, all  11v€_different average weights]™< {0, 0.01, 0.02J,", 0.05, 0.
weights are initialized at the upper boudd-0.1. During learning =9}. Full lines indicate homogeneous initial weight distributions,
'. ! =Jav = i i
weights decrease towards the fixed point of the average weigh hereJ; =J avatt 0 for ‘?“ I Cf. 6:(|SO Fig. 7, up\E)er left panel. In all
J¥=2.0x10"2; cf. also Fig. 8, topmost full line. The time constant ivg gases,] decays with th? tw_ne constam .:2'0>< 1.02 vs de-
of normalization isr®'=2.0x 10 s, which is much smaller than the SCI’IbII’;g the rate O.f norma!lzf’;\tlon o the fixed poidf'=2.0
time constant of structure formation; cf. Sec. V C and Fig. 9. For>< 1077 Our theoretical prediction according to Sec. @osses

times t<1000 s we therefore can neglect effects coming from°" the uppermost ful I_|n)e§ m_good agreement with the num_encal
. results. The dashed line indicates the developmert®6ftarting
structure formation.

from aninhomogeneous initial weight distributialy =0 for 1<i

are stabilized at a reasonable value in an acceptable amo ﬁg‘r’ andy; =9 for 25<i=50=N. In the inhomogeneous case;
P 4a enlarged as compared to the homogeneous case by a factor of 2

of Flm.e' Standard rate-based Hebb'?” learning can lead tS’ecause only half of the synapses are able to contribute to normal-
unlimited grow’Fh of the average. WEIg.ht.. Several methc,’d?zation; cf. Appendix D. The insetignatures as in Fig.)&how
have been designed to control this unlimited growth; for in-y,e  innomogeneous weight distributiong@rrows at times t
stance, subtractive or multiplicative rescaling of the weights_ g 200, 500, and 1000's; the dotted line indicates the fixed point

after ea(;h learning step so as to impose eilfjgf=constor 32— 29. We note that here the distribution remains inhomoge-
elseX;J;=const; cf., e.g.[2,7,55. It is hard to see, how- neous.

ever, where this should come from. Furthermord,depen-
dence of the parametess, . . . ,as in the learning equation  specific input(17) described in the preceding section yields
(5) is often assumed. Higher-order terms in the expan@pn  Q®'=(M,/N)?Q>0. We rewrite Eq.(20) in the standard
may also be used to control unlimited growth. form J2=[ J— J2]/ 2 where

In this subsection we show that under some mild condi- * ’
tions there is no need whatsoever to invoke dfikependence
of the learning parameters, rescaling of weights, or higher-

order correlations to get normalization, which means here ' , .
that the average weight is the fixed point for the average weight and

J3'= —ki/[N(ka+Q™)] (21)

1 7= 32k; =~ 1[N (ko + Q)] (22

=5 >3 (19)
= is the time constant of normalization. The fixed point in Eq.
approaches a stable fixed point during learning. Moreover, ih21) |s_stable |f_and on_Iy if 72>0. .
this case the mean output rat8" is also stabilized since ~ During learning, weight$J;} and rate\;"} may become
U= o+ NI cf. Eq. (7). correlated. In Appendix C we demonstrate that the influence

As long as the learning parameters do not depend od theof any interdependence between weights and rates on nor-
Va|uesl the rate of Change of the average We|ght is Obtainé@alization can be neglected in the case of weak correlations
from Eqgs.(15), (19), andk;=0 (Sec. IV O, in the input,

IV=Kky+N ko JV+N"1 Q;J;. (20) 0<Q<—kz - @3
I,

J The fixed pointJ% in Eq. (21) and the time constant® in

In the following we consider the situation at the beginningEq. (22) are, then, almost independent of the average corre-
of the learning procedure where the set of weidlit$ has lation Q®", which is always of the same order @s
not picked up any correlations with the set of Poisson inten- In Figs. 7 and 8 we show numerical simulations with
sities{\{"} yet and therefore is independent. We may therparameters as given in Appendix B. The average welght
replaceJ; andQj; on the right-hand side of EG20) by their  always approache,’, independent of any initial conditions
average valued?® and Q¥'= N*ZE{\"J-Q” , respectively. The in the distribution of weights.
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Weight constraints lead to further conditions on learning may be enlarged is of order 1, if we take the upper bound to
parameters be 9=(1+d)J", whered>0 is of order 1, which will be

We have seen that normalization is possible without a a@ssumed throughout what follows; cf. Appendix D.
dependence of the learning parameters. Even if the average
weight J2¥ approaches a fixed poidf’, there is no restric- C. Structure formation
tion for the size ofindividual weights, apart frond;=0 for In our simple model with two groups of input, structure
excitatory synapses ari=N J;’. This means that a single 5,mation can be measured by the differed&&between the
weight at most comprises the totalormalized weight of all average synaptic strength in groupd, and M,; cf. Sec.
N synapses. The latter case is, however, unphysiological; o we derive conditions under which this difference in-
since almost every neuron holds many synapses with nonVayeases during learning. In the course of the argument we
nishing efficaciesweights and efficacies of biological syn- 5156 show that structure formation takes place on a time scale

apses seem to be limited. We take this into account in ougstr considerably slower than the time scaf¥ of normaliza-
learning rule by introducing a hard upper boufidor each

individual weight. As we will demonstrate, a reasonable We start from Eq(15) with ks=0 and randomly distrib-

value of & doesnot influence normalization in thall" re-  yted weights. For the moment we assume that normalization

mains unchanged. However, an upper boine0, whatever  has already taken place. Furthermore, we assume small cor-

its value, leads to further constraints on the learning paramygjations as in Eq(23), which assures that the fixed point

eters. _ oo . J%~—k,/(Nk,) is almost constant during learning; cf. Egs.
To incorporate the restricted range of individual welghts(21) and (C1). If the formation of any structure ifJ;} is

into our learning rul?r(11), we assume that we can treat the g6\ as compared to normalization, we are allowed to use
learning parametera”,w®", and the amplitude oW to be  jav_ jav 4ring learning. The consistency of this ansatz is
constant in the range9J;< . ForJ;<0 orJ;> 9, we take checked at the end of this section

wn=w°"=W=0. In other words, we use E@L5) only be- I
tween the lower bound O and the upper bouhdand set MT?Se average weight in each of the two groups, and
dJ;/dt=0 if J,<0 or J;> 9. 2

Because of lower and upper bounds for each synaptic 1
weight, 0<J;< 9 for all i, arealizablefixed pointJ$’ has to J(l)=M— _ % Ji and Y
be within these limits. Otherwise all weights saturate either tieth
at the lower or at the upper bound. To avoid this, we first of
all needJ">0. Sincer®'=J%"k, in Eq. (22) must be posi-
tive for stable fixed points, we also neleg>0. The meaning
becomes transparent from Ed.4) in the case of vanishing 2 (1) " @
spontaneous activity in the outputy=0. Thenk;>0 re- I =kt M1J kot MaJ ks,
duces to (27)

JP=k;+ M (ko + Q)+ M I Vk,.

J. (26

If lower and upper bounds do not influence the dynamics of
each weight, the corresponding rates of change are

win>0, (24)

One expects the differend&=J(®— J( petween those av-
erage weights to grow during learning because grédp
receives a stronger reinforcement thaf, . Differentiating
Js" with respect to time, using Eq27) and the constraint
JV=J=N"1(M IV +M,I?), we find the rate of growth

which corresponds to neurobiological realig8,56,31.

A second condition for aealizable fixed point arises
from the upper bound$>JZ'. This requirement leads to
ko< —kq /(N ) —Q¥. Exploiting onlyk,<0, we find from
Eq. (14) that w°"+W(0)»"<0, which means that postsyn-
aptic spikes on average reduce the total weight of synapses. M. M
This is one of our predictions that can be tested experimen- JStr:lTZQ F"+M,Q 1. (28

tally. AssumingW(0)>0, which seems reasonable — with
the benefit of hindsight — in terms ofite-codedearning in

the manner of HebkSec. 1), we predict The first term on the right-hand side gives rise to an expo-

nential increase@>0) while the second term gives rise to a

woule 0 (25) linear growth of J". Equation(28) has an unstable fixed
' point atJ3"=—N/M, J2. Note thatJ$" is always negative
which has not been verified by experiments yet. and independent o®.

Weight constraints do not influence the position of the We associate the time constarit’ of structure formation
fixed pointJ2 (as long as it remains realizableut may  With the time that is necessary for an increasdYffrom a

enlarge the value of the time constarit of normalization ~typical initial value to its maximum. The maximum of"is
(see details in Appendix D The time constamt® changes Of order i if M/M, is of order 1(Sec. VA and if &
because weights saturated at the lowsped bound cannot  =(1+d) J{¥, whered>0 is of order 1(Sec. V B. At the
contribute to a decreadéncreasg of J%. If fewer than the beginning of learningt=0) we may takel*'(0)=0. Using
total number of weights add to ogsubtractivé normaliza-  this initial condition, an integration of Eq28) leads to
tion, then the fixed point is approached more slowly; cf. Fig.J*(t) = (N/M,) J3{expt M;M,Q/N)—1]. With t=7°" and

8, dashed line and insets. The factor, however, by whith  J*"(7*")=J%" we obtain 7°"=N/(M;M,Q) In(M;/N+1).
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- P 4 str 4
v 1=10% 10's 1 7x10%s 9

. t=10°s
i | |
0.08 0 ]MWAHWWWWJ !m\ A HMM i i
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1l

[

a 0.06 1 av
e // J.
< (2 0+ ¥
> 0.04 W’*‘W 1 25 50
- i
,...:»f""“'/l JY
U M.,:\M\N FIG. 10. The asymptotic distribution of weighfs;} at timet
M J =10° s; signatures are as in Fig. 7. This distribution is the final
0 — — — result of the numerical simulation shown in Fig. 9 and remains
0 2x10 4x10 6x10

stable thereafter apart from minor rapid fluctuations. All but one of

tls] the synapses are saturated either at the lower or at the upper bound.

FIG. 9. Temporal evolution of average weight¥, J¥, and

J@ as a function of the learning timein units of 1¢ s. The but turated either at the | th
quantity J?" is the average weight of all synapsé&) andJ® are ~ SYNapSES but oné aré saturaled eitner at the lower or the

average weights in group%t,; and M,, respectively. Synapsén upper boqnd. In t_he scenario of Fig. 10, tgterm keeps a
group M, , where k=i <25, receive incoherent input, whereas syn- Singlé weightJy, in group M, at the upper bound, even
apsed in group.M,, where 26<i<50, are driven by a coherently though there is a nonsaturated ahe, in M,. Group M,
modulated input intensity. Parameters are as given in Appendix B(jn contrast taM,) comprises most of the total weight and is
Simulations started at tine= 0 with a homogeneous weight distri- qriven by positively correlated input. Why dod%l not

bution J;=9=0.1 for all i. The normalization of the average d in f 8.2 Th f E
weights takes place within a time of ord&(100 s); see also the ecrease In favor obp,: € answer comes from Eq.

uppermost full line in Fig. 8. On the time scale of"=2.93  (15). Weight J;, receives a stronger reinforcement than

x10* s a structure in the distribution of weights emerges in that; if J.>] holds. Using Eq.(15) we find J
J@ grows at the expense dfY). The average weight* remains Mo’ M= =M ' ST m
almost unaffected neal?’=2x 1072 (dashed ling The slight en- >Q/k3EJ'eMzJi+‘sz' Approximating X eMz‘]J: N J

largement ofJ* betweent=10" s andt=7x10" s can be ex- = —k;/k; we obtainJy, >—Q k;/(kzks) +Jm, . This con-
plained by using EC1) and taking also thi; term into account.  diition is fulfilled becausely, ~0.1,3y,, ~0.04 (cf. Fig. 10,

The insets(signatures as in Figs. 7 and 8how the weight distri- .
butions aL’[S(tirrglaest=1O3 104, 2 S?SX 10 gnd ™>10* s (a?rows) angk_Q ky/(kz ks)~0.01 (cf. Table ); herek,>0,k,<0,
T ' ' andk;>0.

In stable weight distributions, it is now shown that all

Since we only need an estimatet we drop the logarithm,
which is of order 1. Finally, approximatiniy/(M,M,) by
1/N we arrive at the estimate In this section we discuss the influence of noise on the
s 1 evolution of each weight. Noise may be due to jitter of input
™=(NQ)"~. (29 and output spikes and the fact that we deal with spgersse
éSec. Il B. This gives rise to aandom walkof each weight
around the mean trajectory described by Ed). The vari-
ance vau,(t) of this random walk increases linearly with
time as it does in free diffusion. From the speed of the vari-
ance increase we derive a time scal@*¢ A comparison
with the time constants" of structure formation leads to

shows that we have a separation of the fast time scale ({E:P?:] cg:;tr?én;sn Orc]:o(r)rl:erlalt(ia:r:r}L]n?hgﬁ]rame;\%rvsve?/g?V\?g:ILNS
normalization from the slow time scale of structure forma- NP p'e, any put, '

tion, if Eq. (23) holds can be learned, if there is enough time available for learning.
A’ numérical exarﬁple confirming the above theoretica The calculation of vad; is based on four approximations.

I_. ;
considerations is presented in Fig. 9. Simulation parameterg'rﬁ;mv;fs r;esgizgt hua%%erd::g flc?rwtire bcoalljlggg tgntr;? tlr?:rglrﬂg
are as given in Appendix B. y

constants of normalizatiofSec. V B and structure forma-
tion (Sec. V Q. Second, we neglect spike-spike correlations
between input and output and work directly with ensemble-

Up to this point we have neglected the influence ofkbe averaged rates. As we have seen, spike-spike correlations
term in Eq.(15), which may lead to a stabilization of weight show up in the ternk; in Eq. (15 and have little influence
distributions, in particular when synapses are few and strongn learning, given many, weak synapses and an appropriate
[22,54; cf. Sec. IV D. This is the case, for example, in the scenario for our learning parameters; cf. Sec. IV C. Third, we
scenario of Fig. 10, which is the final result of the simula-assume constant input rate8(t) =" for all i. A temporal
tions described in Fig. 9. The shown weight distribution isstructure in the input rates is expected to play a minor role
stable so that learning has terminated apart from minor rapiélere. Fourth, as a consequence of constant input rates we
fluctuations due to noise. assume a constant output rat&'(t) = »°!.

VI. NOISE

We could adopt a refined analysis similar to the one we hav
used forJ? to discuss the effects of the upper and lower
bounds for individual weights. We will not do so, however,
since the resulf29) suffices for our purpose: the comparison
of time constants.

A comparison of72 in Eq. (22) with " in Eq. (29

D. Stabilization of learning
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Despite such a simplified approach, we can study some
interesting effects caused by neuronal spiking. Within the
limits of our approximations, input and output spikes are
generated by independent Poisson processes with constant = A
intensities. The variance vay(t) increases basically because
of shot noise at the synapses. We now turn to the details.

4x10° -

var {J)(

2x10° £

A. Calculation of the variance

We start with some weight;(ty) at timety and calculate 0 . . ,
the variance vab;(t):=(J?)(t)—(J;)(t) as a function oft 0 1x10° 2x10° 3x10°
for t>t,. Angular brackets() again denote an ensemble t[s]
average; cf. Sec. Il B. A detailed analysis is outlined in Ap-
pendix E. The result is

FIG. 11. Influence of noise. We compare numerical results for
the evolution of the variance Mk} (t) defined in Eq.(32) (full
) — (4 _ lines) with our theoretical predictiofdashed ling based on Eq.
vardi(t)=(t=to) D for t=to>W, (30 (33) with D'=1.47x10"° s™1. Learning starts at time=0 with a
where W is the width of the learning windowV (cf. Sec. ~ homogeneous distributiod; = J{'= 0.02 for alli. The thin line cor-
Il C) and responds to the simulation of Fig. 8 with initial conditiali¥
=0.02, viz., two groups of 25 synapses each. The thick line has

o _ been obtained with incoherent input for all 50 synaps)é%(t)
D= v (W) 2+ pOU( WO 2 + v'“v"“tj ds W(s)? =" for all i (all other parameters in Appendix B being equal
Because the number of synapses is finlte=(50), deviations from
+ Vinvoutw(o) [Z(Win+wout)+\7v(o)(vin+ Vout)]_ the dashed straight line are due to fluctuations. The overall agree-

3 ment between theory and simulation is good.
var{J;}(t) as long as upper and lower bounds have not been

Thus because of Poisson spike arrival and stochastic outpuéached. Furthermore, all synapses “see” the same spike
firing with disjoint intervals being independent, each weighttrain of the postsynaptic neuron they belong to. In contrast to
J; undergoes a diffusion process with diffusion constant  that, input spikes at different synapses are independent.

To discuss the dependencedlpon the learning param- Again we assume that input and output spikes are indepen-
eters, we restrict our attention to the cageé=1°"'in Eq.  dent; cf. the second paragraph at the beginning of Sec. VI.
(31). Since mean input and output rates in biological neuron§&ombining the above arguments, we obtain the diffusion
typically are not too different, this makes sense. MoreoverconstantD’ by simply settingw®"'=0 and disregarding the
we do not expect that the ratid/ »°!is a critical parameter. term [v"W(0)]%»°" in Eq. (31), which leads to
We recall from Sec. VB that°"'=—k;/k, " once the p’'=in (W")2+ " 10U [ds W(s) 2+ 2 w" W(0)+W(0)?].
weights are already normalized and #=Q%=0. With  The boundaries of validity of Eq33) are illustrated in Fig.
v"=1%"this is equivalent td, = —k,. Using the definition  12.
of k; andk, in Eq. (14) we find w"+w°"= —W(0) »". If
we insert this into Eq(31), the final term vanishes. In what
remains of Eq(31) we identify the contributions due to input ~ The effects of shot noise in input and output show up on
spikes, »" (w2, and output spikesp®t{(w°")2. Weight a time scaler"**®*which may be defined as the time interval
changes because of correlations between input and outpcessary for an increase of the varian(z0) from
spikes enter Eq(31) via »"v°!ds W(s)2. varJ;(to) =0 to varJ;(to+ 7"°%9 = (J5)%. We chosel}’ as a

Equation(30) describes the time course of the variance ofreference value because it represents the available range for
a single weight. Estimating val; is numerically expensive €ach weight. From Eq30) we obtain7"**%=(J3")%/D. We
because we have to simulate many independent learning trisseJg’= —k; /(N k;) from Eq.(21) andQ®=0. This yields
als. It is much cheaper to compute the variance of the distri-

B. Time scale of diffusion

2
bution{J;} of weights in a single learning trial. For the sake Tnoise:_(ﬁ (34)
of a comparison of theory and numerics in Fig. 11, we plot N2D\Ka)
N
1 C. Comparison of time scales
var{J;}(t) :=——=2, [J;(t)—JI1)]?, 32 :
i) N—1Z‘1[ () ©] 32 We now compare"©¢in Eq. (34) with the time constant
_ o _ '=1/(N Q) of structure formation as it appears in ER9).
which obeys a diffusion process with The ratio
var{J;}(t)=(t—ty) D', (33 0% Q (k|2
< “ND\K, (35

in a way similar to Eq(30). The diffusion constanD’ is,
however, different fronD because weights of single neurons 1,414 exceed 1 so as to enable structure formaiionhe
do not develop independently of each other. Each outpulgnse of Sec. V IC Otherwise weight diffusion due to noise

spike triggers the change of &llweights by an amouw®.  gpreads the weights between the lower bound 0 and the up-
Therefore, output spikes do not contribute to a change oper houndd and, consequently, destroys any structure.
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t=10' 2x10's 5x10% 10% be motivated by elementary dynamic processes at the level
of the synaps@54,57] and can also be implemented in hard-
ware; cf.[40]. A phenomenological model of the experimen-
tal effects which is close to the model studied in the present
paper has been introducgd2]. A compartmental model of
the biophysics and ion dynamics underlying spike-based
learning along the lines di68] has not been attempted yet.
As an alternative to changing synaptic weights, spike-based
learning rules which act directly on the delays may also be
considered59-61.

The learning rule(1) discussed in the present paper is
rather simple and contains only terms that are linear and

FIG. 12. The variance vaid;}(t) as in Fig. 11 but on a longer guadratic in the presynaptic and postsynaptic spiketeb-
time scale. Thick line: all 50 synapses receive incoherent inputPian” learning. This simple mathematical structure, which
Thin line: two groups of synapses that are treated differently, as inS based on experimefi25,26,3Q, has allowed us to derive
Figs. 8, 9, and 10. The four insesignatures as in Fig.)Tcorre-  analytical results and identify some key quantities.
spond to the thick line scenario and show the evolution of the dis- First of all, if the input signal contains no correlations
tribution of synaptic weights. As in Fig. 11, full lines are numerical with the output at the spike level, and if we use a linear
results and the dashed line is our theoretical prediction. Both diffePoissonian neuron model, the spike-based learning rule re-
significantly for timest>10* s. The reason is that E33) does  duces to Eq(15), which is closely reminiscent of Linsker’s
not include the influence of correlations between input and outputlinear learning equation for rate codifig]. The only differ-
Spike-spike correlations due to tkg term increase weights with a ence is an additional teriky, which is not accounted for by
velocity proportional to their weight; cf. Eq15). Large weights, pyre rate models. It is caused by precise temporal correla-
which are already present at times2x 10 s (see insef there-  tions between an output spike and an input spike that has
fore grow at the expense of the smaller ones. This gives rise to aftiggered the pulse. This additional term reinforces synapses

enlarged variancéhick full line). In the thin-line scenario, we also that are already strong and hence helps to stabilize existing
have theQ;; term in Eq.(15), which contributes to an additional synapse configurations

increase of vgy;}. Finally, att~10° s, vafJ;} saturates because In the limit of rate coding, the form of the learning win-

most of the weights are either at the lower or at the upper bound.dow W is not important but only the integrafds W(s)
counts: fdsWs)>0 would be called ‘“Hebbian,”
Jds W(s)<0 is sometimes called “anti-Hebbian” learning.
N a4 In general, however, input rates may be modulated on a fast
(17), and (3. AS_ a consequence, scaling”, w™, and  ime scale or contain correlations at the spike level. In this
W(s) (or the learning parametey) in Eq. (1) by acommon 446 the shape of the learning window does matter. A learn-
factor y changes the ratio of time constants in E85) by ing window with a maximum ag* <0 (thus maximal in-
1/ without affecting the(normalized mean output rate and raase of the synaptic strength for a presynaptic spiiee
the fixed pointsJf’ and J§'=—J3'N/M;; cf. Eq. (21). ceding a postsynaptic spike; cf. Fig.)6picks up the
Hence it is always possible to achiex®'*77°">1 by tuning  correlations in the input. In this case a structured distribution
v. This means that any covariance mat1d) that gives rise  of synaptic weights may evol@2].
to Q>0, however small, can be learned. More precisely, it The mathematical approach developed in this paper leads
can be learned if there isnough timefor learning. to a clear distinction between different time scales. First, the
A reduction of y also increases the time constarit’  fastest time scale is set by the time course of the postsynaptic
=1/(N Q) of structure formation; cf. Eq29). If the learning  potential e and the learning windowV. Correlations in the
time is limited, which may be the case in biological systemsjnput may occur on the same fast time scale, but can also be
only input with Q larger than some minimal value can be sjower or faster, there is no restriction. Second, learning oc-
learned. Considering the learning parameters as fixed, we Sefirs on a much slower time scale and in two phaggsan
that increasing the number of synapses, on the one hanghtrinsic normalization of total synaptic weight and the out-
helps reduce the time®" necessary for learning but, on the put firing rate followed by(ii) structure formation. Third, if
other hand, decreases the ratf§*7 " in Eq. (35), possibly  the learning rate is small enough, then diffusion of the
below 1. weights due to noise is slow as compared to structure forma-
With parameters as given in Appendix B, the rd@®) is  tion. In this limit, the learning process is described by the
5.5. Therefore, the desired structure in Fig. 9 can emerggifferential equatior(4) for the expected weights.
before noise spreads the weights at random. Normalization is possible, if at least™>0 andw®"'<0
for fds Ws)>0 in Eqg. (1) (“Hebbian” learning. In this
case, the average weight may decay exponentially to a fixed
point, though there iso decay term foiindividual weights.
Changes of synaptic efficacies are triggered byrdia-  In other words, normalization is antrinsic property since
tive timing of presynaptic and postsynaptic spik&§,26.  we do not invoke multiplicative or subtractive rescaling of
The learning rule(1) discussed in this paper is a first step weights after each learning stgp,7,55.
towards a description and analysis of the effects of synaptic The fluctuations due to noise have been treated rather
changes with single-spike resolution. Our learning rule carcrudely in the present paper. In principle, it should be pos-

2x10° 4

var {J}(t)

1x10°

0 ; - . ; :
0 2x10*  axi0*  exio*  s&xio’ 10
t[s]

We note thaD in Eq. (35) is quadratic irw™, w°", and
W, whereask;, k,, andQ are linear; cf. Eqs(12), (14),

VII. DISCUSSION
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sible to include the effects of noise directly at the level of theThe term(S"(t+s) f;(t)) in Eq. (A1) has to be handled with
differential equation, as is standard in statisfi82]. Such an more care as it describes the influence of synapse the
approach would then lead to a Fokker-Planck equation fofiring behavior of the postsynaptic neuron,
the evolution of weights as discussed[88]. All this is in
principle straightforward but in practice very cumbersome.
Finally, we emphasize that we have used a crudely over-
simplified neuron model, viz., a linear stochastic unit. In par<S"(t+s) fi(t))
ticular, there is no spike emission threshold nor reset or spike
afterpotential. Poisson firing is not as unrealistic as it may at
first seem, though. Large networks of integrate-and-fire neu- ,
rons with stochastic connectivity exhibit Poisson-like firing = < {E S(t+s—tf )HJi(t)E E(t—tif)D- (A3)
[64]. Experimental spike interval distributions are also con- f! f
sistent with Poisson firing65]. In the present paper, the
simple Poisson model has been chosen so as to grasp the

mathematics and get an explicit expression for the correlarye first term on the right in E/A3) samples spike events

tion between input and output spikes. The formulation of théy {imet+s. To be mathematically precise, we sample all
learning rule and the derivation of the learning equa(én spikes in a small interval of sizAt aroundt+s, average,

is general and holds for any neuron model. The calculation - ' .
of the correlations which enter in the definition of the param—and divide byAt. We replace the first sum in EG3) by the

. : . 1
eter Q;; in Eqg. (15) is, however, much more difficult, if a gapproxmgté.ldentlty (AY “yspicein s trstay} where
nonlinear neuron model is used. (s _the |nd|cator_fu_nct|on of the sdt}; i.e., it equals 1
Spike-based Hebbian learning has important implicationd/hen its argument is in the sg} and 0 elsewhere. Because
for the question of neural coding since it allows us to pick upth® Postsynaptic potentialis a continuous function, we ap-
and stabilize fast temporal correlatiof88,22,4]. A better ~ Proximate the second sum Bilspike in f, ,t,+at); €(t— 1),
understanding of spike-triggered learning may thus also conwhere {[t, ,t,+At),ke Z} is a decomposition of the real
tribute to a resolution of the problem of neural codingaxis. Since it is understood that— 0, all events with two or
[17,19,65-67. more spikes in an intervdlt, ,t,+At) have a probability
o(At) and, hence, can be neglected. It is exactly this prop-
ACKNOWLEDGMENTS erty that is typical to a Poisson process — and to any bio-
logical neuron.
What we are going to compute is the correlation between
‘5‘”, the input at synapseé and the outputS®", which is
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APPENDIX A: PROOF OF EQ. (9) neuronal dynamics so that they can be taken to be constant

In proving Eq.(9) there is no harm in setting,=0. We  and, thus, out of the average. In the linit—0 we can
then have to compute the average therefore rewrite the right-hand side of E4.3) so as to find
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(S"(t+s) SM(t))= < S"(t+s)

f.()+ > fi(t)]), (Al
(t) jg‘w i )D (AD Ji(t)(At)’lg e(t—ty)

Wherefi(t)=Ji(t)2fe(t—tif) with the upper index ranging
over the firing timeg/<t of neuroni, which has an axonal
connection to synapsehere 1<i<N. Sincee is causal, i.e., (A4)
e(s)=0 for s<0, we can drop the restrictiot{<t. The

synapses being independent of each other, the sum jover
(#i) is independent 08" and thus we obtain Without restriction of generality we can choose our parti-

tion so thatt,=s+t for somek, sayk=I. Singling outk
=1, the rest k#1) can be averaged directly, since events in
> fj(t)D disjoint intervals are independent. Becausél,)
1 = prob{spike in[t+s,t+s+At)}=A"(t+s) At, the result
is J;(t) A(t+5) A"(t), where we have used E(p). As for
> (fQ(t)} the termk=I, we plainly havel{2 =1y, as an indicator
1D function assumes only two distinct values, 0 and 1. We ob-
tain J;(t) \{"(t+s) e(—s).

E) Jj(t) | dt’e(t’) )\}”(t—t’)} (A2) Collecting terms and incorporating,# 0, we find Eq.(9).
(i 0

X yspike in t+s,t+s+At)} Lspike in iy 1, +A0)) -

<Si“(t+s)

=(S")(t+s9)

=A"(t+s)
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APPENDIX B: PARAMETERS FOR NUMERICAL SIMULATIONS

We discuss the parameter regime of the simulations as shown in Secs. V and VI. Numerical values and important derived
guantities are summarized in Table I.

1. Learning window

We use the learning window

s s s
exp — | |AL| 1—=— | +A_| 1—=— for s<0,
™ T T_
W(s)=7 . . (B1)
A, exp( -— +A_exp( - —) for s>0.
T+ T_
|
Here s is the delay between presynaptic spike arrival and 5 . s
postsynaptic firing,» is a “small” learning parameter, ds Ws) e(—s)=»n () (7™ 70)
™o =Y (Y 7)), and 7o =Yl (77 | .
+7_) are time constants. The dimensionless constants X[A_ (2 7ol 7_+ 79"+ 370)
and A_ determine the strength of synaptic potentiation and FAL(2 7 gl 7+ 74 370)].
depression, respectively. Numerical values arg *
=105, =5 ms,r,=1 ms,7_=20 ms, and A, (B5)

=1,A_=—1; cf. Table I. The learning windoucf. Fig. 6

is in accordance with experimental resyl®5,26,28,29,3B

A detailed explanation of our choice of the learning window 3. Synaptic input

on a microscopical basis of Hebbian learning can be found thea total number of synapses =50. For 1<i<M,

elsewherd 54,57 =25s i . . .
. . .= ynapses in groupt; we use a constant input intensity
For~the analysis of the learning p;ocess we nee_d the 'me)(:”(t)= v The remainingVl,= 25 synapses receive a peri-
grals W(0):=/ds Ws) and fds W(s)®. The numerical re-  qqic intensity\"(t) = »"+ 62" cost) for i € M,; cf. also
sult is listed in Table I. Usingc,:=r>Yr. and gec v A3 Numerical parameters amd'=10 Hz, 5"
c_:=7>"7_ we obtain =10 Hz, and w/(27)=40 Hz. For the comparison of
theory and simulation we need the value@fin Eq. (18).
_ We numerically took the Fourier transforms efand W at
— Syl 1
f ds Ws)=» TA_ (2+c_+c_) the frequencyw. The time constant®" is calculated via Eq.
1 (29); cf. Table I.
+A, (2+c,+ci )] (B2)
4. Parametersw™, wo'', v, and &

and . <
We use the learning parameters™=7; and w°"

) =—1.04755, wheren=10"°. The spontaneous output rate
7 i =0 and the upper bound for synaptic weightss
ds W(s)?=——{A2 7_[c® +4c? +5c_+2 'S Yo PP ynap gh's
J s W) 4 {AZ 7 [c=+4c+5c ] =0.1. These values have been chosen in order to fulfill the
following five conditions for learning. First, the absolute val-

2 3 2 <
+A% 7, [cl+4ct +5c, +2] ues ofw™ andw®“ are of the same order as the amplitude of

+2A, A ™c.c_+2(c,+c) the learning windoww, cf. Fig. 6. Furthermore, th_ese abso-
lute values are small as compared to the normalized average
+5+4/(c, +c )]} (B3)  weight(see below. Second, the constraints é&m andk, for

a stable and realizable fixed point are satisfied; cf. Sec. VB
and Eq.(14). Third, the correlations in the input are weak so

2. Postsynaptic potential that 0<Q<—k,; cf. Eqg. (23). This implies that the time

We use the excitatory postsynaptic poten(EPSPH scale7® of normalization in Eq(22) is orders of magnitude
) smaller than the time scate" of structure formation in Eq.

e(s)=s/ g exp( —s/ 7o) H(S), (B4)  (29); cf. also Table I. Fourth, thi, term in Eq.(14) can be

neglected in the sense of Sec. IV C. Proving this, we note
where H() denotes the Heaviside step function, andthat the fixed point for the average weightJ&=2x10"2
fdse(s)=1. For the membrane time constant we uge [cf. EqQ. (21)] andks=7.04x10 > s 1. We now focus on
=10 ms, which is reasonable for cortical neurdf8,69.  Eq.(16). SinceQ;; (<|k,| for all i,j) can be neglected and
The EPSP has been plotted in Fig. 4. Using E&L) and J;< for all i, we find from Eq.(16) the even more restric-
(B4) we obtain tive conditionN |k,| 33"/ 9>|ks| which is fulfilled in our pa-



4512

rameter regime. Fifth, input and output rates are identical fo
normalized weightsy™= 1" for v,=0; see Sec. V B.

APPENDIX C: NORMALIZATION AND CORRELATIONS
BETWEEN WEIGHTS AND INPUT RATES

The assumption of independence of the weidldt$ and
the rate{\{"} used in Sec. V B for the derivation of a nor-
malization property of Eq(15) is not valid in general. Dur-
ing learning we expect weights to change according to thei
input. For the configuration of the input as introduced in Sec
V A this depends on whether synapses belong to graufs
or M,. To show that even under the condition of interde-
pendence ofJ;} and{\{"} there is a normalization property
of Eq. (15) similar to that derived in Sec. V B, we investigate
the most extreme case in which the total mass of synapt
weight is, e.g., inM,. Taking J;=0 for ie M, into
account, we repIaceNflEiij Qjj in Eg. (200 by
M, IN2J2Q¥. The fixed pointJ2¥ is similar to that in Eq.
(21) except for a multiplicative prefactdd/M, of order 1
precedingQ® in Eq. (21),

av
Ja

ki /[N(ky+Q&N/M,)]. (C)
Since N/M,>1, k;>0, and k,+Q*N/M,<0,J%" in Eq.
(C1) is larger thanJ$" in Eq. (21), where we assumed inde-
pendence ofJ;} and{\["}. Correlations betweefJ;} and
{\"} can be neglected, however, if we assume@~ Q"
<—ky; cf. Eq. (23). In this caseJi’ in Egs.(21) and(C1)
are almost identical and independentQ@".

APPENDIX D: NORMALIZATION AND WEIGHT
CONSTRAINTS

Let us consider the influence of weight constraif@ec.
V B) on the position of the fixed poid’ in Eq. (21) and the
time constantr® of normalization in Eq(22). We callN,
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APPENDIX E: RANDOM WALK OF SYNAPTIC WEIGHTS

We consider the random walk of a synaptic weigft)
for t>t,, where Ji(ty) is some starting value. The time
course ofJ;(t) follows from Eq.(1),

Ji(1)=Ji(to) + f:dt’ [wW" SP(t) + WS (t)]
0

t
+f dt’
to

For a specifid, the spike train§"(t") andS®{t’) are now
assumed to be statistically independent and generated by
Poisson processes with constant rat@sfor all i and »°*"
respectively; cf. Secs. Il A and IV A. Here™ can be pre-
scribed, whereas®" then follows; cf., for instance, Eq7).

For largeN the independence is an excellent approximation.
The learning parameters™ and w°“ can be positive or
negative. The learning windoW is some quadratically in-
tegrable function with a widthV as defined in Sec. Il C.
Finally, it may be beneficial to realize that spikes are de-
scribed byé functions.

The weightJ;(t) is a stepwise constant function of time;
see Fig. 2(bottom. According to Eq.(E1), an input spike
arriving at synapsé at timet changesJ; at that time by a
constant amounw™ and a variable amounﬂodt’ W(t

—1) S%{(t’), which depends on the sequence of output
spikes in the intervalty,t]. Similarly, an output spike at
timet results in a constant weight chang@" and a variable
one that equalﬂodt” W(t"—t) S"(t”). We obtain a random

walk with independent steps but randomly variable step size.
Suitable rescaling of this random walk leads to Brownian
motion.

As in Sec. Il B, we substitute=t"—t" in the second line
of Eg. (E1) and extend the integration over the new variable

r t ’
dtn W(t”_ t r) S:n(tn) Sou[(t ’ ) .

to
(ED

andN; the number of weights at the lower bound 0 and thes S0 as to run from- to «. This does not introduce a big

upper boundd>0, respectively. By construction we have
N,+N;=<N, whereN is the number of synapses.

For example, if the average weighf' approaches)’
from below, then onlyN—N; weights can contribute to an
increase of1®. For the remainind\, saturated synapses we
haveJ; = 0. Deriving from Eq.(15) an equation equivalent to
Eq. (20, we obtain J¥=(1—N;/N) (ky+N ky J&
+J2Q*N). The fixed pointJ2 remains unchanged as
compared to Eq(21) but the time constant® for an ap-
proach of J' from below is increased by a factor (1
—NT/N)*1>1 as compared to Eq22). Similarly, & for
an approach ofi3" from above is increased by a factor (1
—N,/N)"*=1.

The factor by whichr® is increased is of order 1, if we
use the upper boundl=(1+d) J%', whered> is of order 1.

If 32=J%", at mostN;=N/(1+d) synapses can saturate at

error fort—t,>W. The second line of EE]) then reduces
to fds W(s) [y dt’ S(t’ +5) S(t').

We denote ensemble averages by angular bragkets
The variance then reads

vard;(t)=(J)(t) = (J;)(1). (E2)

To simplify the ensuing argument, upper and lower bounds
for each weight are not taken into account.

For the calculation of the variance in E@2), first of all
we consider the ternfJ;)(t). We use the notatiodS")(t)
=" and (S*Y(t) = v°"* because of constant input and out-
put intensities. Stochastic independence of input and output
leads to(S"(t’+s) S{(t’))=»"v°"" Using Eq.(E1) and
Jds W(s)=W(0) we then obtain

the upper bound comprising the total weight. The remaining (J;)(t)=J;(to) + (t— to) [W"p+ wOULCUL 1Ny, 0U R 0)],

N,=N-N/(1+d) synapses are at the lower bound 0. The
time constantr® is enhanced by at most#1/d and 1+d

for an approach of the fixed point from below and above,
respectively.

(E3)

Next, we consider the tergd?)(t) in Eq. (E2). Using Eq.
(E1) once again we obtain fdr—ty>W
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Input spikes at times’ andu’ are independent as long as
t'#u’. In this case we therefore haws"(t') S"(u’))

- - - =" y". For arbitrary times’ andu’ we find (cf. Appendix
(S") SP(u") (w2 N Y (cf. App

W hatS™ = ™" for all i and(S°ut = pout
<J?><t)=—Ji(to>2+2Ji<to><Ji><t>+fdt’j:du’ © note tha( ) =" for all i and (S%)=v
0

0

X

+(SM(t') S*u")) (weH)? (St SMu )=V [P+ 8t —u)].  (E6)
+(S"(t") S*U{(u")) 2 winwout . . . .
Similarly, for the correlation between output spike trains we

. SPUt7) S L)y = U [ U S(t'—u’)].  (E7)
+(S*(t") S"(u’ +s) SM(u’)) woH ( )
Using Egs.(E5), (E6), and(E7) in Eq. (E4), performing
+f dsJ' dv W(s) W(v) the integrations, and inserting the outcome together with Eq.
(E3) into Eq. (E2), we arrive at

X(S"(t'+5) S"(u’ +v) S™(t") SU(u")) ;. varJ;(t)=(t—to) D, (E9)

(E4  where
Since input and output were assumed to be independent, we
get D= Vin(Win)2+ Vout(Wout)2+ Vinvoutf ds V\(S)Z
Sin Sin Soutsou _/qin Sin Soutsou , ) ~ ) ~ )
S P=(STS ’ +1"pOURY(0) [2 (W WO + () (v + 2O ],
(S"S"S™M)=(S"S") (™), (E9)

(SPUtgRUtgINy = ( SPutgou (giny (E9  as announced.

[1] D.O. Hebb,The Organization of BehavidiViley, New York, [18] A.K. Kreiter and W. Singer, Eur. J. Neurosdi. 369 (1992.

1949. [19] M. Abeles, in Models of Neural Networks ,lledited by E.
[2] C. von der Malsburg, Kybernetik4, 85 (1973. Domany, J.L. van Hemmen, and K. Schultgpringer, New
[3] R. Linsker, Proc. Natl. Acad. Sci. US83, 7508(1986. York, 1994, pp. 121-140.
[4] R. Linsker, Proc. Natl. Acad. Sci. US83, 8390(1986. [20] W. Singer, inModels of Neural Networks ,lledited by E.
[5] D.J.C. MacKay and K.D. Miller, Networld, 257 (1990. Domany, J.L. van Hemmen, and K. Schultgpringer, New
[6] K.D. Miller, Neural Comput.2, 321(1990. York, 1994, pp. 141-173.
[7] K.D. Miller and D.J.C. MacKay, Neural Compu6, 100 [21] J.J. Hopfield, NaturéLondon 376, 33 (1995.
(1994. [22] W. Gerstner, R. Kempter, J.L. van Hemmen, and H. Wagner,
[8] S. Wimbauer, O.G. Wenisch, K.D. Miller, and J.L. van Hem- Nature(London 383 76 (1996.
men, Biol. Cybern77, 453(1997. [23] R.C. deCharms and M.M. Merzenich, Natuteondon 381,
[9] S. Wimbauer, O.G. Wenisch, J.L. van Hemmen, and K.D. 610(1996.
Miller, Biol. Cybern. 77, 463 (1997. [24] M. Meister, Proc. Natl. Acad. Sci. USA3, 609(1996.
[10] D.J. Willshaw and C. von der Malsburg, Proc. R. Soc. London,[25] H. Markram, J. Libke, M. Frotscher, and B. Sakmann, Science
Ser. B194, 431 (1976. 275 213(1997.
[11] K. Obermayer, G.G. Blasdel, and K. Schulten, Phys. Rev. A[26] L.I. Zhanget al., Nature(London 395, 37 (1998.
45, 7568(1992. [27] B. Gustafssoret al., J. Neurosci7, 774 (1987.
[12] T. Kohonen, Self-Organization and Associative Memory [28] T.V.P. Bliss and G.L. Collingridge, Naturg.ondon 361, 31
(Springer, Berlin, 1984 (1993.
[13] L.M. Optican and B.J. Richmond, J. Neurophysibl, 162 [29] D. Debanne, B.H. Gawiler, and S.M. Thompson, Proc. Natl.
(1987). Acad. Sci. USA91, 1148(1994).
[14] R. Eckhornet al, Biol. Cybern.60, 121 (1988. [30] T.H. Brown and S. Chattarji, iModels of Neural Networks,lI
[15] C.M. Gray and W. Singer, Proc. Natl. Acad. Sci. USA, edited by E. Domany, J.L. van Hemmen, and K. Schulten
1698(1989. (Springer, New York, 1994 pp. 287-314.
[16] C.E. Carr and M. Konishi, J. Neurosdi0, 3227 (1990. [31] C.C. Bell, V.Z. Han, Y. Sugawara, and K. Grant, Natdren-

[17] W. Bialek, F. Rieke, R.R. de Ruyter van Steveninck, and D. don) 387, 278(1997).
Warland, Scienc@52 1855(1991). [32] V. Lev-Ramet al., Neuron18, 1025(1997.



4514

[33] H.J. Koester and B. Sakmann, Proc. Natl. Acad. Sci. l85A
9596 (1998.

[34] L.F. Abbott and K.I. Blum, Cereb. Corte 406 (1996.

[35] A.V.M. Herz, B. Sulzer, R. Kan, and J.L. van Hemmen, Eu-
rophys. Lett.7, 663(1988.

[36] A.V.M. Herz, B. Sulzer, R. Kan, and J.L. van Hemmen, Biol.
Cybern.60, 457 (1989.

[37] J.L. van Hemmeret al., in Konnektionismus in Atrtificial Intel-
ligence und Kognitionsforschungedited by G. Dorffner
(Springer, Berlin, 1990 pp. 153-162.

[38] W. Gerstner, R. Ritz, and J.L. van Hemmen, Biol. Cyb&S).
503 (1993.

KEMPTER, GERSTNER, AND van HEMMEN

PRE 59

[49] M. Meister, L. Lagnado, and D.A. Baylor, Scien2&0, 1207
(1995.

[50] M.J. Berry, D.K. Warland, and M. Meister, Proc. Natl. Acad.
Sci. USA94, 5411(1997).

[51] W.E. Sullivan and M. Konishi, J. Neurosel, 1787(1984.

[52] C.E. Carr, Annu. Rev. Neurosci6, 223(1993.

[53] C. Kaoppl, J. Neuroscil7, 3312(1997.

[54] R. Kempter,Hebbsches Lernen zeitlicher Codierung: Theorie
der Schallortung im Hisystem der Schleiereyldlaturwissen-
schaftliche Reihe, Vol. 1TDDD, Darmstadt, 1997

[55] L. Wiskott and T. Sejnowski, Neural Compui0, 671(1998.

[56] P.A. Salin, R.C. Malenka, and R.A. Nicoll, Neurdr§, 797
(1996.

[39] R. Kempter, W. Gerstner, J.L. van Hemmen, and H. Wagner[57] W. Gerstner, R. Kempter, J.L. van Hemmen, and H. Wagner,

in Advances in Neural Information Processing Systemsd3

ited by D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo

(MIT Press, Cambridge, MA, 1996pp. 124—130.

[40] P. Hdliger, M. Mahowald, and L. Watts, iddvances in Neu-
ral Information Processing Systemsedlited by M. C. Mozer,
M. I. Jordan, and T. PetschéMIT Press, Cambridge, MA,
1997, pp. 692—-698.

[41] B. Ruf and M. Schmitt, ifProceedings of the 7th International
Conference on Artificial Neural Networks (ICANN'98dited

by W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud

(Springer, Heidelberg, 1997pp. 361—-366.

[42] W. Senn, M. Tsodyks, and H. Markram, Rroceedings of the
7th International Conference on Artificial Neural Networks
(ICANN’'97), edited by W. Gerstner, A. Germond, M. Hasler,
and J.-D. NicoudSpringer, Heidelberg, 1997pp. 121-126.

[43] R. Kempter, W. Gerstner, and J.L. van HemmenAdvances
in Neural Information Processing Systems, Etlited by M.
Kearns, S. A. Solla, and D. ColfMIT Press, Cambridge, MA,
in press.

[44] J. W. LampertiProbability, 2nd ed.(Wiley, New York, 1996.

[45] J.A. Sanders and F. Verhulgtyeraging Methods in Nonlinear
Dynamical SystemiSpringer, New York, 1986

[46] R. Kempter, W. Gerstner, J.L. van Hemmen, and H. Wagner,

Neural Comput10, 1987(1998.

[47] T.J. Sejnowski and G. Tesauro, Nteural Models of Plasticity:
Experimental and Theoretical Approacheslited by J. H. By-
rne and W.O. BerryAcademic Press, San Diego, 1988hap.
6, pp. 94—103.

[48] R. Ritz and T.J. Sejnowski, Curr. Opin. Neurobidl. 536
(1997.

in Pulsed Neural Netsedited by W. Maass and C.M. Bishop
(MIT Press, Cambridge, MA, 1998Chap. 14, pp. 353-377.

[58] A. Zador, C. Koch, and T.H. Brown, Proc. Natl. Acad. Sci.
USA 87, 6718(1990.

[59] C.W. Eurich, J.D. Cowan, and J.G. Milton, Rroceedings of
the 7th International Conference on Artificial Neural Networks
(ICANN'97), edited by W. Gerstner, A. Germond, M. Hasler,
and J.-D. NicoudSpringer, Heidelberg, 1997pp. 157-162.

[60] C.W. Eurich, U. Ernst, and K. Pawelzik, Proceedings of the
8th International Conference on Artificial Neural Networks
(ICANN'98), edited by L. Niklasson, M. Boden, and T.
Ziemke (Springer, Berlin, 1998 pp. 355-360.

[61] H. Huning, H. Glinder, and G. Palm, Neural Compad®, 555
(1998.

[62] N.G. van KampenStochastic Processes in Physics and Chem-
istry (North-Holland, Amsterdam, 1992

[63] H. Ritter, T. Martinez, and K. SchultetNeural Computation
and Self-Organizing Maps: An IntroductidgAddison-Wesley,
Reading, 199

[64] C. van Vreeswijk and H. Sompolinsky, Scien2&4, 1724
(1996.

[65] W. Softky and C. Koch, J. Neurosci3, 334(1993.

[66] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W.

Bialek, Spikes: Exploring the Neural Cod#IT Press, Cam-

bridge, MA, 1997.

[67] M.N. Shadlen and W.T. Newsome, Curr. Opin. Neurobibl.
569 (1994.

[68] O. Bernander, R.J. Douglas, K.A.C. Martin, and C. Koch,
Proc. Natl. Acad. Sci. USA8, 11 569(1991).

[69] M. Rapp, Y. Yarom, and I. Segev, Neural Comp4t.518
(1992.



