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Abstract

Coherent oscillatory activity of a population of neurons is thought to be a vital feature of temporal coding in the
brain. We focus on the question of whether a single neuron can transform a spike code into a rate code. More
precisely, how does a neuron vary its mean output firing rate, if its input changes from random to coherent? We
investigate the coincidence detection properties of an integrate-and-fire neuron in dependence upon internal
parameters and input statistics. In particular, we show how coincidence detection depends on the membrane time
constant and the threshold. Furthermore, we demonstrate that there is an optimal threshold for coincidence detection
and that there is a broad range of near-optimal threshold values. Fine-tuning is not necessary. © 1998 Elsevier Science

Ireland Ltd. All rights reserved.
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1. Introduction

The issue of how neurons read out the temporal
structure of the input and how they transform this
structure into a firing rate pattern has been ad-
dressed by several authors and is attracting an
increasing amount of interest. Konig et al. (1996)
have argued that the main prerequisite for coinci-
dence detectors is that the mean interspike inter-
val is long as compared to the integration time
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which neurons need to effectively sum synaptic
potentials. The importance of the effective (mem-
brane) time constant of neurons has also been
emphasized by Softky (1994). In addition, Abeles
(1982) has shown that the value of the spike
threshold and the number of synapses are relevant
parameters as well.

In summary, some general principles have al-
ready been outlined, but not verified, and a de-
tailed investigation of conditions under which
neurons can act as coincidence detectors is not
available yet. In the following we will substantiate
some of the above statements and show explicitly
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the dependence of the precision of neuronal coin-
cidence detection upon the membrane time con-
stant, the input statistics, and the voltage
threshold at which an action potential is gener-
ated. Specifically, we want to tackle the question
of whether and to what extent a neuron that
receives periodically modulated input with noise
can detect the degree of synchrony and convert a
time-coded signal into a rate-coded one. Here we
concentrate on the essentials, in particular, on the
dependence of the neurons behavior upon the
threshold. For a more comprehensive and mathe-
matically detailed account the reader is referred to
Kempter et al. (1998).

2. Neuron model and temporal coding of the input

We study a single integrate-and-fire (I & F) unit
that receives stochastic input spike trains through
N independent channels. The neuron fires, if its
membrane potential u(z) approaches the threshold
9 from below. This defines a firing time ¢” with
integer n. After an output spike, which need not
be described explicitly, the membrane potential is
reset to 0. Between two firing events the mem-
brane voltage changes according to the linear
differential equation

d 1 .
g 0= —T;u(l)ﬂ(l) )

where i is the total input current and z,, > 0 the
membrane time constant. The input is due to
presynaptic activity. The spike arrival times at a

given synapse j, with 1 <j <N, are labeled by ¢/

where f=1, 2, ... is a running spike index.

Each presynaptic spike evokes a small postsy-
naptic current (PSC) which decays exponentially
with time constant 7, > 0. All synapses are equal
in the sense that the incoming spikes evoke PSCs
of identical shape and amplitude. The total input
of the neuron is then taken to be i(r) =7, ' X\,
T, expl — (1 — t])/7,]0(t — t/) where 60(.) denotes
the Heaviside step function with 6(s) =0 for s <0
and 6 (s)=1 for s>0. We substitute the total
input in Eq. (1) and integrate. This yields the
membrane potential at the hillock (Gerstner et al.
1996a)
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The first term on the right in Eq. (2),

€(s) = . Tf . [exp( — :) — exp< — :>:|0(S)

describes the typical time course of an excitatory
postsynaptic potential (EPSP). If 7, = 7,,, we have
instead of Eq. (3) the so-called alpha function,
€(s) =(s/t,,) exp(—s/7,,)0(s). The second contri-
bution to Eq. (2), #(s)= — & exp(— s/7,,)0(s),
accounts for the reset of the membrane potential
after each output spike and incorporates neuronal
refractoriness.

Input spikes are generated stochastically and
arrive at each synapse 1 <j< N with N> 1 with a
time-dependent T-periodic rate A'%(z) = A™(¢ +
T) > 0. The probability of having a spike in the
interval (¢, ¢+ At) is A™(r)At as At—0. In this
way we obtain a nonstationary or inhomogenous
Poisson process (cf. Kempter et al. (1998)) where
input spikes are more or less phase-locked to a
T-periodic stimulus. This kind of input is a tem-
poral code. The average number of spikes that
arrive during one period at a synapse will be
called p. The time-averaged mean input rate is
A =1/T ﬂ‘(’)*Tdt’}ti“(t’) and equals p/T.

To parameterize the input, we take the function

At:=p > G, (t—mT) 4
where G, (.) denotes a normalized Gaussian distri-
bution with zero mean and standard deviation
> 0. The I & F neuron receives input input from
N> 1 presynaptic terminals. At each input termi-
nal spikes arrive with a probability density given
by Eq. (4). Note that spikes arriving at different
synapses are generated independently. Moreover,
input spike trains have no temporal memory and
hence do not contain refractoriness.

The standard deviation o€(0, oo) of the Gaus-
sian distribution in Eq. (4) can be used to charac-
terize the degree of synchrony of the input. In the
case o = 0, the input spikes arrive perfectly phase-
locked and occur only at the times z,, = mT with
integer m, and the number of spikes arriving at
time ¢, has a Poissonian distribution with

m



R. Kempter et al. / BioSystems 48 (1998) 105-112 107

parameter p. Instead of o, we often consider
another measure of synchrony, the so-called vec-
tor strength 7™ (Goldberg and Brown 1969). This
measure can be defined as the amplitude of the
first Fourier component of the periodic rate A™(¢)
divided by the Fourier component of order zero.
For the input in Eq. (4) we find r" = exp[ — 27/
T)*c?/2]. By construction, we have 0 <7 < 1.

3. Analysis of coincidence detection

We study the coincidence detection properties
of an I & F unit with N independent periodic
inputs as introduced above. Specifically, we exam-
ine the influence of the membrane time constant
7,, and of the threshold value 3 on the neurons
capability to act as a coincidence detector.

In a standard firing rate description a neuron
would be characterized by its gain function which
describes the dependence of the output firing rate
on the mean input rate. Such an approach is
certainly possible for most biological neurons.
For I & F neurons this property has been studied
by Stemmler (1996) and Troyer and Miller (1997).
In the present paper, we go at least one step
further. We vary the input under the constraint of
a constant mean input rate, A™ = const. The as-
sumption of a constant mean input is not a limita-
tion of our approach but a simplification which
we make here in order to illustrate our main
point. We want to show that even with constant
mean input rate the mean output rate 1°" varies
as a function of the temporal structure of the
input, parameterized, e.g. by ri®. In other words,
the neuron can ‘read out’ a temporal code. This
property is essential for coincidence detection.

3.1. Membrane time constant

The membrane time constant z,, has an impor-
tant influence on the coincidence detection prop-
erties of an I & F unit (Softky 1994; Konig et al.
1996). This is most easily seen in the limit 7,, — 0.
We are left with a simple nonleaky integrator; cf.
Eq. (1). In this case, the mean output rate can be
calculated explicitly. Integrating Eq. (1) from the
nth output spike at ¢” to the next one at t"+! we

n+1

obtain J= |7,
spikes yields:

dzi(¢t). A summation over M

M

n

n+M__yn 1 m+M _
9=NA'"+M£ de[i(t) — N2™|
(%)

where we have separated the right-hand side into
a first term that represents the contribution of the
mean input current NA™ and a second term that is
the fluctuation around the mean. In order to
calculate the mean output rate 1°", we have to
consider the limit M — oo. We introduce the mean
output rate by defining A1°“:=lim,, , M/(t" "™
—t"). As M — oo, the contribution from the sec-
ond term in the right-hand side of Eq. (5) van-
ishes and we are left with 1°" = N/™/9. The mean
output rate is independent of the explicit form of
the time-dependent input rate A%(¢), especially ri®.

The limit of 7,,— oo is, of course, an abstrac-
tion. The above consideration holds, however,
whenever the membrane time constant t,, is much
longer than the periodicity 7 of the input, and if
we have a ‘low’ threshold. In Fig. la we have
demonstrated this scenario graphically for the
case 7,,= 5T. The interspike intervals (and hence
the mean firing rate) do not differ significantly
between the case of coherent input (r" = 1; solid
line) and the case of incoherent input (ri* =0;
dashed line).

On the other hand, if z,, = T/2 as in Fig. 1b and
if we use the same threshold as in Fig. la, then
the interspike intervals are much shorter for the
case r" =1 (solid line) than for the case r® =0
(dashed line). Hence a ‘small’ membrane time
constant 7,, (thus, a leaky integrator) is a neces-
sary condition for a coincidence detector whose
rate varies with r. But what is meant by a ‘small’
7,,7 The answer depends on the value of the
threshold 3. The relevance of the parameter 9 is
discussed in the next paragraph.

3.2. Voltage threshold

We want to find a set of parameters which
makes the neuron a good coincidence detector.
What would be an optimal choice for the
threshold parameter 3? Let us assume for the
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Fig. 1. Membrane potential u of an I & F neuron as a function of time ¢. The time constant of the synaptic input current is 7, = 7.
The threshold is 8 = 100. The neuron receives input from 400 synapses with noise parameter p = 0.5 and vector strength ri* = 1
(perfectly phase-locked input: solid lines) and r™ =0 (completely random input: dashed lines); cf. Eq. (4). Whatever ", there is
always a random component in the input. Even r* = 1 yields non-periodic responses because the number of input spikes at times
mT (with integer m) is Poisson distributed. (a) For a large membrane time constant 7,, = 57 the intervals between output spikes are
nearly independent from the vector strength in the input. Such a neuron is a ‘bad’ coincidence detector. (b) For a small time constant
7,,= T'/2 the mean interval between output spikes does depend on the vector strength in the input, if the threshold is chosen
appropriately, e.g. 3 =#_, = 100 (upper dotted line). For a threshold at i_,/2 (lower dotted line), the first spike would have occurred,
nearly independently of the input vector strength %, somewhere near ¢ = — T/2, whereas for a threshold at i, (upper dotted line)
the time to the first spike depends strongly on ®, For ™ = 1 (solid line) the first spike appears near ¢ = T and a second spike near
t=3T. For ri» =0 (dashed line) the first output spike occurs near ¢ = 5T.

moment that the firing threshold is very high
(formally, 9 — o0) and let us focus on the tempo-
ral behavior of the membrane voltage u(z) with
some input current i. The membrane potential
cannot reach the threshold so that there is neither
an output spike nor a reset to baseline, and the
membrane voltage fluctuates around the mean
voltage i, = Ni"z,; see also Fig. 1b. (The
voltage i, equals u(z) as t— oo, provided the
total input current is equal to its mean value
i= NJ™) We now lower the threshold so that the
neuron occasionally emits a spike. The coinci-
dence detection properties of this neuron depend
on the location of 4 relative to i,,.

In Fig. 2a we show the dependence of the
output firing rate upon the input vector strength
¥ for various values of the threshold 4. If the
threshold is low, the mean output firing rate /°
is rather insensitive to the input vector strength ri®
for 3 <i,, (consider the top curve in Fig. 2a
labeled 9_ ;). We therefore get a poorly perform-
ing coincidence detector. In contrast, a threshold
9>1ii, (e.g. & or I, leads to a large variation of
the mean output firing rate as a function of the
input vector strength, Z°U(r™). Consequently we
seem to obtain a better coincidence detector.

In order to understand the mechanism of this
improvement, let us return to Fig. 1b. The trajec-

tory of the membrane voltage u(¢) is shown for
two cases, viz. for random and phase-locked in-
put. Let us imagine a threshold 3 well below i,
say at @, /2. In this case the spike following the
reset at 1~ —0.75 is triggered after a short time
interval, the length of which depends only mar-
ginally on the degree of synchrony in the input.
We are close to the regime of a nonleaky integra-
tor. Formally, this can be seen from Eq. (1) using
an argument along the following lines. Between
two firings the membrane potential always stays
below threshold, u(¢) < 9. If the average current is
much larger than 9/7,, then the first term in the
right-hand side of Eq. (1) can be neglected and we
do have a nonleaky neuron. In contrast to that,
let us consider the case 3 >_,. The threshold 9
can be reached only if the fluctuations of u(z) are
large enough.

The fluctuations consist of a statistic contribu-
tion, due to spike input (shot noise), and periodic
oscillations, due to phase-locked (coherent) input.
The key observation is that with increasing syn-
chrony in the input the periodic oscillations get
larger and therefore the output firing rate in-
creases. In order to quantify this effect we intro-
duce a new parameter E, the coherence gain:

)joul(},in)

E(rin): = }Toul(o)

(6)
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Fig. 2. Coincidence detection properties depend on the input statistics and the value of the spiking threshold. (a) Mean output firing

rate 1°* (in units of spikes per period 7) as a function of the input vector strength r

in

for four different values of the threshold,

8 =i, — Au, §y=1, % =i, + Au, =i, + 2 Au. In short, $, =1 + ! Au, where /le{—1, 0,1, 2}. The mean voltage is
i, =200 and Au= IO/ﬁ. For large 9 (e.g. $,) the output rate varies by an order of magnitude if the temporal coherence of the
input increases from r™ =0 to r™ = 1. On the other hand, for 9= 9 _, the rate Z°" hardly depends on the temporal structure of
the input. With ™ fixed, the rate 1°* increases with decreasing 9 in all cases; (b) E(1) — 1 is plotted against the threshold 9. The
coherence gain E has been defined in Eq. (6). Simulation parameters in a and b: 7,,=1t,= 7, Np =200. Data points have been
obtained by measuring time intervals that were needed to produce 10* output spikes.

For example, E(1) is the ratio between the mean
firing rate for fully coherent input and the rate for
completely incoherent input. For a visualization
of E(1) consider Fig. 2a. For each curve in Fig.
2a, E(1) is the ratio between between the right-
most and the leftmost value.

A coherence gain E(r™)~1 means that the
I & F neuron does not operate as a coincidence
detector, whereas E(r™) > 1 hints at good coinci-
dence detection. With the definition of the coher-
ence gain, the four graphs in Fig. 2a can be
summarized by Fig. 2b, where the dependence of
E(r™) upon the threshold is shown for the special
case r»=1. The coherence gain E(1) increases
with increasing threshold 9.

The output of a coincidence detector must con-
vey a signal concerning the nature of the input
(coherent or not coherent) in a finite amount of
time. Let us consider an interval of duration I.
Even neurons with E(1)> 1 are basically useless
as coincidence detectors, if their firing rate is so
low that there is most likely not a single spike in
I. This is the case, e.g. for leaky I & F units with
a voltage threshold 9 well above i, and I of the
order of a few T (cf. Fig. 2a, 3=3,). As may be
seen from the sequence of curves from Fig. 2a, the
mean output rate decreases rapidly with increas-
ing threshold (note the logarithmic scale).

The other extreme case is a high mean output
rate which implies a threshold well below i, (cf.
Fig. 2, $=39_)). In this regime E(1) is low—we
are in the regime of a nonleaky integrator where
neurons are not able to perform a coincidence
detection either (cf. Fig. 1a). Between the above
two limits there is an intermediate regime with an
optimal threshold for coincidence detection. It is
‘optimal’ in the sense that both the spike rate and
the coherence gain are high.

Since the input is noisy, the number n of output
spikes in a finite interval /, from which the rate
has to be estimated, is a random quantity. We
assume that n is Poisson distributed around a
mean value 7= 1°"'I. A Poisson distribution is a
good approximation if spiking is driven by the
variance of the neuron’s input; see, e.g. Troyer
and Miller (1997). For two different input vector
strengths, e.g. ¥ =0 and r"=7">0, we have
two different distributions P (r™) with mean val-
ues 7(0) and 7i(#™), respectively. The task is to
distinguish the two cases based on a single mea-
surement of the number of output spikes in 1. We
therefore need a number »n’ as a decision
boundary. If n > n’, then we classify the input to
have r™ = 7" > 0; if n <n’, then we classify ri® =
0. Clearly, the probability for the correct decision
depends on n'. In general, the optimal choice for
the decision boundary 7y, is the point where the



110 R. Kempter et al. / BioSystems 48 (1998) 105-112

two spike distributions P(r® = 0) and P(r® = 7
cross; see, e.g. Duda and Hart (1973).

A reliable decision is impossible, if the two
distributions P(7'") and P(0) have a large overlap.
In order to quantify the discriminability of the
two distributions we consider their normalized
‘distance’:

ii(r™) — i(0)

D= = /aF™ — /7i(0). 7

We call y the quality factor for coincidence detec-
tion. It is obtained by dividing the difference of
the mean values by the sum of their standard
deviations. Using the definition of the coherence
gain E in Eq. (6) we obtain from Eq. (7)

7 =/ 12°(0) |:\/E(ri“) — 1} ®

Eq. (8) shows how the quality factor y increases
with increasing 7, 2°%(0), and E(r™). It is impor-
tant to realize that 1°Y(0) and E(r™) are not
independent variables. To classify the quality of
coincidence detection, y is a suitable measure.
More complicated quantities like ‘mutual infor-
mation between the spike counts and the presence
or absence of the periodic input’ and the ‘proba-
bility of correct detection in the discrimination
between the two alternatives’ (Stemmler 1996) can
be expanded in powers of y.

The graphs in Fig. 3 show that there is an
optimal choice for the threshold that maximizes j.
Each curve shows the quality factor y as a func-
tion of the threshold 9. We argue that y(&) ap-
proaches zero for $— 0 and also for 3 — co. Thus
there must be at least one maximum in between.
The case 39— 0 corresponds to an infinitely high
membrane time constant, as we have discussed
before. This means that the neuron is effectively a
nonleaky integrator. For this kind of integrator,
the mean output rate does not depend on the
input structure. Thus, E=1 and y($)—>0 as $—-0
(cf. Eq. (8)). In the case 9 — oo spiking becomes a
rare event. Hence 7(r™)—0 for 9 — 0. Since
Ai(r™) > 7i(0) it follows from Eq. (7) that y -0 as
9—00. Note that y exhibits a broad maximum
and therefore depends only weakly on the
threshold. Thus, the exact value of the threshold

is not a critical parameter for coincidence detec-
tion. In contrast to that, y varies strongly, if we
change, e.g. the neuronal time constants 7,, and z,,
the number N of synapses, or the number p of
inputs spikes per period T, where p/T = i (Fig.
3; see also Kempter et al. 1998).

4. Discussion

The membrane time constant (Fig. 1), the
statistics of the input (Fig. 2), and the threshold
(Figs. 2 and 3) of an I & F neuron influence the
capability of the neuron to work as a coincidence
detector for periodically modulated spike input.
Different parameter regimes have been compared
in terms of the quality factor y for coincidence
detection. As a function of 4, the quality factor y

10° -
] a
] b
1/—\
> 10-1 :/_\
e
m
10% 1= . - -

Fig. 3. Coincidence detection properties depend on the value
of the spiking threshold for different scenarios (a)—(f) of
simulation parameters. The parameter y in units of 72 ['/2
(cf. Eq. (8)) indicates the quality of a coincidence detector. It
shows a maximum above the mean voltage ii_, = 3,; numerical
values for 9_,, 9y, 9, and 9, as in Fig. 2. In practical
situations it is immaterial, though, whether we take, e.g. 3, or
&,. That is to say, the choice of the threshold is not critical
because there is a broad maximum. Simulation parameters: (a)
7, =1,= T1/4, Np =800; (b) 7,,=7,=T/2, Np =400; (¢) 7,, =
T2, ©,=T, Np=400; (d) 7,,=t,=T, Np=200; (e) t,,=2T,
7, =T, Np=100; (f) 7,,=71,=2T, Np =100. Parameters have
been chosen so that i, = Npr,,/T =200 is constant, thus
simplifying the comparison. Each point corresponds to 10*
output spikes.
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shows a maximum which suggests that there is an
optimal threshold value 4, for coincidence detec-
tion (Fig. 3). For optimal coincidence detection
the threshold has to exceed the mean membrane
voltage i, = NA"1,, of a neuron (9, >ii,). A
high threshold (3> 3,,) implies a low mean out-
put firing rate which destroys the advantage of a
high coherence gain E. A low threshold (3§ « 3,
leads to the regime of a nonleaky integrator which
is not at all suited to coincidence detection.

Coincidence detection in ‘real’ neurons requires
an adaptive mechanism to control the threshold.
There are several different possibilities for doing
so. First, we could imagine a control loop which
adjusts the threshold in the appropriate regime.
This might be difficult to implement, but could be
achieved, for example, if each spike is followed by
long-lasting hyperpolarizing afterpotential. Alter-
natively, we could envisage a feedback loop of
inhibitory neurons that adjust the mean input. A
control of input strength is also possible through
synaptic changes (Abbott et al. 1997; Tsodyks and
Markram 1997). Finally, it has been shown in a
model study (Gerstner et al. 1996b) that potentia-
tion and depression of synaptic weights can bal-
ance cach other so that the effective input
strength is always normalized; see also Markram
et al. (1997). However, the threshold is not a
critical parameter for coincidence detection, as is
illustrated by the broad maximum of y as a func-
tion of the threshold in Fig. 3. The threshold also
determines the mean firing rate of a neuron. For
reasonable firing rates the quality factor remains
of the same order of magnitude as its maximum
value.

Low mean firing rates, e.g. of cortical neurons
with rates of the order of a few Hertz, may serve
to keep energy consumption low. Generation and
transmission of action potentials is metabolically
expensive. Minimization of the mean output firing
rate without significantly lowering the quality fac-
tor hardly affects function but saves energy.

The phenomena discussed in this paper are
intimately connected to stochastic resonance
(Wiesenfeld and Moss 1995). In stochastic reso-
nance theory, the level of noise is is considered as

m

a free parameter and optimized so as to improve
the quality of signal transmission. With view to
biological systems, it is, however, questionable
whether neurons are able to change the level of
noise in their input. On the other hand, a neuron
has potentially the chance of adapting its
threshold to an optimal value, as discussed in this
section. We emphasize that the optimal threshold
for coincidence detection is, similarly to stochastic
resonance, always above i,. Further investiga-
tions demonstrate that the optimal threshold is
above i, by an amount which of the same order
of magnitude as the noise amplitude of the mem-
brane potential (Kempter et al. 1998).

Even if we know 7, we should be be careful and
avoid rash conclusions about a neuron’s task. As
an illustration, let us consider a neuron whose y is
small. One might argue that such a neuron cannot
function as a coincidence detector, and this is
certainly correct if we consider the neuron as a
single unit. But if there is a pool neurons operat-
ing in the same pathway and receiving the same
type of input, the output of all these neurons
together could provide a secure cue for a decision
(Spiridon et al. 1998). Similarly, the waiting time
which is necessary to make a correct decision with
high reliability can be reduced by using a pool
neurons. That is to say, the following two count-
ing methods are equivalent: a system can either
use the output spike count of a single neuron in
an interval I or counting the number of spikes of
L statistically independent, identical neurons op-
erating in the same pathway during a period of
time //L. Weak correlations from common inputs
rescale the absolute values but do not alter the
conclusion. Inhibitory connections between the
neurons lead to anti-correlations and can help to
increase the signal-to-noise ratio and hence to
shorten the waiting time (Spiridon et al. 1998).

Acknowledgements

This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG) wunder grant
numbers He 1729/8-1 (RK) and He 1729/2-2, 8-1
(WG).



112 R. Kempter et al. / BioSystems 48 (1998) 105-112

References

Abbott, L.F., Varela, J.A., Sen, K., Nelson, S.B., 1997. Synaptic
depression and cortical gain control. Science 275, 220-224.

Abeles, M., 1982. Role of the cortical neuron: integrator or
coincidence detector? Isr. J. Med. Sci. 18, 83-92.

Duda, R.O., Hart, P.E., 1973. Pattern Classification and Scene
Analysis. Wiley, New York.

Gerstner, W., van Hemmen, J.L., Cowan, J.D., 1996a. What
matters in neuronal locking? Neural. Comput. 8, 1689-1712.

Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.,
1996b. A neuronal learning rule for sub-millisecond tempo-
ral coding. Nature 383, 76-78.

Goldberg, J.M., Brown, P.B., 1969. Response of binaural
neurons of dog superior olivary complex to dichotic tonal
stimuli: some physiological mechanisms of sound localiza-
tion. J. Neurophysiol. 32, 613-636.

Kempter, R., Gerstner, W., van Hemmen, J.L., Wagner, H.,
1998. Extracting oscillations: neuronal coincidence detection
with noisy periodic spike input, Neural Comput. 10 1987
2017.

Konig, P., Engel, A.K., Singer, W., 1996. Integrator or coinci-
dence detector? The role of the cortical neuron revisited.
Trends Neurosci. 19, 130-137.

Markram, H., Liibke, J., Frotscher, M., Sakmann, B., 1997.
Regulation of synaptic efficacy by coincidence of postsy-
naptic APs and EPSPs. Science 275, 213-215.

Softky, W., 1994. Sub-millisecond coincidence detection in
active dendritic trees. Neuroscience 58, 13—41.

Spiridon, M., Chow, C.C., Gerstner, W., 1998. Frequency
spectrum of coupled stochastic neurons with refractoriness.
In: Niklasson, L., Bodem, M., Zienke, T. (Eds.), Proceed-
ings of the Eighth International Conference on Artificial
Neural Networks (ICANN °98). Springer, Berlin, pp. 337-
342.

Stemmler, M., 1996. A single spike suffices: the simplest form
of stochastic resonance. Network 7, 687-716.

Troyer, T.W., Miller, K.D., 1997. Physiological gain leads to
high ISI variability in a simple model of a cortical regular
spiking cell. Neural Comput. 9, 971-983.

Tsodyks, M.V., Markram, H., 1997. The neural code between
neocortical pyramidal neurons depends on neurotransmit-
ter release probability. Proc. Natl. Acad. Sci. USA 94,
719-723.

Wiesenfeld, K., Moss, F., 1995. Stochastic resonance and the
benefits of noise: from ice ages to crayfish and SQUIDs.
Nature 373, 33-36.



