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Hebbian learning and spiking neurons
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A correlation-based~‘‘Hebbian’’ ! learning rule at a spike level with millisecond resolution is formulated,
mathematically analyzed, and compared with learning in a firing-rate description. The relative timing of
presynaptic and postsynaptic spikes influences synaptic weights via an asymmetric ‘‘learning window.’’ A
differential equation for the learning dynamics is derived under the assumption that the time scales of learning
and neuronal spike dynamics can be separated. The differential equation is solved for a Poissonian neuron
model with stochastic spike arrival. It is shown that correlations between input and output spikes tend to
stabilize structure formation. With an appropriate choice of parameters, learning leads to an intrinsic normal-
ization of the average weight and the output firing rate. Noise generates diffusion-like spreading of synaptic
weights.@S1063-651X~99!02804-4#

PACS number~s!: 87.19.La, 87.19.La, 05.65.1b, 87.18.Sn
na
e

h
sy
tiv

tio
e
e

m
se
te
re
o

su
r

d
in

th
in

pt
pt

o

-
ptic
e-
to-

een

n-

e

.de

tic
I. INTRODUCTION

Correlation-based or ‘‘Hebbian’’ learning@1# is thought
to be an important mechanism for the tuning of neuro
connections during development and thereafter. It has b
shown by various model studies that a learning rule whic
driven by the correlations between presynaptic and post
aptic neurons leads to an evolution of neuronal recep
fields @2–9# and topologically organized maps@10–12#.

In all these models, learning is based on the correla
between neuronal firingrates, that is, a continuous variabl
reflecting the mean activity of a neuron. This is a valid d
scription on a time scale of 100 ms and more. On a ti
scale of 1 ms, however, neuronal activity consists of a
quence of short electrical pulses, the so-called action po
tials or spikes. During recent years experimental and theo
ical evidence has accumulated which suggests that temp
coincidences between spikes on a millisecond or even
millisecond scale play an important role in neuronal info
mation processing@13–24#. If so, a rate description may, an
often will, neglect important information that is contained
the temporal structure of a neuronal spike train.

Neurophysiological experiments also suggest that
change of a synaptic efficacy depends on the precise tim
of postsynaptic action potentials with respect to presyna
input spikes on a time scale of 10 ms. Specifically, a syna
weight is found toincrease, if presynaptic firingprecedesa
postsynaptic spike, and to decrease otherwise@25,26#; see
also@27–33#. Our description of learning at a temporal res
lution of spikes takes these effects into account.
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In contrast to the standardrate models of Hebbian learn
ing, we introduce and analyze a learning rule where syna
modifications are driven by the temporal correlations b
tween presynaptic and postsynaptic spikes. First steps
wards a detailed modeling of temporal relations have b
taken for rate models in@34# and for spike models in@22,35–
43#.

II. DERIVATION OF THE LEARNING EQUATION

A. Specification of the Hebb rule

We consider a neuron that receives input fromN@1 syn-
apses with efficaciesJi , 1< i<N; cf. Fig. 1. We assume
that changes ofJi are induced by presynaptic and postsy
aptic spikes. The learning rule consists of three parts.~i! Let
t i

f be the arrival time of thef th input spike at synapsei. The

FIG. 1. Single neuron. We study the development of synap
weightsJi ~small filled circles, 1< i<N) of a single neuron~large
circle!. The neuron receives input spike trains denoted bySi

in and
produces output spikes denoted bySout.
4498 ©1999 The American Physical Society
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PRE 59 4499HEBBIAN LEARNING AND SPIKING NEURONS
arrival of a spike induces the weightJi to change by an
amounthwin which can be either positive or negative. Th
quantityh.0 is a ‘‘small’’ parameter.~ii ! Let tn be thenth
output spike of the neuron under consideration. This ev
triggers the change of allN efficacies by an amounthwout

which can also be positive or negative.~iii ! Finally, time
differencesbetween all pairs of input and output spikes i
fluences the change of the efficacies. Given a time differe
s5t i

f2tn between input and output spikes,Ji is changed by
an amounthW(s) where thelearning window Wis a real-
valued function. It is to be specified shortly; cf. also Fig.

Starting at timet with an efficacyJi(t), the total change
DJi(t)5Ji(t1T)2Ji(t) in a time intervalT, which may be
interpreted as the length of a learning trial, is calculated
summing the contributions of input and output spikes as w
as all pairs of input and output spikes occurring in the ti
interval @ t,t1T#. Denoting the input spike train at synapsei
by a series ofd functions, Si

in(t)5( fd(t2t i
f), and, simi-

larly, output spikes bySout(t)5(nd(t2tn), we can formu-
late the rules~i!–~iii ! explicitly by setting

DJi~ t !5hE
t

t1T
dt8@winSi

in~ t8!1woutSout~ t8!#

1hE
t

t1T
dt8E

t

t1T
dt9W~ t92t8!Si

in~ t9!Sout~ t8!

~1a!

5hF(
t i
f

8 win1(
tn

8 wout1 (
t i
f ,tn

8 W~ t i
f2tn!G .

~1b!

In Eq. ~1b! the prime indicates that only firing timest i
f andtn

in the time interval@ t,t1T# are to be taken into account; c
Fig. 2.

Equation~1! represents a Hebb-type learning rule sin
they correlate presynaptic and postsynaptic behavior. M
precisely, here our learning scheme depends on the time
quence of input and output spikes. The parameterswin,wout

as well as the amplitude of the learning windowW may, and
in general will, depend on the value of the efficacyJi . Such
a Ji dependence is useful so as to avoid unbounded gro
of synaptic weights. Even though we have not emphasi
this in our notation, most of the theory developed below
valid for Ji-dependent parameters; cf. Sec. V B.

B. Ensemble average

Given that input spiking is random but partially correlat
and that the generation of spikes is in general a complica
dynamic process, an analysis of Eq.~1! is a formidable prob-
lem. We therefore simplify it. We have introduced asmall
parameterh.0 into Eq. ~1! with the idea in mind that the
learning process is performed on a much slower time s
than the neuronal dynamics. Thus we expect that onlyaver-
agedquantities enter the learning dynamics.

Considering averaged quantities may also be useful in
der to disregard the influence of noise. In Eq.~1! spikes are
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discrete events that trigger a discontinuous change of
synaptic weight; cf. Fig. 2~bottom!. If we assume a stochas
tic spike arrival or if we assume a stochastic process
generating output spikes, the changeDJi is a random vari-
able, which exhibits fluctuations around some mean d
Averaging implies that we focus on the drift and calcula
the expected rate of change. Fluctuations are treated in
VI.

1. Self-averaging of learning

Effective learning needs repetition over many trials
lengthT, each individual trial being independent of the pr
vious ones. Equation~1! tells us that the results of the ind
vidual trials are to be summed. According to the~strong! law
of large numbers@44# in conjunction withh being ‘‘small’’
@45# we can average the resulting equation, viz., Eq.~1!,
regardless of the random process. In other words, the le
ing procedure isself-averaging. Instead of averaging ove
several trials, we may also consider one single long t
during which input and output characteristics remain co
stant. Again, ifh is sufficiently small, time scales are sep
rated and learning is self-averaging.

The corresponding average over the resulting random
cess is denoted by angular brackets^ & and is called anen-
semble average, in agreement with physical usage. It is
probability measure on a probability space, which need
be specified explicitly. We simply refer to the literature@44#.
Substitutings5t92t8 on the right-hand side of Eq.~1a! and
dividing both sides byT, we obtain

FIG. 2. Hebbian learning and spiking neurons—schematic
the bottom graph we plot the time course of the synaptic wei
Ji(t) evoked through input and output spikes~upper graphs, vertica
bars!. An output spike, e.g., at timet1, induces the weightJi to
change by an amountwout which is negative here. To consider th
effect of correlations between input and output spikes, we plot
learning windowW(s) ~center graphs! around each output spike
wheres50 matches the output spike times~vertical dashed lines!.
The three input spikes at timest i

1 , t i
2 , andt i

3 ~vertical dotted lines!
increaseJi by an amountwin each. There is no influence of corre
lations between these input spikes and the output spike at timet1.
This becomes visible with the aid of the learning windowW cen-
tered att1. The input spikes are too far away in time. The ne
output spike att2, however, is close enough to the previous inp
spike att i

3 . The weightJi is changed bywout,0 plus the contribu-
tion W(t i

32t2).0, the sum of which is positive~arrowheads!.
Similarly, the input spike at timet i

4 leads to a changewin1W(t i
4

2t2),0.
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^DJi&~ t !

T 5
h

TEt

t1T
dt8[win^Si

in&~ t8!1wout^Sout&~ t8!]

1
h

TEt

t1T
dt8E

t2t8

t1T2t8
dsW~s!

3^Si
in~ t81s! Sout~ t8!&. ~2!

2. Example: Inhomogeneous Poisson process

Averaging the learning equation before proceeding is j
tified if both input and output processes will be taken to
inhomogeneous Poisson processes, which will be assu
throughout Secs. IV–VI. An inhomogeneous Poisson p
cess with time-dependent rate functionl(t)>0 is character-
ized by two facts:~i! disjoint intervals are independent an
~ii ! the probability of getting asingle event at timet in an
interval of lengthDt is l(t)Dt, more events having a prob
ability o(Dt); see also@46#, Appendix A for a simple expo-
sition of the underlying mathematics. The integrals in E
~1a! or the sums in Eq.~1b! therefore decompose into man
independent events and, thus, the strong law of large n
bers applies to them. The output is a temporally local proc
as well so that the strong law of large numbers also app
to the output spikes at timestn in Eq. ~1!.

If we describe input spikes by inhomogeneous Pois
processes with intensityl i

in(t), then we may identify the
ensemble average over a spike train with the stochastic
tensity,^Si

in&(t)5l i
in(t); cf. Fig. 3. The intensityl i

in(t) can
be interpreted as the instantaneous rate of spike arriva
synapsei. In contrast to temporally averaged mean firi
rates, the instantaneous rate may vary on a fast time sca
many biological systems; cf. Sec. III C. The stochastic int
sity ^Sout&(t) is the instantaneous rate of observing an out
spike, wherê & is an ensemble average over both the in
and the output. Finally, the correlation functio
^Si

in(t9)Sout(t8)& is to be interpreted as the joint probabili
density for observing an input spike at synapsei at the time
t9 and an output spike at timet8.

C. Separation of time scales

We require the lengthT of a learning trial in Eq.~2! to be
much larger than typical interspike intervals. Both many
put spikes at any synapse and many output spikes sh

FIG. 3. Inhomogeneous Poisson process. In the upper grap
have plotted an example of an instantaneous ratel i

in(t) in units of
Hz. The average rate is 10 Hz~dashed line!. The lower graph shows
a spike trainSi

in(t) which is a realization of an inhomogeneou
Poisson process with ratel i

in(t). The spike times are denoted b
vertical bars.
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occur on average in a time interval of lengthT. Then, using
the notationf (t)5T21* t

t1Tdt8 f (t8), we may introduce the
meanfiring ratesn i

in(t)5^Si
in&(t) andnout(t)5^Sout&(t). We

call n i
in andnout meanfiring rates in order to distinguish them

from the previously definedinstantaneousrates ^Si
in& and

^Sout& which are the result of an ensemble average only.
cause of their definition, mean firing ratesn always vary
slowly as a function of time. That is, they vary on a tim
scale of the order ofT. The quantitiesn i

in andnout therefore
carry hardly any information that may be present in the ti
ing of discrete spikes.

For the sake of further simplification of Eq.~2!, we define
the widthW of the learning windowW(s) and consider the
caseT@W. Most of the ‘‘mass’’ of the learning window
should be inside the interval@2W,W#. Formally we require
* 2W
W dsuW(s)u@*2`

2WdsuW(s)u1* W
` dsuW(s)u. For T@W

the integration overs in Eq. ~2! can be extended to run from
2` to `. With the definition of a temporally averaged co
relation function,

Ci~s;t !5^Si
in~ t1s! Sout~ t !&, ~3!

the last term on the right in Eq.~2! reduces to
*2`

` dsW(s)Ci(s;t). Correlations between presynaptic an
postsynaptic spikes, thus, enter spike-based Hebbian lear
throughCi convolvedwith the windowW. We note that the
correlationCi(s;t), though being both an ensemble and
temporally averaged quantity, may change as a functions
on a much faster time scale thanT or the widthW of the
learning window. The temporal structure ofCi depends es-
sentially on the neuron~model! under consideration. An ex
ample is given in Sec. IV A.

We require learning to be a slow process; cf. Sec. II B
More specifically, we require thatJ values do not change
much in the time intervalT. ThusT separates the time sca
W ~width of the learning windowW) from the time scale of
the learning dynamics, which is proportional toh21. Under
those conditions we are allowed to approximate the left-h
side of Eq.~2! by the rate of changedJi /dt, whereby we
have omitted the angular brackets for brevity. Absorbingh
into the learning parameterswin, wout, andW, we obtain

d

dt
Ji~ t !5winn i

in~ t !1woutnout~ t !1E
2`

`

dsW~s!Ci~s;t !.

~4!

The ensemble-averaged learning equation~4!, which holds
for any neuron model, will be the starting point of the arg
ments below.

III. SPIKE-BASED AND RATE-BASED
HEBBIAN LEARNING

In this section we indicate the assumptions that are
quired to reduce spike-based to rate-based Hebbian lear
and outline the limitations of the latter.

A. Rate-based Hebbian learning

In neural network theory, the hypothesis of Hebb@1# is
usually formulated as a learning rule where the change
synaptic efficacyJi depends on the correlation between t

we
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PRE 59 4501HEBBIAN LEARNING AND SPIKING NEURONS
mean firing raten i
in of the i th presynaptic neuron and th

mean firing ratenout of a postsynaptic neuron, viz.,

dJi

dt
[ J̇i5a01a1n i

in1a2nout

1a3n i
innout1a4~n i

in!21a5~nout!2, ~5!

where a0,0, a1 , a2 , a3 , a4 , and a5 are proportionality
constants. Apart from the decay terma0 and the ‘‘Hebbian’’
term n i

innout proportional to the product of input and outp
rates, there are also synaptic changes which are driven s
rately by the presynaptic and postsynaptic rates. The par
etersa0 , . . . ,a5 may depend onJi . Equation~5! is a general
formulation up to second order in the rates; see, e
@3,47,12#.

B. Spike-based Hebbian learning

To get Eq.~5! from the spike-based learning rule in E
~4! two approximations are required. First, if there are
correlations between input and output spikes apart from
correlations contained in the instantaneous rates, we
write ^Si

in(t81s)Sout(t8)&'^Si
in&(t81s)^Sout&(t8). Second,

if these rates change slowly as compared toT, then we have
Ci(s;t)'n i

in(t1s)nout(t). In addition, n5^S& is the time
evolution on a slow time scale; cf. the discussion after
~3!. Since we haveT@W, the ratesn i

in also change slowly as
compared to the widthW of the learning window and, thus
we may replacen i

in(t1s) by n i
in(t) in the correlation term

*2`
` dsW(s) Ci(s;t). This yields *2`

` dsW(s)Ci(s;t)

'W̃(0)n i
in(t)nout(t), whereW̃(0)ª*2`

` dsW(s). Under the

above assumptions we can identifyW̃(0) with a3 . By fur-
ther comparison of Eq.~4! with Eq. ~5! we identifywin with
a1 andwout with a2 , and we are able to reduce Eq.~4! to Eq.
~5! by settinga05a45a550.

C. Limitations of rate-based Hebbian learning

The assumptions necessary to derive Eq.~5! from Eq.~4!,
however, are not generally valid. According to the results
Markram et al. @25#, the widthW of the Hebbian learning
window in cortical pyramidal cells is in the range of 100 m
At retinotectal synapsesW is also in the range of 100 m
@26#.

A meanrate formulation thus requires that all changes
the activity are slow at a time scale of 100 ms. This is n
necessarily the case. The existence of oscillatory activity
the cortex in the range of 40 Hz~e.g.,@14,15,20,48#! implies
activity changes every 25 ms. Retinal ganglion cells fi
synchronously at a time scale of about 10 ms@49#; cf. also
@50#. Much faster activity changes are found in the audito
system. In the auditory pathway of, e.g., the barn owl, spi
can be phase-locked to frequencies of up to 8 kHz@51–53#.
Furthermore, beyond the correlations between instantan
rates, additional correlations between spikes may exist.

Because of all the above reasons, the learning rule~5! in
the simple rate formulation is insufficient to provide a ge
erally valid description. In Secs. IV and V we will therefo
study the full spike-based learning equation~4!.
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IV. STOCHASTICALLY SPIKING NEURONS

A crucial step in analyzing Eq.~4! is determining the
correlationsCi between input spikes at synapsei and output
spikes. The correlations, of course, depend strongly on
neuron model under consideration. To highlight the m
points of learning, we study a simple toy model. Input spik
are generated by an inhomogeneous Poisson process an
into a stochastically firing neuron model. For this scena
we are able to derive an analytical expression for the co
lations between input and output spikes. The introduction
the model and the derivation of the correlation function is
topic of the first subsection. In the second subsection we
the correlation function in the learning equation~4! and ana-
lyze the learning dynamics. In the final two subsections
relation to the work of Linsker@3# ~a rate formulation of
Hebbian learning! and some extensions based on spike c
ing are considered.

A. Poisson input and stochastic neuron model

We consider a single neuron which receives input viaN
synapses 1< i<N. The input spike trains arriving at theN
synapses are statistically independent and generated b
inhomogeneous Poisson process with time-dependent in
sities ^Si

in&(t)5l i
in(t) with 1< i<N @46#.

In our simple neuron model we assume that output spi
are generated stochastically with a time-dependent
lout(t) that depends on the timing of input spikes. Each inp
spike arriving at synapsei at timet i

f increases~or decreases!
the instantaneous firing ratelout by an amountJi(t i

f) e(t
2t i

f), wheree is a response kernel. The effect of an incom
ing spike is thus a change in probability density proportio
to Ji . Causality is imposed by the requiremente(s)50 for
s,0. In biological terms, the kernele may be identified with
an excitatory ~or inhibitory! postsynaptic potential. In
throughout what follows, we assumeexcitatory couplings
Ji.0 for all i ande(s)>0 for all s. In addition, the response
kernele(s) is normalized to*dse(s)51; cf. Fig. 4.

The contributions from allN synapses as measured at t
axon hillock are assumed to add up linearly. The result gi
rise to alinear inhomogeneous Poisson model with intens

lout~ t !5n01(
i 51

N

(
f

Ji~ t i
f !e~ t2t i

f !. ~6!

FIG. 4. The postsynaptic potentiale in units of @e21t0
21# as a

function of times in milliseconds. We havee[0 for s,0 so thate
is causal. The kernele has a single maximum ats5t0 . For s
→` the postsynaptic potentiale decays exponentially with time
constantt0 ; cf. also Appendix B 2.
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Here,n0 is the spontaneous firing rate and the sums run o
all spike arrival times at all synapses. By definition, the sp
generation process~6! is independent of previous outpu
spikes. In particular, this Poisson model does not inclu
refractoriness.

In the context of Eq.~4!, we are interested in ensemb
averages over both the input and the output. Since Eq.~6! is
a linear equation, the average can be performed directly
yields

^Sout&~ t !5n01(
i 51

N

Ji~ t !E
0

`

dse~s!l i
in~ t2s!. ~7!

In deriving Eq.~7! we have replacedJi(t i
f) by Ji(t) because

efficacies are assumed to change adiabatically with respe
the width ofe. The ensemble-averaged output rate in Eq.~7!
depends on the convolution ofe with the input rates. In wha
follows we denote

L i
in~ t !5E

0

`

dse~s!l i
in~ t2s!. ~8!

Equation~7! may suggest that input and output spikes
statistically independent, which is not the case. To show
explicitly, we determine the ensemble-averaged correla
^Si

in(t1s)Sout(t)& in Eq. ~3!. Since^Si
in(t1s)Sout(t)& corre-

sponds to a joint probability, it equals the probability dens
l i

in(t1s) for an input spike at synapsei at time t1s times
the conditional probability density of observing an outp
spike at timet given the above input spike att1s,

^Si
in~ t1s!Sout~ t !&

5l i
in~ t1s!Fn01Ji~ t !e~2s!1(

j 51

N

Jj~ t !L j
in~ t !G .

~9!

The first term inside the square brackets is the spontan
output rate and the second term is the specific contribu
caused by the input spike at timet1s, which vanishes for
s.0. We are allowed to writeJi(t) instead of the ‘‘correct’’
weight Ji(t1s); cf. the remark after Eq.~7!. To understand
the meaning of the second term, we recall that an input sp
arriving beforean output spike~i.e., s,0) raises the outpu
firing rate by an amount proportional toe(2s); cf. Fig. 5.
The sum in Eq.~9! contains the mean contributions of a
synapses to an output spike at timet. For the proof of Eq.
~9!, we refer to Appendix A.

Inserting Eq.~9! into Eq. ~3! we obtain

Ci~s;t !5(
j 51

N

Jj~ t !l i
in~ t1s!L j

in~ t !

1l i
in~ t1s!@n01Ji~ t !e~2s!#, ~10!

where we have assumed the weightsJj to be constant in the
time interval@ t,t1T#. Temporal averages are denoted by
bar; cf. Sec. II C. Note thatl i

in(t)5n i
in(t).
er
e

e
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to

e
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B. Learning equation

Before inserting the correlation function~10! into the
learning rule~4! we define the covariance matrix

qi j ~s;t !ª@l i
in~ t1s!2n i

in~ t1s!#@L j
in~ t !2n j

in~ t !# ~11!

and its convolution with the learning windowW,

Qi j ~ t !ªE
2`

`

dsW~s!qi j ~s;t !. ~12!

Using Eqs.~7!, ~10!, and~12! in Eq. ~4!, we obtain

J̇i5winn i
in1woutFn01(

j
Jjn j G1W̃~0!n i

inn0

1(
j

JjFQi j 1W̃~0!n i
inn j

in1d i j n i
inE

2`

`

dsW~s!e~2s!G .
~13!

For the sake of brevity, we have omitted the depende
upon time.

The assumption of identical and constant mean in
rates,n i

in(t)5n in for all i, reduces the number of free param
eters in Eq.~13! considerably and eliminates all effects com
ing from rate coding. We define

k15@wout1W̃~0!n in#n01winn in,

k25@wout1W̃~0!n in#n in, ~14!

k35n inE dsW~s!e~2s!

in Eq. ~13! and arrive at

J̇i5k11(
j

~Qi j 1k21k3 d i j !Jj . ~15!

FIG. 5. Spike-spike correlations. To understand the meaning
Eq. ~9! we have sketched̂Si

in(t8)Sout(t)&/l i
in(t8) as a function of

time t ~full line!. The dot-dashed line at the bottom of the graph
the contributionJi(t8)e(t2t8) of an input spike occurring at time
t8. Adding this contribution to the mean rate contribution,n0

1( j Jj (t)L j
in(t) ~dashed line!, we obtain the rate inside the squa

brackets of Eq.~9! ~full line!. At time t9.t8 the input spike at time
t8 enhances the output firing rate by an amountJi(t8)e(t92t8)
~arrows!. Note that in the main text we have takent92t852s.
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PRE 59 4503HEBBIAN LEARNING AND SPIKING NEURONS
Equation~15! describes the ensemble-averaged dynamic
synaptic weights for a spike-based Hebbian learning rule~1!
under the assumption of a linear inhomogeneous Poisso
model neuron.

C. Relation to Linsker’s equation

Linsker@3# has derived a mathematically equivalent equ
tion starting from Eq.~5! and a linear graded-response ne
ron, a rate-based model. The difference between Linsk
equation and Eq.~15! is, apart from a slightly different no
tation, the termk3 d i j .

Equation~15! without thek3 term has been analyzed e
tensively by MacKay and Miller@5# in terms of eigenvectors
and eigenfunctions of the matrixQi j 1k2 . In principle, there
is no difficulty in incorporating thek3 term in their analysis,
becauseQi j 1k21d i j k3 containsk3 times the unit matrix
and thus has the same eigenvectors asQi j 1k2 . All eigen-
values are simply shifted byk3 .

Thek3 term can be neglected if the numberN of synapses
is large. More specifically, the influence of thek3 term as
compared to thek2 andQi j term is negligible if for alli,

(
j

uQi j 1k2uJj@uk3uJi . ~16!

This holds, for instance, if~i! we have many synapses,~ii !
uk3u is smaller than or at most of the same order of mag
tude asuk21Qi j u for all i and j, and ~iii ! each synapse is
weak as compared to the total synaptic weight,Ji!( j Jj .
The assumptions~i!–~iii ! are often reasonable neurobiolog
cal conditions, in particular when the pattern of synap
weights is still unstructured. The analysis of Eq.~15! pre-
sented in Sec. V and focusing on normalization and struc
formation is therefore based on these assumptions. In
ticular, we neglectk3 .

Nevertheless, our approach even without thek3 term is far
more comprehensive than Linsker’s rate-based ansatz~5! be-
cause we have derived Eq.~15! from a spike-based learnin
rule ~1!. Therefore correlations between spikes on tim
scales down to milliseconds or below can enter the driv
term Qi j so as to account for structure formation. Corre
tions on time scales of milliseconds or below may be ess
tial for information processing in neuronal systems; cf. S
III C. In contrast to that, Linsker’s ansatz is based on
firing-rate description where the termQi j contains correla-
tions betweenmean firing ratesonly. If we use a standard
interpretation of rate coding, a mean firing rate correspo
to a temporally averaged quantity which varies on a ti
scale of the order of hundreds of milliseconds. The tempo
structure of spike trains is neglected completely.

Finally, our ansatz~1! allows the analysis of the influenc
of noise on learning. Learning results from stepwise wei
changes. Each weight performs a random walk whose ex
tation value is described by the ensemble-averaged equ
~15!. Analysis of noise as a deviation from the mean is d
ferred to Sec. VI.

D. Stabilization of learning

We now discuss the influence of thek3 term in Eq.~15!.
It gives rise to an exponential growth or decay of weigh
of
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depending on the sign ofk3 . Since firing ratesn are always
positive andk35n in*dsW(s) e(2s), the sign of the integral
*dsW(s)e(2s) is crucial. Hebb’s principle suggests that fo
excitatory synapses, the integral is always positive. To
derstand why, let us recall thats is defined as the time dif-
ference between input and output spikes. The response
nel e vanishes for negative arguments. Thus the integ
effectively runs only over negatives. According to our defi-
nition, s,0 implies that presynaptic spikesprecedepostsyn-
aptic firing. These are the spikes that may have participa
in firing the postsynaptic neuron. Hebb’s principle@1# sug-
gests that these synapses are strengthened, henceW(s).0
for s,0; cf. Fig. 6. This idea is also in agreement wi
recent neurobiological results@25,26,33#: Only those syn-
apses are potentiated where presynaptic spikes arrive a
millisecondsbeforea postsynaptic spike occurs so that t
former arrive ‘‘in time.’’ We conclude that*dsW(s)e(2s)
.0 and, hence, thek3 term is positive.

With k3.0 every weight and thus every structure in t
distribution of weights is enhanced. This may contribute
the stability of structured weight distributions at the end
learning, in particular when the synapses are few and str
@22,54#. In this case, Eq.~16! may be not fulfilled and thek3
term in Eq. ~15! has an important influence. Thus spik
based learning is different from simple rate-based learn
rules. Spike-spike correlations on a millisecond time sc
play an important role and tend to stabilize existing stro
synapses.

V. LEARNING DYNAMICS

In order to get a better understanding of the princip
features of the learning dynamics, we discuss Eq.~15! with
k350 for a particularly simple configuration: a model wit
two groups of synapses. Input rates are homogeneous w
each group but different between one group and the ot
Our discussion focuses on intrinsic normalization of outp
rates and structure formation. We take lower and up
bounds for theJ values into account explicitly and conside
the limiting case of weak correlations in the input. We w
see that for a realistic scenario we need to requirewin.0 and

FIG. 6. The learning windowW in units of the learning param
eter h as a function of the delays5t i

f2tn between presynaptic
spike arrival at synapsei at time t i

f and postsynaptic firing at time
tn. If W(s) is positive~negative! for somes, the synaptic efficacyJi

is increased~decreased!. The increase ofJi is most efficient if a
presynaptic spike arrives a few millisecondsbeforethe postsynaptic
neuron starts firing~vertical dashed line ats5s* ). For usu→` we
have W(s)→0. The form of the learning window and paramet
values are as described in Appendix B 1.
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4504 PRE 59KEMPTER, GERSTNER, AND van HEMMEN
wout,0 and that we can formulate theoretical predictions
the relative magnitude of the learning parameterswin,wout

and the form of the learning windowW. The theoretical con-
siderations are illustrated by numerical simulations wh
parameters are justified in Appendix B and summarized
Table I.

A. Models of synaptic input

We divide theN statistically independent synapses,
converging onto the very same neuron, into two groups,M1
andM2 . The numbers of synapses areM1 andM2 , respec-
tively, where M11M25N and M1 ,M2@1. Since each
group contains many synapses, we may assume thatM1 and
M2 are of the same order of magnitude. The spike inpu
synapsesi in groupM1 is generated by a Poisson proce
with a constant intensityl i

in(t)[n in, which is independent o
t. We therefore haveQi j (t)[0 for i or j PM1 ; cf. Eqs.~11!
and ~12!. The synapsesi in groupM2 are driven by an

TABLE I. Values of the parameters used for the numeri
simulations~a! and derived quantities~b!.

~a! Parameters

Learning h51025

win5h
wout521.0475h
A151
A2521
t151 ms
t2520 ms

tsyn55 ms

EPSP t0510 ms
Synaptic input N550

M1525
M2525
n in510 s21

dn in510 s21

v/(2p)540 s21

Further parameters n050
q50.1

~b! Derived quantities

W̃(0)ª*dsW(s)54.7531028 s
*dsW(s)253.68310212 s

*dsW(s)e(2s)57.0431026

Q56.8431027 s21

k15131024 s21

k252131024 s21

k357.0431025 s21

tav523102 s
tstr52.933104 s

tnoise51.623105 s
J
*
av5231022

D52.4731029 s21

D851.4731029 s21
f

e
n

l

t

arbitrary time-dependent input,l i
in(t)5l in(t), with the same

mean input raten in5l in(t) as in groupM1 . Without going
into details about the dependence ofl in(t) upon the timet,
we assumel in(t) to be such that the covarianceqi j (s;t) in
Eq. ~11! is independent oft. In this case it follows from Eq.
~12! that Qi j (t)[Q for i , j PM2 , regardless oft. For the
sake of simplicity we require in addition thatQ.0. In sum-
mary, we suppose in the following

Qi j ~ t !5H Q.0 for i , j PM2 ,

0 otherwise.
~17!

We recall thatQi j is a measure of the correlations in th
input arriving at synapsesi and j; cf. Eqs. ~11! and ~12!.
Equation~17! states that at least some of the synapses
ceive positively correlated input, a rather natural assumpt
Three different realizations of Eq.~17! are now discussed in
turn.

1. White-noise input

For all synapses in groupM2 , let us consider the case o
stochastic white-noise input with intensityl in(t) and mean
firing rate l in(t)5n in(t)>0. The fluctuations are
@l in(t1s)2n in(t1s)#@l in(t)2n in(t)#5s0d(s). Due to the
convolution~8! with e, Eq. ~11! yields qi j (s;t)5s0e(2s),
independently oft, i, and j. We use Eq.~12! and find
Qi j (t)[Q5s0*dsW(s)e(2s). We wantQ.0 and there-
fore arrive at*W(s)e(2s)5k3 /n in.0. We have seen be
fore in Sec. IV D thatk3.0 is a natural assumption and i
agreement with experiments.

2. Colored-noise input

Let us now consider the case of an instantaneous
memoryless excitation,e(s)5d(s). We assume thatl in

2n in obeys a stationary Ornstein-Uhlenbeck process@62#
with correlation time tc . The fluctuations are therefor
qi j (s;t)}exp(2usu/tc), independent of the synaptic indicesi
and j. Q.0 implies*dsW(s)exp(2usu/tc).0.

3. Periodic input

Motivated by oscillatory neuronal activity in the auditor
system and in the cortex~cf. Sec. III C!, we now consider the
scenario of periodically modulated rates@l in(t)2n in#
5dn in cos(v t), wherev@2p/T. Let us first study the case
e(s)5d(s). We find Q5(dn in)2/2*dsW(s) cos(vs). Posi-
tive Q hence requires the real part of the Fourier transfo
W̃(v)ª*dsW(s)exp(ivs) to be positive, i.e., Re@W̃(v)#
.0. For a general interaction kernele(s), we find qi j (s;t)
5(dn in)2/2*ds8e(s8)cos@v (s1s8)# and hence

Q5~dn in!2/2 Re@W̃~v!ẽ~v!#, ~18!

independent oft. ThenQ.0 requires Re@W̃(v) ẽ(v)#.0.

B. Normalization

Normalization is a very desirable property for any lear
ing rule. It is a natural requirement that the average wei
and the mean output rate do not blow up during learning

l
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are stabilized at a reasonable value in an acceptable am
of time. Standard rate-based Hebbian learning can lea
unlimited growth of the average weight. Several metho
have been designed to control this unlimited growth; for
stance, subtractive or multiplicative rescaling of the weig
after each learning step so as to impose either( j Jj5const or
else( j Jj

25const; cf., e.g.,@2,7,55#. It is hard to see, how-
ever, where this should come from. Furthermore, aJ depen-
dence of the parametersa1 , . . . ,a5 in the learning equation
~5! is often assumed. Higher-order terms in the expansion~5!
may also be used to control unlimited growth.

In this subsection we show that under some mild con
tions there is no need whatsoever to invoke theJ dependence
of the learning parameters, rescaling of weights, or high
order correlations to get normalization, which means h
that the average weight

Jav5
1

N (
i 51

N

Ji ~19!

approaches a stable fixed point during learning. Moreove
this case the mean output ratenout is also stabilized since
nout5n01NJavn in; cf. Eq. ~7!.

As long as the learning parameters do not depend on tJ
values, the rate of change of the average weight is obta
from Eqs.~15!, ~19!, andk350 ~Sec. IV C!,

J̇av5k11N k2 Jav1N21(
i , j

Qi j Jj . ~20!

In the following we consider the situation at the beginni
of the learning procedure where the set of weights$Ji% has
not picked up any correlations with the set of Poisson int
sities $l i

in% yet and therefore is independent. We may th
replaceJi andQi j on the right-hand side of Eq.~20! by their
average valuesJav andQav5N22( i , j

N Qi j , respectively. The

FIG. 7. Numerical simulation of weight normalization with p
rameters as given in Appendix B. The four graphs show the t
poral evolution of synaptic weightsJi , 1< i<50, before (t50)
and during learning (t5200, 500, and 1000 s!. Before learning, all
weights are initialized at the upper boundq50.1. During learning,
weights decrease towards the fixed point of the average we
J
*
av52.031022; cf. also Fig. 8, topmost full line. The time consta

of normalization istav52.03102 s, which is much smaller than th
time constant of structure formation; cf. Sec. V C and Fig. 9. F
times t<1000 s we therefore can neglect effects coming fr
structure formation.
unt
to
s
-
s
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r-
e
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specific input~17! described in the preceding section yiel
Qav5(M2 /N)2Q.0. We rewrite Eq.~20! in the standard
form J̇av5@J

*
av2Jav#/tav, where

J
*
av52k1 /@N~k21Qav!# ~21!

is the fixed point for the average weight and

tav5J
*
av/k1521/@N~k21Qav!# ~22!

is the time constant of normalization. The fixed point in E
~21! is stable, if and only if tav.0.

During learning, weights$Ji% and rates$l i
in% may become

correlated. In Appendix C we demonstrate that the influe
of any interdependence between weights and rates on
malization can be neglected in the case of weak correlat
in the input,

0,Q!2k2 . ~23!

The fixed pointJ
*
av in Eq. ~21! and the time constanttav in

Eq. ~22! are, then, almost independent of the average co
lation Qav, which is always of the same order asQ.

In Figs. 7 and 8 we show numerical simulations wi
parameters as given in Appendix B. The average weightJav

always approachesJ
*
av, independent of any initial condition

in the distribution of weights.

-

t,

r

FIG. 8. Development of the average weightJav as a function of
time t in units of 103 s. The simulations we started att50 with
five different average weights,JavP$0, 0.01, 0.025J

*
av, 0.05, 0.1

5q%. Full lines indicate homogeneous initial weight distribution
whereJi5Jav at t50 for all i; cf. also Fig. 7, upper left panel. In al
five cases,Jav decays with the time constanttav52.03102 s de-
scribing the rate of normalization to the fixed pointJ

*
av52.0

31022. Our theoretical prediction according to Sec. V B~crosses
on the uppermost full line! is in good agreement with the numeric
results. The dashed line indicates the development ofJav starting
from an inhomogeneous initial weight distributionJi50 for 1< i
<25 andJi5q for 25, i<505N. In the inhomogeneous case,tav

is enlarged as compared to the homogeneous case by a facto
because only half of the synapses are able to contribute to nor
ization; cf. Appendix D. The insets~signatures as in Fig. 7! show
the inhomogeneous weight distributions~arrows! at times t
50, 200, 500, and 1000 s; the dotted line indicates the fixed p
J
*
av50.2q. We note that here the distribution remains inhomog

neous.
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4506 PRE 59KEMPTER, GERSTNER, AND van HEMMEN
Weight constraints lead to further conditions on learning
parameters

We have seen that normalization is possible withoutJ
dependence of the learning parameters. Even if the ave
weight Jav approaches a fixed pointJ

*
av, there is no restric-

tion for the size ofindividual weights, apart fromJi>0 for
excitatory synapses andJi&N J

*
av. This means that a singl

weight at most comprises the total~normalized! weight of all
N synapses. The latter case is, however, unphysiolog
since almost every neuron holds many synapses with no
nishing efficacies~weights! and efficacies of biological syn
apses seem to be limited. We take this into account in
learning rule by introducing a hard upper boundq for each
individual weight. As we will demonstrate, a reasonab
value of q doesnot influence normalization in thatJ

*
av re-

mains unchanged. However, an upper boundq.0, whatever
its value, leads to further constraints on the learning par
eters.

To incorporate the restricted range of individual weigh
into our learning rule~1!, we assume that we can treat th
learning parameterswin,wout, and the amplitude ofW to be
constant in the range 0<Ji<q. ForJi,0 or Ji.q, we take
win5wout5W50. In other words, we use Eq.~15! only be-
tween the lower bound 0 and the upper boundq and set
dJi /dt50 if Ji,0 or Ji.q.

Because of lower and upper bounds for each syna
weight, 0<Ji<q for all i, a realizablefixed pointJ

*
av has to

be within these limits. Otherwise all weights saturate eit
at the lower or at the upper bound. To avoid this, we first
all needJ

*
av.0. Sincetav5J

*
av/k1 in Eq. ~22! must be posi-

tive for stable fixed points, we also needk1.0. The meaning
becomes transparent from Eq.~14! in the case of vanishing
spontaneous activity in the output,n050. Then k1.0 re-
duces to

win.0, ~24!

which corresponds to neurobiological reality@28,56,31#.
A second condition for arealizable fixed point arises

from the upper boundq.J
*
av. This requirement leads to

k2,2k1 /(N q)2Qav. Exploiting onlyk2,0, we find from
Eq. ~14! that wout1W̃(0)n in,0, which means that postsyn
aptic spikes on average reduce the total weight of synap
This is one of our predictions that can be tested experim
tally. AssumingW̃(0).0, which seems reasonable — wi
the benefit of hindsight — in terms ofrate-codedlearning in
the manner of Hebb~Sec. III!, we predict

wout,0, ~25!

which has not been verified by experiments yet.
Weight constraints do not influence the position of t

fixed point J
*
av ~as long as it remains realizable! but may

enlarge the value of the time constanttav of normalization
~see details in Appendix D!. The time constanttav changes
because weights saturated at the lower~upper! bound cannot
contribute to a decrease~increase! of Jav. If fewer than the
total number of weights add to our~subtractive! normaliza-
tion, then the fixed point is approached more slowly; cf. F
8, dashed line and insets. The factor, however, by whichtav
ge

l,
a-

ur

-

ic

r
f

es.
n-

.

may be enlarged is of order 1, if we take the upper bound
be q5(11d)J

*
av, whered.0 is of order 1, which will be

assumed throughout what follows; cf. Appendix D.

C. Structure formation

In our simple model with two groups of input, structu
formation can be measured by the differenceJstr between the
average synaptic strength in groupsM1 andM2 ; cf. Sec.
V A. We derive conditions under which this difference in
creases during learning. In the course of the argument
also show that structure formation takes place on a time s
tstr considerably slower than the time scaletav of normaliza-
tion.

We start from Eq.~15! with k350 and randomly distrib-
uted weights. For the moment we assume that normaliza
has already taken place. Furthermore, we assume small
relations as in Eq.~23!, which assures that the fixed poin
J
*
av'2k1 /(Nk2) is almost constant during learning; cf. Eq

~21! and ~C1!. If the formation of any structure in$Ji% is
slow as compared to normalization, we are allowed to
Jav5J

*
av during learning. The consistency of this ansatz

checked at the end of this section.
The average weight in each of the two groupsM1 and

M2 is

J~1!5
1

M1
(

i PM1

Ji and J~2!5
1

M2
(

i PM2

Ji . ~26!

If lower and upper bounds do not influence the dynamics
each weight, the corresponding rates of change are

J̇~1!5k11M1J~1!k21M2J~2!k2 ,
~27!

J̇~2!5k11M2J~2!~k21Q!1M1J~1!k2 .

One expects the differenceJstr5J(2)2J(1) between those av
erage weights to grow during learning because groupM2
receives a stronger reinforcement thanM1 . Differentiating
Jstr with respect to time, using Eq.~27! and the constraint
Jav5J

*
av5N21(M1J(1)1M2J(2)), we find the rate of growth

J̇str5
M1 M2

N
Q Jstr1M2 Q J

*
av. ~28!

The first term on the right-hand side gives rise to an ex
nential increase (Q.0) while the second term gives rise to
linear growth ofJstr. Equation ~28! has an unstable fixed
point at J

*
str52N/M1 J

*
av. Note thatJ

*
str is always negative

and independent ofQ.
We associate the time constanttstr of structure formation

with the time that is necessary for an increase ofJstr from a
typical initial value to its maximum. The maximum ofJstr is
of order J

*
av if M1 /M2 is of order 1~Sec. V A! and if q

5(11d) J
*
av, whered.0 is of order 1~Sec. V B!. At the

beginning of learning (t50) we may takeJstr(0)50. Using
this initial condition, an integration of Eq.~28! leads to
Jstr(t)5(N/M1) J

*
av@exp(t M1M2Q/N)21#. With t5tstr and

Jstr(tstr)5Jav we obtain tstr5N/(M1M2Q) ln(M1 /N11).

*
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Since we only need an estimate oftstr we drop the logarithm,
which is of order 1. Finally, approximatingN/(M1M2) by
1/N we arrive at the estimate

tstr5~N Q!21. ~29!

We could adopt a refined analysis similar to the one we h
used forJav to discuss the effects of the upper and low
bounds for individual weights. We will not do so, howeve
since the result~29! suffices for our purpose: the compariso
of time constants.

A comparison oftav in Eq. ~22! with tstr in Eq. ~29!
shows that we have a separation of the fast time scal
normalization from the slow time scale of structure form
tion, if Eq. ~23! holds.

A numerical example confirming the above theoreti
considerations is presented in Fig. 9. Simulation parame
are as given in Appendix B.

D. Stabilization of learning

Up to this point we have neglected the influence of thek3
term in Eq.~15!, which may lead to a stabilization of weigh
distributions, in particular when synapses are few and str
@22,54#; cf. Sec. IV D. This is the case, for example, in th
scenario of Fig. 10, which is the final result of the simu
tions described in Fig. 9. The shown weight distribution
stable so that learning has terminated apart from minor ra
fluctuations due to noise.

FIG. 9. Temporal evolution of average weightsJav, J(1), and
J(2) as a function of the learning timet in units of 104 s. The
quantityJav is the average weight of all synapses,J(1) andJ(2) are
average weights in groupsM1 andM2 , respectively. Synapsesi in
groupM1 , where 1< i<25, receive incoherent input, whereas sy
apsesi in groupM2 , where 26< i<50, are driven by a coherentl
modulated input intensity. Parameters are as given in Appendi
Simulations started at timet50 with a homogeneous weight distr
bution Ji5q50.1 for all i. The normalization of the averag
weights takes place within a time of orderO(100 s); see also the
uppermost full line in Fig. 8. On the time scale oftstr52.93
3104 s a structure in the distribution of weights emerges in t
J(2) grows at the expense ofJ(1). The average weightJav remains
almost unaffected nearJ

*
av5231022 ~dashed line!. The slight en-

largement ofJav betweent5104 s and t573104 s can be ex-
plained by using Eq.~C1! and taking also thek3 term into account.
The insets~signatures as in Figs. 7 and 8! show the weight distri-
butions at timest5103, 104, 2.933104, and 73104 s ~arrows!.
e
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of
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rs
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In stable weight distributions, it is now shown that a
synapses but one are saturated either at the lower or
upper bound. In the scenario of Fig. 10, thek3 term keeps a
single weightJm1

in groupM1 at the upper boundq, even

though there is a nonsaturated oneJm2
in M2 . GroupM2

~in contrast toM1) comprises most of the total weight and
driven by positively correlated input. Why doesJm1

not

decrease in favor ofJm2
? The answer comes from Eq

~15!. Weight Jm1
receives a stronger reinforcement th

Jm2
, if J̇m1

. J̇m2
holds. Using Eq. ~15! we find Jm1

.Q/k3( j PM2
Jj1Jm2

. Approximating ( j PM2
Jj5N J

*
av

52k1 /k2 we obtainJm1
.2Q k1 /(k2 k3)1Jm2

. This con-

dition is fulfilled becauseJm1
'0.1,Jm2

'0.04 ~cf. Fig. 10!,

and 2Q k1 /(k2 k3)'0.01 ~cf. Table I!; here k1.0, k2,0,
andk3.0.

VI. NOISE

In this section we discuss the influence of noise on
evolution of each weight. Noise may be due to jitter of inp
and output spikes and the fact that we deal with spikesper se
~Sec. II B!. This gives rise to arandom walkof each weight
around the mean trajectory described by Eq.~15!. The vari-
ance varJi(t) of this random walk increases linearly wit
time as it does in free diffusion. From the speed of the va
ance increase we derive a time scaletnoise. A comparison
with the time constanttstr of structure formation leads to
further constraints on our learning parameters and sh
that, in principle, any correlation in the input, however wea
can be learned, if there is enough time available for learn

The calculation of varJi is based on four approximations
First, we neglect upper and lower bounds of the learn
dynamics as we have done for the calculation of the ti
constants of normalization~Sec. V B! and structure forma-
tion ~Sec. V C!. Second, we neglect spike-spike correlatio
between input and output and work directly with ensemb
averaged rates. As we have seen, spike-spike correla
show up in the termk3 in Eq. ~15! and have little influence
on learning, given many, weak synapses and an approp
scenario for our learning parameters; cf. Sec. IV C. Third,
assume constant input ratesl i

in(t)5n in for all i. A temporal
structure in the input rates is expected to play a minor r
here. Fourth, as a consequence of constant input rates
assume a constant output ratelout(t)5nout.

B.

t

FIG. 10. The asymptotic distribution of weights$Ji% at time t
5105 s; signatures are as in Fig. 7. This distribution is the fin
result of the numerical simulation shown in Fig. 9 and rema
stable thereafter apart from minor rapid fluctuations. All but one
the synapses are saturated either at the lower or at the upper b
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Despite such a simplified approach, we can study so
interesting effects caused by neuronal spiking. Within
limits of our approximations, input and output spikes a
generated by independent Poisson processes with con
intensities. The variance varJi(t) increases basically becaus
of shot noise at the synapses. We now turn to the detail

A. Calculation of the variance

We start with some weightJi(t0) at timet0 and calculate
the variance varJi(t)ª^Ji

2&(t)2^Ji&
2(t) as a function oft

for t.t0 . Angular bracketŝ & again denote an ensemb
average; cf. Sec. II B. A detailed analysis is outlined in A
pendix E. The result is

varJi~ t !5~ t2t0! D for t2t0@W, ~30!

whereW is the width of the learning windowW ~cf. Sec.
II C! and

D5n in~win!21nout~wout!21n innoutE ds W~s!2

1n innoutW̃~0! @2~win1wout!1W̃~0!~n in1nout!#.

~31!

Thus because of Poisson spike arrival and stochastic ou
firing with disjoint intervals being independent, each weig
Ji undergoes a diffusion process with diffusion constantD.

To discuss the dependence ofD upon the learning param
eters, we restrict our attention to the casen in5nout in Eq.
~31!. Since mean input and output rates in biological neur
typically are not too different, this makes sense. Moreov
we do not expect that the ration in/nout is a critical parameter
We recall from Sec. V B thatnout52k1 /k2 n in once the
weights are already normalized and ifn05Qav50. With
n in5nout this is equivalent tok152k2 . Using the definition
of k1 and k2 in Eq. ~14! we find win1wout52W̃(0) n in. If
we insert this into Eq.~31!, the final term vanishes. In wha
remains of Eq.~31! we identify the contributions due to inpu
spikes, n in (win)2, and output spikes,nout (wout)2. Weight
changes because of correlations between input and ou
spikes enter Eq.~31! via n innout*ds W(s)2.

Equation~30! describes the time course of the variance
a single weight. Estimating varJi is numerically expensive
because we have to simulate many independent learning
als. It is much cheaper to compute the variance of the dis
bution $Ji% of weights in a single learning trial. For the sak
of a comparison of theory and numerics in Fig. 11, we p

var$Ji%~ t !ª
1

N21(i 51

N

@Ji~ t !2Jav~ t !#2, ~32!

which obeys a diffusion process with

var$Ji%~ t !5~ t2t0! D8, ~33!

in a way similar to Eq.~30!. The diffusion constantD8 is,
however, different fromD because weights of single neuro
do not develop independently of each other. Each ou
spike triggers the change of allN weights by an amountwout.
Therefore, output spikes do not contribute to a change
e
e

ant

-

ut
t

s
r,

ut

f

tri-
i-

t

ut

of

var$Ji%(t) as long as upper and lower bounds have not b
reached. Furthermore, all synapses ‘‘see’’ the same s
train of the postsynaptic neuron they belong to. In contras
that, input spikes at different synapses are independ
Again we assume that input and output spikes are indep
dent; cf. the second paragraph at the beginning of Sec.
Combining the above arguments, we obtain the diffus
constantD8 by simply settingwout50 and disregarding the
term @n inW̃(0)#2nout in Eq. ~31!, which leads to
D85n in (win)21n in nout@*ds W(s)212 win W̃(0)1W̃(0)2#.
The boundaries of validity of Eq.~33! are illustrated in Fig.
12.

B. Time scale of diffusion

The effects of shot noise in input and output show up
a time scaletnoisewhich may be defined as the time interv
necessary for an increase of the variance~30! from
varJi(t0)50 to varJi(t01tnoise)5(J

*
av)2. We choseJ

*
av as a

reference value because it represents the available rang
each weight. From Eq.~30! we obtaintnoise5(J

*
av)2/D. We

useJ
*
av52k1 /(N k2) from Eq. ~21! andQav50. This yields

tnoise5
1

N2 D
S k1

k2
D 2

. ~34!

C. Comparison of time scales

We now comparetnoise in Eq. ~34! with the time constant
tstr51/(N Q) of structure formation as it appears in Eq.~29!.
The ratio

tnoise

tstr
5

Q

N DS k1

k2
D 2

~35!

should exceed 1 so as to enable structure formation~in the
sense of Sec. V C!. Otherwise weight diffusion due to nois
spreads the weights between the lower bound 0 and the
per boundq and, consequently, destroys any structure.

FIG. 11. Influence of noise. We compare numerical results
the evolution of the variance var$Ji%(t) defined in Eq.~32! ~full
lines! with our theoretical prediction~dashed line! based on Eq.
~33! with D851.4731029 s21. Learning starts at timet50 with a
homogeneous distribution,Ji5J

*
av50.02 for all i. The thin line cor-

responds to the simulation of Fig. 8 with initial conditionJav

50.02, viz., two groups of 25 synapses each. The thick line
been obtained with incoherent input for all 50 synapses,l i

in(t)
5n in for all i ~all other parameters in Appendix B being equa!.
Because the number of synapses is finite (N550), deviations from
the dashed straight line are due to fluctuations. The overall ag
ment between theory and simulation is good.
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We note thatD in Eq. ~35! is quadratic inwin, wout, and
W, whereask1 , k2 , and Q are linear; cf. Eqs.~12!, ~14!,
~17!, and ~31!. As a consequence, scalingwin, wout, and
W(s) ~or the learning parameterh) in Eq. ~1! by a common
factor g changes the ratio of time constants in Eq.~35! by
1/g without affecting the~normalized! mean output rate and
the fixed pointsJ

*
av and J

*
str52J

*
avN/M1 ; cf. Eq. ~21!.

Hence it is always possible to achievetnoise/tstr.1 by tuning
g. This means that any covariance matrix~11! that gives rise
to Q.0, however small, can be learned. More precisely
can be learned if there isenough timefor learning.

A reduction of g also increases the time constanttstr

51/(N Q) of structure formation; cf. Eq.~29!. If the learning
time is limited, which may be the case in biological system
only input with Q larger than some minimal value can b
learned. Considering the learning parameters as fixed, we
that increasing the number of synapses, on the one h
helps reduce the timetstr necessary for learning but, on th
other hand, decreases the ratiotnoise/tstr in Eq. ~35!, possibly
below 1.

With parameters as given in Appendix B, the ratio~35! is
5.5. Therefore, the desired structure in Fig. 9 can eme
before noise spreads the weights at random.

VII. DISCUSSION

Changes of synaptic efficacies are triggered by therela-
tive timing of presynaptic and postsynaptic spikes@25,26#.
The learning rule~1! discussed in this paper is a first ste
towards a description and analysis of the effects of syna
changes with single-spike resolution. Our learning rule c

FIG. 12. The variance var$Ji%(t) as in Fig. 11 but on a longe
time scale. Thick line: all 50 synapses receive incoherent in
Thin line: two groups of synapses that are treated differently, a
Figs. 8, 9, and 10. The four insets~signatures as in Fig. 7! corre-
spond to the thick line scenario and show the evolution of the
tribution of synaptic weights. As in Fig. 11, full lines are numeric
results and the dashed line is our theoretical prediction. Both d
significantly for timest.104 s. The reason is that Eq.~33! does
not include the influence of correlations between input and out
Spike-spike correlations due to thek3 term increase weights with a
velocity proportional to their weight; cf. Eq.~15!. Large weights,
which are already present at timest*23104 s ~see inset!, there-
fore grow at the expense of the smaller ones. This gives rise t
enlarged variance~thick full line!. In the thin-line scenario, we als
have theQi j term in Eq.~15!, which contributes to an additiona
increase of var$Ji%. Finally, at t'105 s, var$Ji% saturates becaus
most of the weights are either at the lower or at the upper bou
it

,

ee
d,

e

ic
n

be motivated by elementary dynamic processes at the l
of the synapse@54,57# and can also be implemented in har
ware; cf.@40#. A phenomenological model of the experime
tal effects which is close to the model studied in the pres
paper has been introduced@42#. A compartmental model of
the biophysics and ion dynamics underlying spike-ba
learning along the lines of@58# has not been attempted ye
As an alternative to changing synaptic weights, spike-ba
learning rules which act directly on the delays may also
considered@59–61#.

The learning rule~1! discussed in the present paper
rather simple and contains only terms that are linear
quadratic in the presynaptic and postsynaptic spikes~‘‘Heb-
bian’’ learning!. This simple mathematical structure, whic
is based on experiment@25,26,30#, has allowed us to derive
analytical results and identify some key quantities.

First of all, if the input signal contains no correlation
with the output at the spike level, and if we use a line
Poissonian neuron model, the spike-based learning rule
duces to Eq.~15!, which is closely reminiscent of Linsker’s
linear learning equation for rate coding@3#. The only differ-
ence is an additional termk3 , which is not accounted for by
pure rate models. It is caused by precise temporal corr
tions between an output spike and an input spike that
triggered the pulse. This additional term reinforces synap
that are already strong and hence helps to stabilize exis
synapse configurations.

In the limit of rate coding, the form of the learning win
dow W is not important but only the integral*ds W(s)
counts: *ds W(s).0 would be called ‘‘Hebbian,’’
*ds W(s),0 is sometimes called ‘‘anti-Hebbian’’ learning
In general, however, input rates may be modulated on a
time scale or contain correlations at the spike level. In t
case, the shape of the learning window does matter. A le
ing window with a maximum ats* ,0 ~thus maximal in-
crease of the synaptic strength for a presynaptic spikepre-
ceding a postsynaptic spike; cf. Fig. 6! picks up the
correlations in the input. In this case a structured distribut
of synaptic weights may evolve@22#.

The mathematical approach developed in this paper le
to a clear distinction between different time scales. First,
fastest time scale is set by the time course of the postsyna
potentiale and the learning windowW. Correlations in the
input may occur on the same fast time scale, but can als
slower or faster, there is no restriction. Second, learning
curs on a much slower time scale and in two phases:~i! an
intrinsic normalization of total synaptic weight and the ou
put firing rate followed by~ii ! structure formation. Third, if
the learning rate is small enough, then diffusion of t
weights due to noise is slow as compared to structure for
tion. In this limit, the learning process is described by t
differential equation~4! for the expected weights.

Normalization is possible, if at leastwin.0 andwout,0
for *ds W(s).0 in Eq. ~1! ~‘‘Hebbian’’ learning!. In this
case, the average weight may decay exponentially to a fi
point, though there isno decay term forindividual weights.
In other words, normalization is anintrinsic property since
we do not invoke multiplicative or subtractive rescaling
weights after each learning step@2,7,55#.

The fluctuations due to noise have been treated ra
crudely in the present paper. In principle, it should be p
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sible to include the effects of noise directly at the level of t
differential equation, as is standard in statistics@62#. Such an
approach would then lead to a Fokker-Planck equation
the evolution of weights as discussed in@63#. All this is in
principle straightforward but in practice very cumbersom

Finally, we emphasize that we have used a crudely ov
simplified neuron model, viz., a linear stochastic unit. In p
ticular, there is no spike emission threshold nor reset or sp
afterpotential. Poisson firing is not as unrealistic as it may
first seem, though. Large networks of integrate-and-fire n
rons with stochastic connectivity exhibit Poisson-like firin
@64#. Experimental spike interval distributions are also co
sistent with Poisson firing@65#. In the present paper, th
simple Poisson model has been chosen so as to gras
mathematics and get an explicit expression for the corr
tion between input and output spikes. The formulation of
learning rule and the derivation of the learning equation~4!
is general and holds for any neuron model. The calcula
of the correlations which enter in the definition of the para
eter Qi j in Eq. ~15! is, however, much more difficult, if a
nonlinear neuron model is used.

Spike-based Hebbian learning has important implicati
for the question of neural coding since it allows us to pick
and stabilize fast temporal correlations@38,22,41#. A better
understanding of spike-triggered learning may thus also c
tribute to a resolution of the problem of neural codi
@17,19,65–67#.
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APPENDIX A: PROOF OF EQ. „9…

In proving Eq.~9! there is no harm in settingn050. We
then have to compute the average

^Si
in~ t1s! Sout~ t !&5K Si

in~ t1s!F f i~ t !1 (
j ~Þ i !

f j~ t !G L , ~A1!

where f i(t)5Ji(t)( fe(t2t i
f) with the upper indexf ranging

over the firing timest i
f,t of neuroni, which has an axona

connection to synapsei; here 1< i<N. Sincee is causal, i.e.,
e(s)[0 for s,0, we can drop the restrictiont i

f,t. The
synapses being independent of each other, the sum ovj
(Þ i ) is independent ofSi

in and thus we obtain

K Si
in~ t1s! F (

j ~Þ i !
f j~ t !G L

5^Si
in&~ t1s!F (

j ~Þ i !
^ f j&~ t !G

5l i
in~ t1s!F ( Jj~ t !E`

dt8e~ t8! l j
in~ t2t8!G . ~A2!
j ~Þ i ! 0
r

r-
-
e
t

u-

-

the
a-
e

n
-

s

n-

p-

t

r

The term^Si
in(t1s) f i(t)& in Eq. ~A1! has to be handled with

more care as it describes the influence of synapsei on the
firing behavior of the postsynaptic neuron,

^Si
in~ t1s! f i~ t !&

5K F(
f 8

d~ t1s2t i
f 8!G FJi~ t !(

f
e~ t2t i

f !G L . ~A3!

The first term on the right in Eq.~A3! samples spike event
at time t1s. To be mathematically precise, we sample
spikes in a small interval of sizeDt aroundt1s, average,
and divide byDt. We replace the first sum in Eq.~A3! by the
~approximate! identity (Dt)211$spike in [t1s,t1s1Dt)% , where
1$ % is the indicator function of the set$ %; i.e., it equals 1
when its argument is in the set$ % and 0 elsewhere. Becaus
the postsynaptic potentiale is a continuous function, we ap
proximate the second sum by(k1$spike in [tk ,tk1Dt)% e(t2tk),

where $@ tk ,tk1Dt),kPZ% is a decomposition of the rea
axis. Since it is understood thatDt→0, all events with two or
more spikes in an interval@ tk ,tk1Dt) have a probability
o(Dt) and, hence, can be neglected. It is exactly this pr
erty that is typical to a Poisson process — and to any b
logical neuron.

What we are going to compute is the correlation betwe
Si

in , the input at synapsei, and the outputSout, which is
governed by all synapses, including synapsei. Here the sim-
plicity of the linear Poissonian neuron model pays off asSout

is linear in the sum of the synaptic inputs and, hence, in ea
of them. Furthermore, whatever the model, the synaptic
ficaciesJi(t) are changing adiabatically with respect to t
neuronal dynamics so that they can be taken to be cons
and, thus, out of the average. In the limitDt→0 we can
therefore rewrite the right-hand side of Eq.~A3! so as to find

Ji~ t !~Dt !21(
k

e~ t2tk!

3^1$spike in [t1s,t1s1Dt)% 1$spike in [tk ,tk1Dt !%&.

~A4!

Without restriction of generality we can choose our pa
tion so thattk5s1t for somek, say k5 l . Singling outk
5 l , the rest (kÞ l ) can be averaged directly, since events
disjoint intervals are independent. Becausê1$ %&
5prob$spike in@ t1s,t1s1Dt)%5l i

in(t1s) Dt, the result
is Ji(t) l i

in(t1s) L i
in(t), where we have used Eq.~8!. As for

the term k5 l , we plainly have1$ %
2 51$ % , as an indicator

function assumes only two distinct values, 0 and 1. We
tain Ji(t) l i

in(t1s) e(2s).
Collecting terms and incorporatingn0Þ0, we find Eq.~9!.
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APPENDIX B: PARAMETERS FOR NUMERICAL SIMULATIONS

We discuss the parameter regime of the simulations as shown in Secs. V and VI. Numerical values and importan
quantities are summarized in Table I.

1. Learning window

We use the learning window

W~s!5h5 expS s

tsynD FA1S 12
s

t̃1
D 1A2S 12

s

t̃2
D G for s<0,

A1 expS 2
s

t1
D1A2expS 2

s

t2
D for s.0.

~B1!
n

n

w
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nt

nd
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te
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o-
rage

V B
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d
-

Here s is the delay between presynaptic spike arrival a
postsynaptic firing,h is a ‘‘small’’ learning parameter,
tsyn,t1 ,t2 ,t̃1ªtsynt1 /(tsyn1t1), and t̃2ªtsynt2 /(tsyn

1t2) are time constants. The dimensionless constantsA1

and A2 determine the strength of synaptic potentiation a
depression, respectively. Numerical values areh
51025, tsyn55 ms, t151 ms, t2520 ms, and A1

51, A2521; cf. Table I. The learning window~cf. Fig. 6!
is in accordance with experimental results@25,26,28,29,33#.
A detailed explanation of our choice of the learning windo
on a microscopical basis of Hebbian learning can be fo
elsewhere@54,57#.

For the analysis of the learning process we need the i
grals W̃(0)ª*ds W(s) and *ds W(s)2. The numerical re-
sult is listed in Table I. Using c1ªtsyn/t1 and
c2ªtsyn/t2 we obtain

E ds W~s!5h tsyn@A2 ~21c21c2
21!

1A1 ~21c11c1
21!# ~B2!

and

E ds W~s!25
h2

4
$A2

2 t2 @c2
3 14c2

2 15c212#

1A1
2 t1 @c1

3 14c1
2 15c112#

12 A1 A2 tsyn@c1c212 ~c11c2!

1514/~c11c2!#%. ~B3!

2. Postsynaptic potential

We use the excitatory postsynaptic potential~EPSP!

e~s!5s/t0
2 exp~2s/t0!H~s!, ~B4!

where H( ) denotes the Heaviside step function, a
*dse(s)51. For the membrane time constant we uset0
510 ms, which is reasonable for cortical neurons@68,69#.
The EPSP has been plotted in Fig. 4. Using Eqs.~B1! and
~B4! we obtain
d

d

d

e-

E ds W~s! e~2s!5h ~tsyn!2/~tsyn1t0!3

3@A2 ~2 tsynt0 /t21tsyn13t0!

1A1~2 tsynt0 /t11tsyn13t0!#.

~B5!

3. Synaptic input

The total number of synapses isN550. For 1< i<M1
525 synapses in groupM1 we use a constant input intensit
l i

in(t)5n in. The remainingM2525 synapses receive a per
odic intensity,l i

in(t)5n in1dn in cos(v t) for i PM2 ; cf. also
Sec. V A 3. Numerical parameters aren in510 Hz, dn in

510 Hz, and v/(2p)540 Hz. For the comparison o
theory and simulation we need the value ofQ in Eq. ~18!.
We numerically took the Fourier transforms ofe and W at
the frequencyv. The time constanttstr is calculated via Eq.
~29!; cf. Table I.

4. Parameterswin, wout, n0 , and q

We use the learning parameterswin5h and wout

521.0475h, whereh51025. The spontaneous output ra
is n050 and the upper bound for synaptic weights isq
50.1. These values have been chosen in order to fulfill
following five conditions for learning. First, the absolute va
ues ofwin andwout are of the same order as the amplitude
the learning windowW; cf. Fig. 6. Furthermore, these abs
lute values are small as compared to the normalized ave
weight ~see below!. Second, the constraints onk1 andk2 for
a stable and realizable fixed point are satisfied; cf. Sec.
and Eq.~14!. Third, the correlations in the input are weak
that 0,Q!2k2 ; cf. Eq. ~23!. This implies that the time
scaletav of normalization in Eq.~22! is orders of magnitude
smaller than the time scaletstr of structure formation in Eq.
~29!; cf. also Table I. Fourth, thek3 term in Eq.~14! can be
neglected in the sense of Sec. IV C. Proving this, we n
that the fixed point for the average weight isJ

*
av5231022

@cf. Eq. ~21!# and k357.0431025 s21. We now focus on
Eq. ~16!. SinceQi j (!uk2u for all i , j ) can be neglected an
Ji<q for all i, we find from Eq.~16! the even more restric
tive conditionN uk2u Jav/q@uk3u which is fulfilled in our pa-
*
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rameter regime. Fifth, input and output rates are identical
normalized weights,n in5nout for n050; see Sec. V B.

APPENDIX C: NORMALIZATION AND CORRELATIONS
BETWEEN WEIGHTS AND INPUT RATES

The assumption of independence of the weights$Ji% and
the rates$l i

in% used in Sec. V B for the derivation of a no
malization property of Eq.~15! is not valid in general. Dur-
ing learning we expect weights to change according to th
input. For the configuration of the input as introduced in S
V A this depends on whether synapses belong to groupsM1
or M2 . To show that even under the condition of interd
pendence of$Ji% and$l i

in% there is a normalization propert
of Eq. ~15! similar to that derived in Sec. V B, we investiga
the most extreme case in which the total mass of syna
weight is, e.g., inM2 . Taking Ji50 for i PM1 into
account, we replaceN21( i j Jj Qi j in Eq. ~20! by
M2

21N2JavQav. The fixed pointJ
*
av is similar to that in Eq.

~21! except for a multiplicative prefactorN/M2 of order 1
precedingQav in Eq. ~21!,

J
*
av52k1 /@N~k21QavN/M2!#. ~C1!

Since N/M2.1, k1.0, and k21QavN/M2,0, J
*
av in Eq.

~C1! is larger thanJ
*
av in Eq. ~21!, where we assumed inde

pendence of$Ji% and $l i
in%. Correlations between$Ji% and

$l i
in% can be neglected, however, if we assume 0,Q'Qav

!2k2 ; cf. Eq. ~23!. In this case,J
*
av in Eqs.~21! and ~C1!

are almost identical and independent ofQav.

APPENDIX D: NORMALIZATION AND WEIGHT
CONSTRAINTS

Let us consider the influence of weight constraints~Sec.
V B! on the position of the fixed pointJ

*
av in Eq. ~21! and the

time constanttav of normalization in Eq.~22!. We call N↓
andN↑ the number of weights at the lower bound 0 and
upper boundq.0, respectively. By construction we hav
N↓1N↑<N, whereN is the number of synapses.

For example, if the average weightJav approachesJ
*
av

from below, then onlyN2N↑ weights can contribute to a
increase ofJav. For the remainingN↑ saturated synapses w
haveJ̇i50. Deriving from Eq.~15! an equation equivalent to
Eq. ~20!, we obtain J̇av5(12N↑ /N) (k11N k2 Jav

1JavQav/N). The fixed pointJ
*
av remains unchanged a

compared to Eq.~21! but the time constanttav for an ap-
proach of J

*
av from below is increased by a factor (

2N↑ /N)21>1 as compared to Eq.~22!. Similarly, tav for
an approach ofJ

*
av from above is increased by a factor (

2N↓ /N)21>1.
The factor by whichtav is increased is of order 1, if we

use the upper boundq5(11d) J
*
av, whered. is of order 1.

If Jav5J
*
av, at mostN↑5N/(11d) synapses can saturate

the upper bound comprising the total weight. The remain
N↓5N2N/(11d) synapses are at the lower bound 0. T
time constanttav is enhanced by at most 111/d and 11d
for an approach of the fixed point from below and abo
respectively.
r

ir
.
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APPENDIX E: RANDOM WALK OF SYNAPTIC WEIGHTS

We consider the random walk of a synaptic weightJi(t)
for t.t0 , where Ji(t0) is some starting value. The tim
course ofJi(t) follows from Eq.~1!,

Ji~ t !5Ji~ t0!1E
t0

t

dt8 @win Si
in~ t8!1woutSout~ t8!#

1E
t0

t

dt8E
t0

t

dt9 W~ t92t8! Si
in~ t9! Sout~ t8!.

~E1!

For a specifici, the spike trainsSi
in(t8) andSout(t8) are now

assumed to be statistically independent and generated
Poisson processes with constant ratesn in for all i and nout,
respectively; cf. Secs. II A and IV A. Heren in can be pre-
scribed, whereasnout then follows; cf., for instance, Eq.~7!.
For largeN the independence is an excellent approximati
The learning parameterswin and wout can be positive or
negative. The learning windowW is some quadratically in-
tegrable function with a widthW as defined in Sec. II C
Finally, it may be beneficial to realize that spikes are d
scribed byd functions.

The weightJi(t) is a stepwise constant function of time
see Fig. 2~bottom!. According to Eq.~E1!, an input spike
arriving at synapsei at time t changesJi at that time by a
constant amountwin and a variable amount* t0

t dt8 W(t

2t8) Sout(t8), which depends on the sequence of outp
spikes in the interval@ t0 ,t#. Similarly, an output spike a
time t results in a constant weight changewout and a variable
one that equals* t0

t dt9 W(t92t) Si
in(t9). We obtain a random

walk with independent steps but randomly variable step s
Suitable rescaling of this random walk leads to Browni
motion.

As in Sec. II B, we substitutes5t92t8 in the second line
of Eq. ~E1! and extend the integration over the new variab
s so as to run from2` to `. This does not introduce a big
error for t2t0@W. The second line of Eq.~E1! then reduces
to *ds W(s)* t0

t dt8 Si
in(t81s) Sout(t8).

We denote ensemble averages by angular brackets^ &.
The variance then reads

varJi~ t !5^Ji
2&~ t !2^Ji&

2~ t !. ~E2!

To simplify the ensuing argument, upper and lower boun
for each weight are not taken into account.

For the calculation of the variance in Eq.~E2!, first of all
we consider the term̂Ji&(t). We use the notation̂Si

in&(t)
5n in and ^Sout&(t)5nout because of constant input and ou
put intensities. Stochastic independence of input and ou
leads to^Si

in(t81s) Sout(t8)&5n in nout. Using Eq.~E1! and

*ds W(s)5W̃(0) we then obtain

^Ji&~ t !5Ji~ t0!1~ t2t0!@winn in1woutnout1n innoutW̃~0!#.
~E3!

Next, we consider the term̂Ji
2&(t) in Eq. ~E2!. Using Eq.

~E1! once again we obtain fort2t0@W
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^Ji
2&~ t !52Ji~ t0!212Ji~ t0! ^Ji&~ t !1E

t0

t

dt8E
t0

t

du8

3 H ^Si
in~ t8! Si

in~u8!& ~win!2

1^Sout~ t8! Sout~u8!& ~wout!2

1^Si
in~ t8! Sout~u8!& 2 win wout

12E ds W~s! @^Si
in~ t8! Si

in~u81s! Sout~u8!& win

1^Sout~ t8! Si
in~u81s! Sout~u8!& wout#

1E dsE dv W~s! W~v !

3^Si
in~ t81s! Si

in~u81v ! Sout~ t8! Sout~u8!&J .

~E4!

Since input and output were assumed to be independen
get

^Si
in Si

in SoutSout&5^Si
in Si

in& ^SoutSout&,

^Si
in Si

in Sout&5^Si
in Si

in& ^Sout&,

^SoutSoutSi
in&5^SoutSout& ^Si

in&. ~E5!
-

.D

on

. A

ry

D

we

We note that̂ Si
in&5n in for all i and ^Sout&5nout.

Input spikes at timest8 andu8 are independent as long a
t8Þu8. In this case we therefore havêSi

in(t8) Si
in(u8)&

5n in n in. For arbitrary timest8 andu8 we find ~cf. Appendix
A!

^Si
in~ t8! Si

in~u8!&5n in @n in1d~ t82u8!#. ~E6!

Similarly, for the correlation between output spike trains w
obtain

^Sout~ t8! Sout~u8!&5nout@nout1d~ t82u8!#. ~E7!

Using Eqs.~E5!, ~E6!, and ~E7! in Eq. ~E4!, performing
the integrations, and inserting the outcome together with
~E3! into Eq. ~E2!, we arrive at

varJi~ t !5~ t2t0! D, ~E8!

where

D5n in~win!21nout~wout!21n innoutE ds W~s!2

1n innoutW̃~0! @2 ~win1wout!1W̃~0! ~n in1nout!#,

~E9!

as announced.
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