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The Map in Your Head: How Does the Brain
Represent the Outside World?

J.Leo van Hemmen*®@

In neurophysics, a “map” is a neuronal representation of the
outside world. It originates from spatiotemporal activity of a
sensory organ. For example, touch provides a one-to-one repre-
sentation of our skin in the cortex, a somatosensory map. In a
similar way, visual and auditory maps are representations of the
retina and the cochlea and provide us with spatial, temporal, and,
more generally, spatiotemporal maps of sensory activity. In this

Introduction

In neural science, one of the presumably most often asked, and
also by its content most fascinating, question reads: How does
the brain represent the world surrounding it? To frame an answer,
one of the presumably most often used experimental techniques
poses another question: How does neuronal activity change if we
modify the surroundings? Practically everything we know about
the brain’s functioning is due to this paradigm. Consequently it is
not too surprising that the major portion of knowledge and
understanding of neural activity has been gathered on those
parts of the brain that are just “behind” the sensory organs.

In both the retina and the cochlea and in subsequent areas,
that is, the collections of neurons that are defined by common
anatomical and/or functional properties, many neurons operate
together while handling an external object and, through their
collective dynamics, generate a signal that influences other
areas. In many cases there is also feedback, which is one of the
main unsolved problems, since we barely understand what it is
good for.

Both as separate entities and as an ensemble, neurons are
described and analyzed by means of coupled nonlinear differ-
ential equations and their analytic simplifications, so as to
understand neuronal information processing. Finding efficient
descriptions through merging mathematics and neurobiology
into a unified theory is a challenge in particular to theoretical
biophysicists. It is fair to say that many of them work successfully
in the new domains of systems neuroscience and neurophysics.

In the process of developing techniques of experimental
analysis and evaluation, devising stimulus protocols, and build-
ing models of neural functioning, theoretical biophysics plays a
key role in that it meanwhile provides predictions that can be
verified experimentally, often even to a high precision. This is
new to many biologists, who seem to think that proposing an
experiment to check theory is an insult, as theory comes before
experiment. | expect that in a decade from now things will look
more or less “as in physics”. Before long, biology will be
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introduction we concentrate on temporal aspects and show how
temporal maps arise in the brain. Through prey localization the
sand scorpion, the barn owl, and the paddle fish provide
fascinating examples of neuronal maps, which are analyzed in
detail.
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confronting physics with deep questions but at the same time
mathematical analysis will be accepted as an indispensable tool.
The rich history, and success, of physics clearly shows that true
progress can only come from an interaction, an intensive
discussion as an exchange of ideas, between experiment and
theory once the latter has a mathematical formalism to cope
with the problems of the former.

To illustrate these points, | will present the mapping problem
from the point of view of systems neurophysics and, thus,
systems neuroscience. In so doing we will meet three animals,
the sand scorpion, the barn owl (Figure 1), and the paddlefish,
that give us some insight into the underlying biophysics.

How Does a Brain Represent its Sensory
Surroundings?

As early as 1943, Roger W. Sperry!" realized that areas in the frog
brain that are the first in receiving optic-nerve signals have a
retinotopic organization. That is to say, the topology of the nerve
cells in the retina and, thus, of the visual image is mapped to a
large extent one-to-one onto corresponding nerve cells in
primary visual areas. Phrased differently, neighboring points in
the retina are mapped onto neighboring points in primary visual
areas. (Throughout this Section we consider a vertebrate visual
system.) Hence the optics of the eye leads to a neuronal
representation of spatiotemporal surroundings in the primary
visual cortex, a map. Similar maps are found in the auditory and
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Figure 1. Barn owls hunt for mice during the night. All they need are acoustic
signals generated by their prey; the direction towards the prey is “computed”
through determining the time difference between the owl’s two ears. In so doing,
the barn owl reaches an accuracy of 2°, as described further later. Photograph
courtesy of Prof. Hermann Wagner (RWTH, Aachen).

somatosensory cortex. Here too one finds an ordered represen-
tation of the surroundings or, if you like, of sensory cells.”?

In spite of an overwhelming multitude of experiments
showing the neuronal organization of how sensory stimuli are
processed, they nevertheless did not answer the question: Why
do neuronal maps exist and what are they good for?

Before we can start answering the above question, it seems
appropriate to first turn to neuronal coding. A neuron consists of
three parts: input (a dendritic tree), central processor (a soma
collecting and evaluating the input potentials from the dendritic
tree), and output (an axon hillock, where action potentials or

J. L. van Hemmen

“spikes”, typically of amplitude and duration 0.1V and 1 ms, are
generated and propagate, soliton-like, through the axon, an kind
of active cable). In vertebrates and also in insects and arachnids
such as scorpions and spiders, a neuron is a threshold element
that “compares” the membrane potential at the axon hillock
with a threshold value 3. A spike is generated if the potential
passes 3 from below and in turn leaves the neuron via its axon.
An axon may, and often does, bifurcate several times. Never-
theless the amplitude remains constant. At the ends of an axon
one finds synapses. A synapse is on a dendritic tree of another
neuron, a postsynaptic neuron, and they are separated by a
synaptic cleft; see the box Synaptic Transmission.

More or less by definition, the synaptic strength determines
how much (or little) ionic current is induced on the other side of
a synaptic cleft by an action potential arriving at the adjoining
synapse. If the input current is positive, one calls the synapse
excitatory; if negative, inhibitory. “Learning” in a neuronal system
means in the present biological context that a synaptic strength
changes—no more, no less. “Learned” information, then, is in
general stored in synapses and not in neurons. Please note,
however, there are exceptions “proving” the rule—as every-
where else in biology—but these exceptions are quite rare.

Map Formation and Hebbian Learning

Since the theory of spatiotemporal learning was conceived quite
a while ago,”®! a detailed theoretical description® of synaptic
dynamics, the temporal evolution of synaptic strengths, has
arisen. Here we can just skim over it. More empirically inclined
readers can directly proceed to the next Section on place maps.

A synapse with strength J; transfers the spiking activity of a
presynaptic neuron j to a connected postsynaptic neuron i. In
the present context, learning means a modification of the
synaptic strength J;; see Figure 2 for the proper spatial context.
According to a brilliant idea of Donald Hebb,”! which was
questioned for a long time but has meanwhile been confirmed
extensively, the temporal evolution of J; is determined by

Synaptic Transmission

vesicle
A chemical synapse looks like a
knob at the end of an axon,
represented by a black dot in .
Figure 2. There one finds nu- ".‘.’
merous 20-30nm diameter ° Se®
small spheres or vesicles filled presynaptic membrane .

with  neurotransmitter that synaptic .
originates from the cell’'s soma. cleft
Arrival of an action potential at
the synapse leads to an influx
of Ca?* ions and, consequently,
to a fusion of one or several
vesicles with the presynaptic
membrane at specific sites, as
shown in the Figure here.

postsynaptic membrane

to specific receptors on the
postsynaptic membrane. They
typically open ionic channels
and, as a consequence, there is
current influx. The synaptic
strength is a measure of how

Neurotransmitter diffuses rap-
idly (1 ms) across the 20nm
wide synaptic cleft and binds

e neurotransmitter
e

-—u-—u.ﬁ.ni.ﬁ.ﬂ-—u..—u..—u-—u

associated, for example, with
Na*; an inhibitory one could
admit ClI~ ions.

The synaptic strength, which
depends on an ensemble
of membrane conductances,
may be determined by differ-
ent factors, for example a) the
density of receptors on the
postsynaptic membrane, b)
the number of fusion sites in
the presynaptic membrane,
¢) the probability of presynap-
tic release, d)the vesicle size,
and e)the time during which
postsynaptic ionic channels are
open. For an extensive discus-
sion of these possibilities, see
Koch.!!

&

receptor molecule

ion channel

much (or little) ionic current is
admitted postsynaptically (bot-
tom of the Figure), if a spike
arrives presynaptically (top of
the Figure). An excitatory syn-
apse admits positive ions and is
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Figure 2. Presynaptic action potentials arrive at N synapses (black dots) on a
postsynaptic neuron i (large circle). They originate from 1 <j <N presynaptic
neurons and travel via axons (straight solid lines with arrow). The amplitude of
the postsynaptic membrane potential at neuron i and originating from the
synapse at the end of axon j is the synaptic strength indicated by J;.

pre- and postsynaptic activity. The prefix “pre” is clear as it refers
to the neuron innervating the synapse. On the other hand, “post”
refers to the receiving neuron beyond the synaptic cleft; see the
box Synaptic Transmission. A fast response signaling to the
synapse that the neuron it is on has fired comes from, for
instance, a backpropagating Ca?* action potential.®

To what extent does a synapse change under the influence of
both pre- and postsynaptic activity? To devlop some feeling, let
us consider an excitatory synapse and imagine that the
postsynaptic neuron fires at time s=0. If the presynaptic spike
arrives “slightly” earlier (s <0), then the synapse is operating
normally in that it stimulates the postsynaptic neuron in time, as
behooves an excitatory synapse. Hence the synapse should be
strengthened. If, however, the spike comes “too late” (s> 0),
namely after the postsynaptic neuron has fired at s =0, then this
makes no sense and the synapse is to be weakened.

It could indeed be shown, first theoretically,”! then confirmed
experimentally, that the time difference s between presynaptic
arrival and postsynaptic spiking determines whether and to
what extent the synaptic strength in- or decreases; see
Equation (1) below. The key notion is that of a learning window
W that quantifies synaptic
growth and weakening. Let s<
0 indicate that the presynaptic
spike arrives “in time” and s >0
that it is “too late”. A typical
learning window describing the
above example is shown in Fig-
ure 3.

e W(s)>0 for s<0, namely
when the postsynaptic neu-
ron fires as an immediate
consequence of presynaptic
activation, whereas

e W(s) <0 fors > 0; life punishes
those who come too late.

Of course the learning window
has a finite width depending on
the system. For instance, in the
hippocampus it is of the order of
10-100 ms whereas in the audi-

s/m

Figure 3. Learning window W as
a function of the time difference s
between presynaptic arrival and
postsynaptic spiking.”” ® If a spike
arrives at the synapse shortly
before the postsynaptic neuron
fires (s < 0), then the synapse is
strengthened (W(s) > 0), otherwise
s > 0 and the synapse is weakened
(W(s) < 0). Clearly W governs the
synaptic learning process through
the activity of both pre- and
postsynaptic neurons.
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tory system it is bound to be about two orders of magnitude
narrower.®

In a brain, learning can happen in many ways and at many
levels. Spatiotemporal patterns which, for instance, occur during
finger and arm movements while playing a piano can be learnt
either by synaptic plasticity in a given topology of synaptic
connections or by changing the topology itself by adding new
and/or removing old connections. Novel sensory experiences or
motor tasks can in this way be mastered through a modification
of a neuronal map.?

How, then, do maps arise? A simple solution is by genetic
coding. It not very plausible, though, since coding a—nearly
always—extremely detailed map would require too much
genetic storage space. An alternative, bottom-up approach that
is advocated here explain maps as a learning process on the
basis of a global, genetically determined substrate. The process
evolves during the youth (ontogeny) of an individual. It is a
collective one where many neurons and very many synapses
determine a neuronal and, hence, the synaptic dynamics.

Furthermore, nearly everything in sight is nonlinear. If both
neuronal and synaptic dynamics were evolving at the same rate
then the problem would be insoluble. They are not, however,
since synaptic dynamics are very slow compared to the neuronal
ones, and we end up with two different timescales. Exploiting
this fact one can derive*? a set of local equations for the
synaptic coupling strength J; between the i-th and j-th neuron,
Equation (1).

%J,-j = ao+awt)+awt) + [W(s) Gy, t+s)ds m

We meet the neuronal activity of j and j as time-averaged rates
v; and v; whereas C; is the time-averaged correlation between
spike times at i and j. Since the latter contain the J; terms
implicitly, the system of equations arising from Equation (1) is in
general nonlinear.

Learning rules based on a correlation matrix, such as C;, of pre-
and postsynaptic activities are called Hebbian,* since correlation
is the essence of Hebb’s idea. He did not specify anything
though, neither quantitatively nor temporally. The “synaptic”
interaction between two neurons i and j has been made specific
by the learning window W.” Taking advantage of Equation (1),
one can explain the way in which retinotopic, cochleotopic,t* 819
and somatotopic maps arise and what a neuronal map of the
retina, the cochlea, or the body surface looks like.

Place Maps

We now turn to three examples, three animals that are going to
show how an individual’s position in space is represented in a
neuronal map through activation of its sensory organs. The sand
scorpion provides presumably one of the simplest examples of
how such a map works. A neuronal model will be shown to
reproduce psychophysical experiments. The barn owl’s azimu-
thal sound localization, formally a map into [— &, 7], has been
explained more than half a century ago by Jeffress,!' and we will
now see how such a map can come about by means of Hebbian
learning or, in more practical terms, by training of a juvenile.
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Finally, the paddlefish, still fairly abundant in the Mississippi river
and its larger tributaries, exemplifies a somatotopic map
originating from electroreception.

Sand Scorpions

The sand scorpion (Paruroctonus mesaensis, Figure 4) lives in the
Mojave Desert of Southern California. It is a predator that is
active during night and feeds on insects. Its physiology is quite
amazing, in that a single succulent moth suffices for a whole
year. When a moth appears, the key issue for the scorpion is how
to capture it. While moving, the moth produces surface waves,
the so-called Rayleigh waves, which are detected by mechanor-
eceptors in the sand scorpion’s feet;!" a deviation of only a few
Angstrém units (107 m) is enough.

How can the scorpion determine the direction of its prey from
the signals (spikes) that are generated by receptors in a circular
array with a diameter of about 5 cm? To answer this question, a
neuronal model has been devised? that predicts the scorpion’s
turning angle for a given stimulus angle. In sand, the effectively
transverse Rayleigh waves move slowly, about 50 ms='. As is
evident from Figure 5, the time difference between the receptors
is at most 1 ms. This is in the range of conventional neuronal
“hardware”.

Figure 4. A sand scorpion’s eight feet lie, to a good approximation, on a circle of
diameter 5 cm. The two big pedipalps will catch prey once the scorpion has
reached it. The mechanoreceptors on the scorpion’s eight feet sense surface
(Rayleigh) waves generated by moving prey. Biophysics now faces the problem:
How does the animal determine the prey’s direction? Sand scorpions fluoresce
in the dark under ultraviolet light. Photograph courtesy of Prof. Philip H. Brownell
(Oregon State University at Corvallis).
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Figure 5. As shown by Figure 4, mechanoreceptors at the feet (one of the eight
outer circles) are in a circular array. In a sand scorpion’s brain, there belongs a
command neuron (black disk on inner circle) to each leg which receives spikes
from detector neurons at the foot. If the prey direction is that of leg R3
(approximately perpendicular to the scorpion’s principal axis), then the command
neuron corresponding to R3 will react first. The triad L1-L3 opposite to R3 will
inhibit this neuron as they activate their inhibitory partner neuron (gray; only two
of the eight such triads are shown) but when the detector neurons of L1-13
receive their input, about 1 ms later because of the delay due to the sand wave
propagating at a finite (50 ms~') speed, R3’s firing is done. On the other hand, for
the command neuron belonging to L2 the inhibition due to the triad R2 - R4
arrives before it receives input from its mechanoreceptors and, hence, it cannot
react. The period of Rayleigh waves in sand is on the average 3 ms.

In the sand scorpion’s brain there is a ring of eight (or a
multiple thereof) command neurons that encode the directions
¥Ym 1<n<8, of the eight legs from which they receive input.
They constitute a kind of committee that operates in the setup
given by Figure 5. Depending on the stimulus angle ¢s, each
command neuron fires spikes at a rate of v,(¢s) Hz. Together they
give rise to a rate vector v ={v,(gs), 1 <n < 8}. The transforma-
tion @s—v is the “map”, a neuronal representation of the
direction @s in a two-dimensional world. It leads from the
stimulus angle ¢ to the scorpion’s turning angle ¢ by means of
a vector or population code,'¥ Equation (2), which is nothing but
a vector sum where each direction exp(iy,), a two-dimensional
vector, is weighted with the firing rate v, of the command
neuron n encoding it.

8
rexplig) == > vexpliy,) @)
n=1

As is shown by Figure 5, v, depends on the stimulus angle ¢s
and, counting the votes, the committee then decides by
Equation (2) which direction is to be taken. The vector code is
Newton’s law for motor neurons, which are here direct
neighbors of the command neurons.

So “all” that is to be done is computation of the map ¢s+— v.
The animal then either turns or does nothing when a general
blocking mechanism decides that the recent food supply
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sufficed. In the model'? the command neurons and their
inhibitory triads are simulated numerically. Action potentials
originating from the mechanoreceptors give rise to synaptic
activation or inhibition, as specified by Figure 5. The number of
spikes in a certain time window determines the rate vector v.
Whereas spike generation at the command neurons is deter-
ministic, it is intrinsically stochastic at the mechanoreceptors, so
that there it is modeled as an inhomogeneous Poisson process
driven by the Rayleigh waves. All theory can, and does, predict is
a probability distribution.

In this way, the sand scorpion provides one of the simplest
examples of a neuronal map where the spatiotemporal character
of the stimulus as recorded by sensory organs, here mechano-
receptors, leads to collective behavior of neurons and, hence, to a
place code, here in the form of Equation (2). Theory agrees nicely
with Brownell’s behavioral experiments,"" ' in which a scor-
pion’s response has been determined in relation to the number
of ablated sensory organs; see Figure 6.

The theory!? is quite general. While it was devised to explain
orientation to vibrational information in substrates, it applies
equally well to aquatic insects orienting to ripples in the surface
film, such as backswimmers (Notonecta sp.). Instead of eight legs
with sensors for vibration they have only four in front plus two
sites at the end, altogether six detection sites. The combined
action of excitation and well-timed, stimulus-dependent inhib-
ition is also a widely used mechanism in horizontal sound
localization of mammals. Hence, we suggest it is one of the
universals of azimuthal localization.

Barn Owls

The barn owl (Tyto alba, Figure 1) is another nocturnal predator.
An adult animal needs about five mice per night but, after five to
seven youngsters have hatched, the adult owl has to catch a
mouse roughly every ten minutes. Though the visual system is
excellent, in the dark only acoustic signals are relevant and,
consequently, the barn owl’s auditory system is exceptionally
good. In azimuthal sound localization, frequencies up to 9 kHz
are used; for vertebrates this is a huge range. Humans, for
instance, do not exploit more than 1-2 kHz."

The barn owl determines the prey’s direction ¢¢ by means of
the time difference between the two ears, which are at a
distance of about 5 cm. It does so with an astounding accuracy
of at least 2°—of the same order as in humans, who locate low-
frequency sources but with a much larger inter-ear distance.
Meanwhile, the fundamental problem of how azimuthal sound
localization in the barn owl functions and how a map arises has
been solved in terms of a biophysical model.” & We turn to its
essentials.

A key idea dates from a paper by Lloyd Jeffress!'® published
more than half a century ago. He proposed a network
architecture (Figure 7) that transforms time differences between
the two ears into firing rate differences and in this way generates
a place code. The simplicity of the Jeffress idea is that acoustic
delays are to be compensated by neuronal delays so that by
coincidence detection in an ordered array of neurons only a
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Figure 6. Sand scorpion psychophysics. Except for (a), the mechanoreceptors of
certain feet (tarsi) have been ablated, as indicated by black dots at the legs’s ends.
The scorpion turning angles ¢ (dots and triangles) after a stimulus from
azimuthal direction s are nearly always in the darkly shaded region
corresponding to the theoretical probability density. Both experiment and theory
show that the scorpion’s angular resolution is between 10° and 15°. If for each
inhibitory neuron the three inputs due to three feet, namely the triad, are replaced
by a single input, say the middle one (L2 and R3 in Figure 5), then the agreement
with experiment is in general less good, as is shown by the mean response given
by the dashed line. The experimental data are due to Brownell/'" the Figure has
been modified after Stiirzl et al.'?

a) sound source b)

right ear

R

I

?/% ? ? ?‘ coincidence

i i\ detector

L)/} neuron i}
axonal o
delay lines laminar nucleus

Figure 7. The Jeffress model.'! The time difference between the two ears, which
depends on the azimuthal position of the sound source (here, directly ahead or
slightly to the right), gives rise to a characteristic time difference in the laminar
nucleus, the first station in the barn owl’s brain with inputs from both ears.
According to Jeffress, neurons are ordered in a linear array, which is correct."””!
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specific position is allowed to fire at a maximal rate. A

coincidence detector®® fires at a maximal rate whenever input

spikes from two (or more) different sources arrive at the same
time, a most useful property.

In the laminar nucleus, the first station in the barn owl’s
brainstem that receives signals from both ears, anatomical
conditions following Figure 7 with axonal delay lines and
coincidence detector cells could be verified."” The cochlea
provides the input. It is a kind of “inverse piano” that decom-
poses a signal into its frequency components, a tonotopic
arrangement. In a sense, the cochlea does for the auditory
system what the retina does for the visual system, that is,
producing a retinotopic arrangement.

Tonotopy is present everywhere in the auditory system, so
that we can, and often will, concentrate on a small frequency
domain, a frequency channel. The laminar nucleus can be
thought of as consisting of many layers, each receiving input
from a specific cochlear frequency channel. Despite striking
similarities between Figure7 and reality, there is a cardinal
difference in that the laminar nucleus has hundreds of inputs
instead of a single pair of delay lines as shown in Figure 7. Theory
has to take this complication into account.

e If the source is directly in front of the head (¢s = 0°, Figure 7 a),
then the spikes that come from the left and from the right
meet at the neuron in the middle (black disk). As a
coincidence detector, it fires most often; that is, at a maximal
rate. Its neighbors (gray disks) fire less.

e Forasource that is located further to the right (Figure 7b), the
signals meet further to the left (black disk). Through the
spatially regular arrangement of the neurons, a map of the
stimulus direction ¢ arises out of the spatial distribution of
the firing rates; effectively, the positions of the “black”
neurons. The problem of how the map, as a specific
arrangement of neuronal “hardware”, arises has been solved
recently.®
In view of hundreds of inputs to the laminar

nucleus and, associated with them, a temporal scatter T

of about 1 ms for the delays with respect to the arrival
at the ears, mere anatomy cannot explain how
coincidence detectors reach a temporal precision of
20 ps. This precision is needed?” for the barn owl’s
spatial resolution of 2° in azimuthal prey localization.
Furthermore, a map is a rather special arrangement,

so that synapses would need some kind of inter- T

action. At a first sight, however, there is practically
none in the laminar nucleus.

Both problems have meanwhile been solved” & by
means of a self-organizing process based on a
Hebbian learning rule, Equation (1). First,”! for synap-
ses on the same neuron, such as in Figure 2, the ones
with the correct delay are strengthened and the
others are weakened. Here we arrive at an effective
“interaction” between the synapses, since they de-
termine together whether and when the neuron fires.
Once it does so, a learning window W such as the one
in Figure 3 decides which are to be strengthened and
which are to be weakened.
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For synapses located at different neurons, a new idea® is
needed, namely, that of axon-mediated spike-based learning
dJ;

(AMSL): If a specific synapse changes by dtl' then all the other
dJ;

synapses connected to it by the same axon change by p dt/'

where the interaction parameter p is quite small, of the order of
0.05. In this way we get a generalized Hebbian learning rule that
leads to a map, not only for a bunch of axons in an
“isofrequency” layer associated with some frequency channel
and coming from the left and the right ear but also for the whole
laminar nucleus. Its effect for an isofrequency layer is shown in
Figure 8.

From this position, both a numerically exact evaluation of
neuronal processes, such as in Figure 8, and also an analytic
solution to a linearized learning equation, in the form of
Equation (1) but now with p=0, is possible."” Thanks to
tonotopy, we can start by restricting ourselves to a single
frequency channel and analyze synaptic growth both in space,
along an axon, and in time, in terms of the learning equation’s
dominant eigenvector, specifically with the largest eigenvalue
Adom > 0. The latter is proportional to the Fourier transform of the
learning window W in Equation (1) and, in agreement with
experiment, leads to restrictions in W so as to guarantee map
formation.

One may wonder, though, why the barn owl’s brain takes that
much effort in converting a very precise time code representing
the stimulus into a spatially distributed rate code. To wit, a) all
laminar axons have a spike-conduction velocity of about 4 ms—',
b) the coincidence-detecting neurons have an exceptionally
short membrane time constant of about 0.1 ms, ¢) input from the
auditory nerve up to 9 kHz (!) is processed, and d) in comparison
to the homologous structure in mammals, the laminar nucleus is
large and contains many more neurons (12 000). | will suggest an

Axonal Weight

Axonal Weight

60 a) 60 b)
30 30
0 0
2.5 2.7 3.1 3.3 2.5 2.7 3.1 3.3
60 c) 60 d)
30 30
0 0
2.5 2.7 3.1 3.3 2.5 27 3.1 3.3

Left Ear Delay/ms —» Right Ear Delay/ ms —»

Figure 8. Selection of delay lines during map formation in a 3 kHz frequency channel. Let us
call axonal weight the sum of all synaptic strengths J; connected to one and the same axon,
which functions as a delay line passing and contacting the neurons; see also Figure 7. From
both from the left (a, c) and the right ear (b, d), and in contrast to what Figure 7 might suggest,
not two but hundreds of axons reach the laminar nucleus (LN). In a young barn owl, the axonal
time difference between the respective ear and LN has originally (a, b) a broad, 1 ms wide
distribution. When the owl! chick has aged a few weeks, the “interaction” (AMSL) between
synapses at different neurons but at the same axon selects synapses and, hence, axons, with
the right LN delay (c, d). Consequently the temporal precision of arriving spikes increases. Of
course axonal selection is always modulo the period, here T=1/3 ms.
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answer in the next Section, where we are facing the question of
what precisely a map may be good for.

It may be well to realize that when a barn owl flies almost no
noise is produced, so that, trivially, the mouse cannot hear the
incoming owl until it is too late but, at least equally important,
the owl can adapt its flight while the mouse changes its position,
as mice are wont to do. It is not possible for the owl to halt in
mid-flight, whereas a sand scorpion can just stop walking, and
hence the barn owl must, and does, adapt its flight. To this end
an acoustic map of its surroundings seems extremely useful.

Paddlefish

For locating its prey, the sand scorpion’s sensory organs need
sand, the barn owl ears need air, and a natural alternative to sand
and air is water. Though there is a rich choice of predators
exploiting water as their medium and time as their agent, we will
focus here on the paddlefish to provide an illustrative example of
a somatosensory map.

Figure 9 shows a juvenile paddlefish.'? In the muddy water of
the Mississippi river and its larger tributaries, a visual system is
not a great help. Moreover, paddlefish feed on zooplankton,

© Lon Wilkens

Figure 9. Juvenile paddlefish snapping at an artificial dipole at the end of the
white-coated wires (center). The huge rostrum in front of its mouth is covered by
electroreceptors, which are similar to the ampullae of Lorenzini of sharks and
rays. The adult animal simply opens its mouth to filter the water but apparently
no longer employs the electroreceptors. Photograph courtesy of Prof. Lon A.
Wilkens (University of Missouri at St. Louis).

especially water fleas (Daphnia), which through their small but
permanent dipole moment stimulate passive electroreceptors
on the “rostrum” in front of the fishes’ mouths provided the
distance is less than 1.5-2.0cm. Water fleas are caught
individually. The two sides of the rostrum detect prey indepen-
dently of each other. Since the fish tend to swim into the
oncoming stream, the average speed with respect to river water
surrounding it is about 20cms™' and hence the time of
stimulation is at most 0.2 s.

How, then, does a fish locate its prey? Though the final proof
has not been given yet, | expect that a somatosensory map, here
a neuronal representation of electroreception at the surface of
the rostrum, does the job. The fish “follows” the signal on its
rostrum and behaves accordingly in that it simply opens its
mouth if a water flea is directly below the rostrum or else turns
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around first. No precise timing is needed and all that is required
is a straightforward map from the two sides of the rostrum into,
presumably, the dorsal octavolateral nucleus (DON), as it is called
here.

What is a Neuronal Map Good For?

Maps have been found in the brains of many species. As a
neuronal representation of the world surrounding an individual,
they depend on, and are quite frequently induced by, the
topology of sensory organs. As such they are bound to respect
neighborhood relations. If we ask What is a neuronal map good
for? a trivial answer would be Representing the animal’s position
in its sensory surroundings. It makes sense to ask a more specific
question: Why is the neuronal representation as it is, and what
does the brain do with it? Let us see what the above examples
suggest.

@ For the sand scorpion, the command neurons provide a
representation that is directly transferred to the adjacent
motor neurons in its legs. This arrangement looks very natural
and self-evident, as behooves a standard example.

e For the barn owl, our question a far subtler. As we have seen,
there is a one-dimensional representation of the azimuthal
stimulus angle ¢s. In terms of orthogonal spherical coordi-
nates {0, ¢} with —m/2 < ¢p <7/2, the sound source’s location
{95, @s} is represented in the brain by means of two different
and separate techniques handling interaural intensity and
time differences!"” and giving rise to two different one-
dimensional representations.

The two parallel pathways merge later on, in the inferior

colliculus, and both representations are combined by multi-

plication instead of addition.'"® Why combine them? The
answer might be that in the tectum opticum, the auditory and
visual representation are superimposed and compared
through synaptic connections, the visual one being domi-
nant.?% Since the retina can be described in terms of spherical
coordinates too, there would be a good reason for the
auditory system to encode similarly and allow comparison.

Note, however, that at the moment this is nothing but a well-

educated guess.

@ The paddlefish again seems quite simple. It spends its time
with a somatosensory map of the rostrum and locating prey is
straightforward. As for map formation, all that is known to
apply to the retina?"! should hold, with the necessary
changes, for the rostral surface.

In summary, neuronal maps are widespread in the animal
kingdom. As a rule, they represent both the topology and the
temporal character of sensory input. We have isolated and
analyzed two principles, coincidence detection and an interplay
of excitation and inhibition. It is not known yet whether these
are the only two universals, although | would speculate so. The
functional role of maps in neuronal information processing is not
clear either. It is a fact, though, that motor control, the ultimate
goal of brain activity, is based on rate and not on time coding.
Time coding needs the precise timing of spikes, while rate
coding requires only counting spikes in a relatively narrow time
window, whose width depends on the context at hand. At a high
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enough level in the brain, rate coding is the rule: Exactly this is
what a map gives rise to.

I am most indebted to Christian Leibold for his invaluable help in
preparing the manuscript and to Philip Brownell for constructive
criticism. Furthermore, | thank Armin Bartsch for the box Figure and
Wolfgang Sttirzl for Figure 5.
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