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Nonlinear neural networks are studied near saturation, when the number g of stored patterns is
proportional to the system size NV, i.e.,, g =a/V. The statistical mechanics is obtained for arbitrary
nonlinearity. For a wide class of models, including the original Hopfield model and clipped
synapses, it is shown that there exists a critical a. above which the system looses its memory com-

pletely. Furthermore, a. never exceeds a.

Hopfield

and is determined by a wniversal expression. A

moderate dilution of the bonds may improve the memory function.

Neural networks can function as associative memories
which have a surprising fault tolerance with respect to
both input data errors and internal failures. They also
have been realized as electronic hardware with a robust-
ness comparable to their counterpart in nature. There-
fore, their modeling has attracted a considerable amount
of interest. =’

The basic idea' is to introduce an energy function or
Hamiltonian

Hy=== 7SS () )
iJj

with suitable symmetric couplings J;; =Jj;, to model the
neurons by Ising spins S(i), 1 <i < NV, and to let the sys-
tem perform a downhill motion in the (free-) energy
landscape associated with Hy.

The patterns to be stored in the couplings J;; are N-bit
words {5,-7; 1 <i=<N} which represent specific spin
configurations. They are labeled by 1< y=<gq, with
g =aN for some a>0. The &;, are taken to be indepen-
dent, identically distributed random variables which as-
sume the values * 1 with equal probability.

The local information available to neuron i is contained
in the vector &; ={€,—,; 1=y=< q}. We require that J;; be
determined by &; and &; only (locality®). Then?

J,'j =N‘]Q(§,’;§j) (2)

for some synaptic kernel Q defined on RIxRY9. A large
subclass is provided by the so-called inner-product models
where

Q(&:E) =q0(&:&/Ng) (3)

for some synaptic function ¢. The scaling in (3) will be-
come clear later. For the sake of convenience, we assume
¢ to be odd. The original Hopfield model 2 has ¢(x) =x
and is therefore called /inear. Clipped synapses have
¢(x) =sgn(x). Clipping is extremely important in
hardware versions of (3). It is highly nonlinear.

Under a weak invariance condition,® which is satisfied
by nearly all nonlinear neural-network models, we will
determine the equilibrium statistical mechanics and,
hence, the free-energy valleys of the model (2) with
g =aN. Furthermore, for the inner-product models (3) it

36

is shown that the nonlinearity merely adds a simple noise
term. However, except for this noise term the nonlineari-
ty may be eliminated and, as g— oo, the model reduces to
the linear Hopfield case. As in the Hopfield model® with
¢(x) =x, there exists a critical a. such that for ¢ > a, no
information can be retrieved. There is a universal func-
tion F(x) (see Fig. 1) which determines a,— whatever the
nonlinearity in ¢(x). We find a, < aH°Pfeld jn all cases,
with equality only for ¢(x) =x. Finally, we will see that
one can improve the performance of the network by slight-
ly diluting the bonds.

We start our analysis by developing a spectral theory?®
for the 29x29 matrix Q(x;y) with x and y ranging
through C9={—1,1}9. Let (x); denote the component x;
of the vector x. C? is endowed with a group structure
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FIG. 1. F(x) as given by Eq. (25) for C =0 (Hopfield case),
C=0.571 (clipped synapses), and C=I1. The equation
VZax=F(x) possesses a nontrivial solution (x>0) only for
a = a., thus fixing a.. The dashed line represents +/2a.x for
C=0.571. For a< a., there are two nontrivial solutions, of
which the larger is the physical one. The inset shows C(a) as a
function of the dilution parameter a; cf. Eq. (26). It has a
minimum 0.235 < C(0) =0.571. The smaller C, the better the
performance of the network.
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through componentwise multiplication, i.e., (xoy);
1<i=<gq. This group has e=(1,1,...
ment and xox =e, whatever x € CY.
invariant in the sense that

0 (xo0y;x0z) =Q(y;z) 4)

for any x, y, and z in C9 Nearly all known neural-
network models, including the forgetful ones,! satisfy this
requirement.

The Q obeying (4) all have the same set of eigenvectors,
though the eigenvalues may, and in general will, be
different. This is most easily seen as follows.® Let p be
one of the 29 subsets of {1, ...,q} and define

Up(X) = H Xi . (5)

i€p

=Xi)i,
,1) as unit ele-
We require Q to be

Take vo(x) =1 for the empty subset p =@. Plainly
vp(xoy) =v,(x)v,(y) , 6)

S0 v, is a group character. Moreover,

Y v (x)u,(x)=2%, . , 7
X
so the v,’s are orthogonal. Finally, because of (6), (4),
and the group property of CY, each v, is an eigenvector of

Q with eigenvalue

A=Y 0esx)v,(x) . (®)

<exp [ ,BZH(Z)(O') ] > =<cxp
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If Q is odd, i.e., Q(e;—x)=—Q(e;x), then X, vanishes
for all p with even cardinality |p .
By the spectral theorem we may write

0(x;y) =Y 4,2 "w,(x)v,(y) , )
P
and thus, putting A, =2 ",

N 2
—ﬂHN=—2%ZA,, zup(gi)s(i)] ) (10)
P

i=1

The stored patterns are associated with |p| =1 [cf. (5)]
and we henceforth assume that Q has been scaled in such
a way [e.g., as in (3)] that the corresponding A, converge
to a finite nonzero limit as g — oo.

To find the free-energy valleys of the model (10) we fol-
low Amit, Gutfreund, and Sompolinsky® by singling out
finitely many patterns, labeled by u, and using the replica
method>® to average over the remaining, extensively
many patterns v. We split up the index set
{1,2,...,¢} =101, and d1v1dc the sum in (10) into two
parts. One part —ﬂHN is a sum over subsets of 7, only
and need not be averaged. 10 The other part, —,BHNf), isa
sum over subsets p of the form p=A4UB with AC [, and
BC I, with B nonempty (otherwise p would belong to the
first group). Let Zy be the partition function
Trexp(—BHpy). Instead of studym% the average (ZN) we
note that exp(— BHy) =exp(—BH{)exp(—BHA?) and
that in the present case we need only average the replicat-
ed exp(— BHP) over the &,

N 2
5 v,,(é,-)So(i)] }}

N
3 0,(€)S,(0)

i=1

>, an

Here we used 1 =< o =< n to label the n replicas. By the independence of the &;, the average of the product factorizes and,

since the limit n— 0 is to be taken, we make the ansatz

<exp
p,c

12
> myo [—ﬁ%] v,(&:)S.G)

12
>—> exp{%< [Zm,,,, [%] v,(E)Sc ()

a4

2>} . (12)

Performing the average in the exponent and collecting the i terms (1 =< i < V) we are left with a double sum

S S0, ) wp 0, (E)
i=1

$z v

p,aip', o’

~\ /ApAp.mpamp,U. .

(13)

For p=AUB and p'=A'UB' the average (v,(§)v,(&;)) gives 6BBL7A(§,)U (&;); see Egs. (5)-(7). Since (13) is a

quadratic form in the m,,, we now can do the 1ntcgrals in (11) exactly.!

exp(—BHM),

<Z;%)=Trexp[—ﬂZH l)(0')—— 3 Tr(lnCQB)] ,

Bgl

where @p is a matrix whose dimensionality is determined by » and the cardinality of 7.

of a single pattern we therefore take I, = {u}.

(@s), =8, —BAB)

N! )1_1, So(i)S .(z')]

i=1

This gives, combined with the replicated

(14)

Being interested in the stability

Then @p reduces to an n X n matrix with elements

(15)



RAPID COMMUNICATIONS

36 NONLINEAR NEURAL NETWORKS NEAR SATURATION 1961

and

A(B)= Z AAUB .
AC I,

(16)

Note that by assumption BC I, is nonempty. 4 < I, may be empty though.
To obtain the free energy f(B) we take the limit n— 0 and assuming replica symmetry we then find for N very large

(V— o) (Ref. 11),

1 -
—Bf(ﬁ)=—£—ﬁ[ > AAm,ziJ—?ﬁgglv{lnll—ﬂA(B)(]—?)]—ﬁA(B)?ll—BA(B)(I—7/)] '}

Aacl,
-1 Zfr(l—y)+<fd—\/2z_e—('/Z)ZZIn{Zcosh[ﬁ(A“m,,§+%;z)]}> : an
T

with
r=N"'3 AB)-BABIU—2)]72.  (18)

BC I,

In addition, one should choose that solution of the fixed-
point equations

my, ={&tanh[B(Am &+ grz)D) (19)
g=tanh?[B(Aum,E+~prz)1)) (20)

which maximizes the right-hand side of (17). The m,
determines the retrieval quality of the u pattern while the
spin-glass order parameter ¢ comes from (15). The angu-
lar brackets in (19) and (20) denote an average over &,
(which may be dropped) and the Gaussian z.

The inner-product models (3) provide an interesting ap-
plication of the general formulas (17)-(20). These mod-
els have two additional, distinctive features. First,® the ei-
genvalues A, and, thus, A, only depend on the size |p| of
the set p. Moreover, A;=2 "%, (|p| =1) converges to a
finite limit as g — oo. This follows from (8) and the
central-limit theorem, '?

A =2“’le [q _'/Zny]¢ [q "/szr]

T dx —ep
— ——e " 2xp(x) . @n
- 2r

Second, A, vanishes as g — o for all p with |p|=1. To
see this,'? let us assume that |[p| =3. By (8) we get
(a=B=y),

As=vg2 Iy x.xpx,0 [q“/zzxa] , (22)
X é
and besides four terms (a =By, ...,a=f=y) of order
q ~ ! or less we end up with
q —12—qz [q _1/2Ex7] 3¢ [q —l/ZZxr]
X 4 Y
_ dx _,2
1 x%2_3
—4q e x3¢(x) ,
f V2r
which is O(g ~!) too; and so on.
Let us now return to (14) and consider —,BH“), which
refers to the u pattern(s). As g— oo, only the A, with

|p| =1 survive and, up to A, H{" therefore reduces to
the Hopfield Hamiltonian.! Absorbing A, in 8 by putting

f

B'=pA\, we get a perfect correspondence. The last term
in (14) is a noise term, which we now study in more detail.

In the case of a single pattern, with I#={y}, we note
that for odd Q the sum in (16) has only one term (the oth-
er one vanishes) and that A(B) in (18) may be replaced
by A, with p ranging through all subsets of {I,...,q}.
Using the above observation that A,— 0 for |p|=1 we
can simplify (18) even further so as to get

r=aAfll =pA (1L =) 2+NTD 3 A2 (23)
|p[(#l)

The last term in (23) is nothing but
N7'U279TrQ? —gAfl =al{p?(z)) —(z¢(z 2] , (24)

which we rewrite as a(Aj — Af); as before z is Gaussian.
Taking the limit B'=BA|— o one can reduce (18)-(20)
to a single equation of the form V2ax =F(x), where

2

F(x)= [ [erf(x)——j:xe o

T

-2 —12
+C/erf2(x)} ,

(25)

with C=[(Ag/A)?—1]. This determines a., as ex-
plained in Fig. 1. The retrieval quality is given by
m =erf(x). The function F is universal in that choosing
another model, and thus another ¢, only modifies the con-
stant C. For instance, the original Hopfield model -? has
C =0 (since A,=0 for |p|=1) and m, as well as a, agree
with Ref. 5. Clipped synapses with ¢(x) =sgn(x) have
Ay =+2/rm, Ag=1, and thus C=(x/2—1)=0.571; this
gives m, =0.948 at a. =0.102. (See Fig. 1.) The present
data agree with the estimates of Ref. 14, which were ob-
tained through a signal-to-noise analysis.

Deterioration of a network usually means that synaptic
efficacies §;-§; with values near zero do not function
anymore. This gives rise to dilution and can be modeled
by deleting all bonds with |&;-&;| <a+/g. For instance,

in the case of clipped synapses we get!® ¢(x)
=sgn(x)O(|x| —a) and
Cl(a) =§exp(az)erfc(a/x/f) -1, (26)

where erfc(x)=1—erf(x) is the complementary error
function; erf(a/+/2) tells us how many bonds have been
deleted. The inset of Fig. 1 shows a plot of C(a).
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Surprisingly, the performance of the network is improved
by moderate dilution. The best value of C is obtained for
a=0.612. Then m,=0.959 at a, =0.120.

In summary, we have obtained the free energy of a
neural network with arbitrary nonlinearity (2) and exten-
sively many (g =aN) patterns. The inner product models
(3) are thus fully understood. In the limit a— 0, the solu-
tion joins onto the one for a finite but /arge number of pat-
terns.® Replica symmetry breaking is not expected to be-
come important since the zero-temperature entropy,
though negative, is quite small. External noise is also
easily included. The first-order transition at a. is physio-
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logically not satisfying. However, the general Egs.
(17)-(20) open up the way to studying more complicated
but highly interesting nonlinear memories, such as those
which gradually forget.'®!” This work will be reported
elsewhere. '®
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