Nonlinear neural networks near saturation

J. L. van Hemmen

Sonderforschungsbereich 123 der Universität Heidelberg, D-6900 Heidelberg, Germany and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (Received 13 March 1987)

Nonlinear neural networks are studied near saturation, when the number q of stored patterns is proportional to the system size N, i.e., $q = \alpha N$. The statistical mechanics is obtained for arbitrary nonlinearity. For a wide class of models, including the original Hopfield model and clipped synapses, it is shown that there exists a critical α_c above which the system looses its memory completely. Furthermore, α_c never exceeds $\alpha_c^{\text{Hopfield}}$ and is determined by a *universal* expression. A moderate dilution of the bonds may improve the memory function.

Neural networks can function as associative memories which have a surprising fault tolerance with respect to both input data errors and internal failures. They also have been realized as electronic hardware with a robustness comparable to their counterpart in nature. Therefore, their modeling has attracted a considerable amount of interest. ¹⁻⁷

The basic idea is to introduce an energy function or Hamiltonian

$$H_N = -\frac{1}{2} \sum_{i,j} J_{ij} S(i) S(j)$$
 (1)

with suitable symmetric couplings $J_{ij} = J_{ji}$, to model the neurons by Ising spins S(i), $1 \le i \le N$, and to let the system perform a downhill motion in the (free-) energy landscape associated with H_N .

The patterns to be stored in the couplings J_{ij} are N-bit words $\{\xi_{i\gamma}, 1 \le i \le N\}$ which represent specific spin configurations. They are labeled by $1 \le \gamma \le q$, with $q = \alpha N$ for some $\alpha > 0$. The $\xi_{i\gamma}$ are taken to be independent, identically distributed random variables which assume the values ± 1 with equal probability.

The local information available to neuron i is contained in the vector $\xi_i = \{\xi_{i\gamma}; 1 \le \gamma \le q\}$. We require that J_{ij} be determined by ξ_i and ξ_j only (locality⁶). Then^{7,8}

$$J_{ij} = N^{-1}Q(\boldsymbol{\xi}_i; \boldsymbol{\xi}_j) \tag{2}$$

for some synaptic kernel Q defined on $\mathbb{R}^q \times \mathbb{R}^q$. A large subclass is provided by the so-called inner-product models where

$$Q(\xi_i; \xi_j) = \sqrt{q} \phi(\xi_i \cdot \xi_j / \sqrt{q})$$
(3)

for some synaptic function ϕ . The scaling in (3) will become clear later. For the sake of convenience, we assume ϕ to be odd. The original Hopfield model ^{1,2} has $\phi(x) = x$ and is therefore called *linear*. Clipped synapses have $\phi(x) = \text{sgn}(x)$. Clipping is extremely important in hardware versions of (3). It is highly *non*linear.

Under a weak invariance condition, which is satisfied by nearly all nonlinear neural-network models, we will determine the equilibrium statistical mechanics and, hence, the free-energy valleys of the model (2) with $q = \alpha N$. Furthermore, for the inner-product models (3) it

is shown that the nonlinearity merely adds a simple noise term. However, except for this noise term the nonlinearity may be eliminated and, as $q \to \infty$, the model reduces to the linear Hopfield case. As in the Hopfield model with $\phi(x) = x$, there exists a critical α_c such that for $\alpha > \alpha_c$ no information can be retrieved. There is a universal function F(x) (see Fig. 1) which determines α_c —whatever the nonlinearity in $\phi(x)$. We find $\alpha_c \le \alpha_c^{\text{Hopfield}}$ in all cases, with equality only for $\phi(x) = x$. Finally, we will see that one can improve the performance of the network by slightly diluting the bonds.

We start our analysis by developing a spectral theory⁸ for the $2^q \times 2^q$ matrix $Q(\mathbf{x}; \mathbf{y})$ with \mathbf{x} and \mathbf{y} ranging through $C^q = \{-1,1\}^q$. Let $(\mathbf{x})_i$ denote the component x_i of the vector \mathbf{x} . C^q is endowed with a group structure

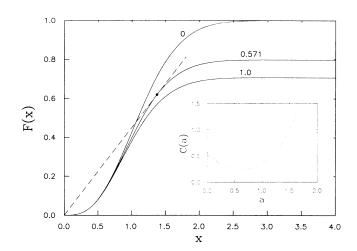


FIG. 1. F(x) as given by Eq. (25) for C=0 (Hopfield case), C=0.571 (clipped synapses), and C=1. The equation $\sqrt{2\alpha}x=F(x)$ possesses a nontrivial solution $(x\neq 0)$ only for $\alpha \leq \alpha_c$, thus fixing α_c . The dashed line represents $\sqrt{2\alpha_c}x$ for C=0.571. For $\alpha < \alpha_c$, there are two nontrivial solutions, of which the larger is the physical one. The inset shows $C(\alpha)$ as a function of the dilution parameter α ; cf. Eq. (26). It has a minimum 0.235 < C(0) = 0.571. The smaller C, the better the performance of the network.

through componentwise multiplication, i.e., $(\mathbf{x} \circ \mathbf{y})_i = x_i y_i$, $1 \le i \le q$. This group has $\mathbf{e} = (1, 1, \dots, 1)$ as unit element and $\mathbf{x} \circ \mathbf{x} = \mathbf{e}$, whatever $\mathbf{x} \in C^q$. We require Q to be invariant in the sense that

$$O(\mathbf{x} \circ \mathbf{y}; \mathbf{x} \circ \mathbf{z}) = O(\mathbf{y}; \mathbf{z}) \tag{4}$$

for any x, y, and z in C^q . Nearly all known neural-network models, including the forgetful ones, ¹ satisfy this requirement.

The Q obeying (4) all have the *same* set of eigenvectors, though the eigenvalues may, and in general will, be different. This is most easily seen as follows. ⁸ Let ρ be one of the 2^q subsets of $\{1, \ldots, q\}$ and define

$$v_{\rho}(\mathbf{x}) = \prod_{i \in \rho} x_i \ . \tag{5}$$

Take $v_{\varnothing}(\mathbf{x}) = 1$ for the empty subset $\rho = \varnothing$. Plainly

$$v_{\rho}(\mathbf{x} \circ \mathbf{y}) = v_{\rho}(\mathbf{x})v_{\rho}(\mathbf{y}) , \qquad (6)$$

so v_{ρ} is a group character. Moreover,

$$\sum_{\mathbf{x}} v_{\rho}(\mathbf{x}) v_{\rho'}(\mathbf{x}) = 2^{q} \delta_{\rho,\rho'} , \qquad (7)$$

so the v_{ρ} 's are orthogonal. Finally, because of (6), (4), and the group property of C^{q} , each v_{ρ} is an eigenvector of O with eigenvalue

$$\lambda_{\rho} = \sum_{\mathbf{x}} Q(\mathbf{e}; \mathbf{x}) v_{\rho}(\mathbf{x}) . \tag{8}$$

If Q is odd, i.e., $Q(\mathbf{e}; -\mathbf{x}) = -Q(\mathbf{e}; \mathbf{x})$, then λ_{ρ} vanishes for all ρ with even cardinality $|\rho|$.

By the spectral theorem we may write

$$Q(\mathbf{x};\mathbf{y}) = \sum_{\rho} \lambda_{\rho} 2^{-q} v_{\rho}(\mathbf{x}) v_{\rho}(\mathbf{y}) , \qquad (9)$$

and thus, putting $\Lambda_o = 2^{-q} \lambda_o$,

$$-\beta H_N = \frac{\beta}{2N} \sum_{\rho} \Lambda_{\rho} \left[\sum_{i=1}^{N} v_{\rho}(\boldsymbol{\xi}_i) S(i) \right]^2. \tag{10}$$

The stored patterns are associated with $|\rho| = 1$ [cf. (5)] and we henceforth assume that Q has been scaled in such a way [e.g., as in (3)] that the corresponding Λ_{ρ} converge to a finite nonzero limit as $q \to \infty$.

To find the free-energy valleys of the model (10) we follow Amit, Gutfreund, and Sompolinsky⁵ by singling out finitely many patterns, labeled by μ , and using the replica method^{5,9} to average over the remaining, extensively many patterns ν . We split up the index set $\{1,2,\ldots,q\}=I_{\mu}\cup I_{\nu}$ and divide the sum in (10) into two parts. One part, $-\beta H_N^{(1)}$, is a sum over subsets of I_{μ} only and need not be averaged.¹⁰ The other part, $-\beta H_N^{(2)}$, is a sum over subsets ρ of the form $\rho=A\cup B$ with $A\subseteq I_{\mu}$ and $B\subseteq I_{\nu}$ with B nonempty (otherwise ρ would belong to the first group). Let Z_N be the partition function $\text{Trexp}(-\beta H_N)$. Instead of studying the average $\langle Z_N^n \rangle$ we note that $\exp(-\beta H_N) = \exp(-\beta H_N^{(1)}) \exp(-\beta H_N^{(2)})$ and that in the present case we need only average the replicated $\exp(-\beta H_N^{(2)})$ over the $\xi_{i\nu}$

$$\left\langle \exp\left(-\beta \sum_{\sigma} H_{N}^{(2)}(\sigma)\right) \right\rangle = \left\langle \exp\left[\frac{\beta}{2N} \sum_{\rho,\sigma} \Lambda_{\rho} \left(\sum_{i=1}^{N} v_{\rho}(\xi_{i}) S_{\sigma}(i)\right)^{2}\right] \right\rangle$$

$$= \int \prod_{\rho,\sigma} \frac{dm_{\rho\sigma}}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} \sum_{\rho,\sigma} m_{\rho\sigma}^{2}\right] \left\langle \exp\left[\sum_{\rho,\sigma} m_{\rho\sigma} \left(\frac{\beta \Lambda_{\rho}}{N}\right)^{1/2} \sum_{i=1}^{N} v_{\rho}(\xi_{i}) S_{\sigma}(i)\right] \right\rangle. \tag{11}$$

Here we used $1 \le \sigma \le n$ to label the *n* replicas. By the independence of the ξ_i , the average of the product factorizes and, since the limit $n \to 0$ is to be taken, we make the ansatz

$$\left\langle \exp\left[\sum_{\rho,\sigma} m_{\rho\sigma} \left(\frac{\beta \Lambda_{\rho}}{N}\right)^{1/2} v_{\rho}(\xi_{i}) S_{\sigma}(i)\right] \right\rangle \rightarrow \exp\left\{\frac{1}{2} \left\langle \left[\sum_{\rho,\sigma} m_{\rho\sigma} \left(\frac{\beta \Lambda_{\rho}}{N}\right)^{1/2} v_{\rho}(\xi_{i}) S_{\sigma}(i)\right]^{2} \right\rangle \right\}. \tag{12}$$

Performing the average in the exponent and collecting the i terms $(1 \le i \le N)$ we are left with a double sum

$$\frac{\beta}{2} \sum_{\rho,\sigma,\rho',\sigma'} \left[N^{-1} \sum_{i=1}^{N} S_{\sigma}(i) S_{\sigma'}(i) \langle v_{\rho}(\boldsymbol{\xi}_{i}) v_{\rho'}(\boldsymbol{\xi}_{i}) \rangle \right] \sqrt{\Lambda_{\rho} \Lambda_{\rho'}} m_{\rho\sigma} m_{\rho'\sigma'} . \tag{13}$$

For $\rho = A \cup B$ and $\rho' = A' \cup B'$ the average $\langle v_{\rho}(\xi_i)v_{\rho'}(\xi_i)\rangle$ gives $\delta_{B,B'}v_A(\xi_i)v_{A'}(\xi_i)$; see Eqs. (5)-(7). Since (13) is a quadratic form in the $m_{\rho\sigma}$, we now can do the integrals in (11) exactly.¹⁰ This gives, combined with the replicated $\exp(-\beta H_N^{(1)})$,

$$\langle Z_N^2 \rangle = \operatorname{Tr} \exp \left[-\beta \sum_{\sigma} H_N^{(1)}(\sigma) - \frac{1}{2} \sum_{B \subseteq I_V} \operatorname{Tr}(\ln Q_B) \right] , \qquad (14)$$

where Q_B is a matrix whose dimensionality is determined by n and the cardinality of I_μ . Being interested in the stability of a *single* pattern we therefore take $I_\mu = \{\mu\}$. Then Q_B reduces to an $n \times n$ matrix with elements

$$(Q_B)_{\sigma,\sigma'} = \delta_{\sigma,\sigma'} - \beta \Lambda(B) \left[N^{-1} \sum_{i=1}^{N} S_{\sigma}(i) S_{\sigma'}(i) \right]$$
(15)

1961

and

$$\Lambda(B) = \sum_{A \subseteq I_u} \Lambda_{A \cup B} \ . \tag{16}$$

Note that by assumption $B \subseteq I_{\nu}$ is nonempty. $A \subseteq I_{\mu}$ may be empty though.

To obtain the free energy $f(\beta)$ we take the limit $n \to 0$ and assuming replica symmetry we then find for N very large $(N \to \infty)$ (Ref. 11),

$$-\beta f(\beta) = -\frac{1}{2}\beta \left[\sum_{A \subseteq I_{\mu}} \Lambda_{A} m_{A}^{2} \right] - \frac{1}{2N} \sum_{B \subseteq I_{\nu}} \{ \ln[1 - \beta \Lambda(B)(1 - \varphi)] - \beta \Lambda(B) \varphi [1 - \beta \Lambda(B)(1 - \varphi)]^{-1} \}$$

$$-\frac{1}{2}\beta^{2} \varphi r (1 - \varphi) + \left\langle \int \frac{dz}{\sqrt{2\pi}} e^{-(1/2)z^{2}} \ln\{2 \cosh[\beta(\Lambda_{\mu} m_{\mu} \xi + \sqrt{\varphi r} z)] \} \right\rangle , \qquad (17)$$

with

$$r = N^{-1} \sum_{B \subseteq I_{w}} \Lambda(B)^{2} [1 - \beta \Lambda(B)(1 - \varphi)]^{-2} . \tag{18}$$

In addition, one should choose that solution of the fixed-point equations

$$m_{\mu} = \langle \langle \xi \tanh[\beta(\Lambda_{\mu} m_{\mu} \xi + \sqrt{gr} z)] \rangle \rangle$$
, (19)

$$\varphi = \langle \langle \tanh^2 [\beta(\Lambda \mu m_{\mu} \xi + \sqrt{qr} z)] \rangle \rangle , \qquad (20)$$

which maximizes the right-hand side of (17). The m_{μ} determines the retrieval quality of the μ pattern while the spin-glass order parameter φ comes from (15). The angular brackets in (19) and (20) denote an average over ξ_{μ} (which may be dropped) and the Gaussian z.

The inner-product models (3) provide an interesting application of the general formulas (17)–(20). These models have two additional, distinctive features. First, the eigenvalues λ_{ρ} and, thus, Λ_{ρ} only depend on the $size \mid \rho \mid$ of the set ρ . Moreover, $\Lambda_1 = 2^{-q}\lambda_1 \mid \rho \mid = 1$ converges to a finite limit as $q \to \infty$. This follows from (8) and the central-limit theorem, 12

$$\Lambda_{1} = 2^{-q} \sum_{\mathbf{x}} \left(q^{-1/2} \sum_{\gamma} x_{\gamma} \right) \phi \left(q^{-1/2} \sum_{\gamma} x_{\gamma} \right)$$

$$\rightarrow \int_{-\infty}^{+\infty} \frac{dx}{\sqrt{2\pi}} e^{-x^{2}/2} x \phi(x) . \tag{21}$$

Second, Λ_{ρ} vanishes as $q \to \infty$ for all ρ with $|\rho| \neq 1$. To see this, ¹³ let us assume that $|\rho| = 3$. By (8) we get $(\alpha \neq \beta \neq \gamma)$,

$$\Lambda_3 = \sqrt{q} \, 2^{-q} \sum_{\mathbf{x}} x_{\alpha} x_{\beta} x_{\gamma} \phi \left[q^{-1/2} \sum_{\delta} x_{\delta} \right] , \qquad (22)$$

and besides four terms $(\alpha = \beta \neq \gamma, ..., \alpha = \beta = \gamma)$ of order q^{-1} or less we end up with

$$q^{-1}2^{-q}\sum_{\mathbf{x}} \left(q^{-1/2}\sum_{\gamma} x_{\gamma}\right)^{3} \phi \left(q^{-1/2}\sum_{\gamma} x_{\gamma}\right) \\ \rightarrow q^{-1} \int \frac{dx}{\sqrt{2\pi}} e^{-x^{2}/2} x^{3} \phi(x) ,$$

which is $O(q^{-1})$ too; and so on.

Let us now return to (14) and consider $-\beta H_N^{(1)}$, which refers to the μ pattern(s). As $q \to \infty$, only the Λ_ρ with $|\rho| = 1$ survive and, up to Λ_1 , $H_N^{(1)}$ therefore reduces to the Hopfield Hamiltonian. Absorbing Λ_1 in β by putting

 $\beta' = \beta \Lambda_1$, we get a *perfect correspondence*. The last term in (14) is a noise term, which we now study in more detail.

In the case of a single pattern, with $I_{\mu} = \{\mu\}$, we note that for odd Q the sum in (16) has only one term (the other one vanishes) and that $\Lambda(B)$ in (18) may be replaced by Λ_{ρ} with ρ ranging through all subsets of $\{1, \ldots, q\}$. Using the above observation that $\Lambda_{\rho} \rightarrow 0$ for $|\rho| \neq 1$ we can simplify (18) even further so as to get

$$r = \alpha \Lambda_1^2 [1 - \beta \Lambda_1 (1 - \varphi)]^{-2} + N^{-1} \sum_{|\rho| (\neq 1)} \Lambda_\rho^2 . \tag{23}$$

The last term in (23) is nothing but

$$N^{-1}[2^{-2q}\operatorname{Tr}Q^2 - q\Lambda_1^2] = \alpha[\langle \phi^2(z) \rangle - \langle z\phi(z) \rangle^2], \quad (24)$$

which we rewrite as $\alpha(\Lambda_Q^2 - \Lambda_1^2)$; as before z is Gaussian. Taking the limit $\beta' = \beta \Lambda_1 \rightarrow \infty$ one can reduce (18)–(20) to a single equation of the form $\sqrt{2\alpha}x = F(x)$, where

$$F(x) = \left[\left[\operatorname{erf}(x) - \frac{2}{\sqrt{\pi}} x e^{-x^2} \right]^{-2} + C/\operatorname{erf}^2(x) \right]^{-1/2},$$
(25)

with $C = [(\Lambda_Q/\Lambda_1)^2 - 1]$. This determines α_c , as explained in Fig. 1. The retrieval quality is given by $m = \operatorname{erf}(x)$. The function F is universal in that choosing another model, and thus another ϕ , only modifies the constant C. For instance, the original Hopfield model 1.2 has C = 0 (since $\Lambda_\rho = 0$ for $|\rho| \neq 1$) and m_c as well as α_c agree with Ref. 5. Clipped synapses with $\phi(x) = \operatorname{sgn}(x)$ have $\Lambda_1 = \sqrt{2/\pi}$, $\Lambda_Q = 1$, and thus $C = (\pi/2 - 1) = 0.571$; this gives $m_c = 0.948$ at $\alpha_c = 0.102$. (See Fig. 1.) The present data agree with the estimates of Ref. 14, which were obtained through a signal-to-noise analysis.

Deterioration of a network usually means that synaptic efficacies $\xi_i \cdot \xi_j$ with values near zero do not function anymore. This gives rise to dilution and can be modeled by deleting all bonds with $|\xi_i \cdot \xi_j| \le a\sqrt{q}$. For instance, in the case of clipped synapses we get 15 $\phi(x) = \operatorname{sgn}(x)\Theta(|x|-a)$ and

$$C(a) = \frac{\pi}{2} \exp(a^2) \operatorname{erfc}(a/\sqrt{2}) - 1$$
, (26)

where $\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$ is the complementary error function; $\operatorname{erf}(a/\sqrt{2})$ tells us how many bonds have been deleted. The inset of Fig. 1 shows a plot of C(a).

1962 J. L. van HEMMEN <u>36</u>

Surprisingly, the performance of the network is *improved* by moderate dilution. The best value of C is obtained for a = 0.612. Then $m_c = 0.959$ at $\alpha_c = 0.120$.

In summary, we have obtained the free energy of a neural network with arbitrary nonlinearity (2) and extensively many $(q = \alpha N)$ patterns. The inner product models (3) are thus fully understood. In the limit $\alpha \rightarrow 0$, the solution joins onto the one for a finite but *large* number of patterns. Replica symmetry breaking is not expected to become important since the zero-temperature entropy, though negative, is quite small. External noise is also easily included. The first-order transition at α_c is physio-

logically not satisfying. However, the general Eqs. (17)–(20) open up the way to studying more complicated but highly interesting nonlinear memories, such as those which gradually forget. ^{16,17} This work will be reported elsewhere. ¹⁸

The author thanks R. G. Palmer for his help and advice. This research was supported in part by the national Science Foundation under Grant No PHY82-17853, supplemented by funds from the National Aeronautics and Space Administration, at the University of California at Santa Barbara.

¹J. J. Hopfield, Proc. Nat. Acad. Sci. U.S.A. **79**, 2554 (1982); **81**, 3088 (1984).

²W. A. Little, Math. Biosci. 19, 101 (1974).

³P. Peretto, Biol. Cybernet. **50**, 51 (1984).

⁴G. Toulouse, S. Dehaene, and J.-P. Changeux, Proc. Nat. Acad. Sci. U.S.A. **83**, 1695 (1986).

⁵D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. Lett. **55**, 1530 (1985); Ann. Phys. (N.Y.) **173**, 30 (1987).

⁶D. O. Hebb, *The Organization of Behavior* (Wiley, New York, 1949).

⁷J. L. van Hemmen and R. Kühn, Phys. Rev. Lett. **57**, 913 (1986).

⁸J. L. van Hemmen, D. Grensing, A. Huber, and R. Kühn (unpublished).

⁹J. L. van Hemmen and R. G. Palmer, J. Phys. A 12, 563 (1979).

¹⁰J. L. van Hemmen and V. A. Zagrebnov, J. Phys. A (to be published).

¹¹ This result may be obtained by a slight adaptation of Ref. 10.

¹²J. Lamperti, *Probability* (Benjamin, New York, 1966).

¹³For odd ϕ , the Λ_{ρ} vanish anyway if $|\rho|$ is even. The argument below also holds for arbitrary ϕ (not necessarily odd) and $|\rho| > 0$. One then requires $\Lambda_0 \to 0$ as $q \to \infty$.

¹⁴H. Sompolinsky, Phys. Rev. A 34, 2571 (1986).

 $^{^{15}\}Theta(x) = \frac{1}{2} [sgn(x) + 1]$ is the Heaviside function.

¹⁶J. J. Hopfield, in *Modelling in Analysis and Biomedicine*, edited by C. Nicolini (World Scientific, Singapore, 1984), p. 381.

¹⁷G. Parisi, J. Phys. A 19, L617 (1986).

¹⁸J. L. van Hemmen, G. Keller, and R. Kühn (unpublished).