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A simple model is proposed that allows an efficient storage and retrieval of random patterns.
Also correlated patterns can be handled. The data are stored in an Ising-spin system with ferromag-
netic interactions between all the spins and the main idea is to “chop” the system along the boun-

daries where the patterns differ.

I. INTRODUCTION

The work of Hopfield' has led to a renewed interest in
methods that allow pattern storage and retrieval in
content-addressable (i.e., associative) memories. However,
all the models that have been proposed until now are
marred by the presence of unwanted, spurious states that
are mixtures of the original patterns and drastically
reduce the efficiency. Because of this the ensuing analysis
requires a fair amount of sophistication.

In this paper we present a simple model whose main
characteristics can be understood without detailed study,
whose efficiency is rather high and can be calculated
straightforwardly, and whose spurious states allow an im-
mediate interpretation in terms of the model’s energy
landscape. The model itself is introduced in Sec. II, its
memory function and efficiency are analyzed in Sec. III,
and its main features are discussed in Sec. IV. We hope
that this paper may serve as an elementary introduction to
the fascinating subject of neural networks and pattern
recognition.

The only prerequisite for reading this paper is an ele-
mentary understanding of the Curie-Weiss model of fer-
romagnetism. Given a configuration S={S(i); 1<i <n}
of n Ising spins S(i)==*1, the Curie-Weiss Hamiltonian
is given by
n 2
n='Y S)

i=1

H(S)=—Jn (n

The thermodynamics of (1) is easily obtained? in the limit
n— oo. For the moment we only need to know the two
ground states, S(i)=+1 for all i or S(i)=—1. If n is fi-
nite, there is an energy barrier of height proportional to n
between the two ground states.

We introduce the following dynamics.! An arbitrary
spin, say S(i), is picked out of a spin configuration S.
Through flipping the spin from S(i) to —S(i) we
transform the configuration S into a new state S’. If

AE=H(S')-H(S)<0, (2)

we keep S'. If AE >0, we keep S. We continue the pro-
cedure by picking another spin. And so on. This is what
is called a zero-temperature Monte Carlo procedure. A
spin is flipped only if energy is gained.
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It is easy to see that if kK > N /2 spins in (1) are up and
the remaining N —k are down, then the system evolves to
the state with all spins up. If on the other hand, k <N /2,
then the result is all spins down. We will use this simple
argument repeatedly.

II. THE MODEL
Suppose we are given p random patterns
§a={8iy 1<i<N}, l<a<p, 3)

where the £;, are independent, identically distributed ran-
dom variables which assume the values +1 with equal
probability. The independence assumption simplifies the
argument but is by no means necessary; cf. Sec. V. For
the sake of convenience, N is a large power of 2. The pat-
terns £, may be embedded into the phase space of N Ising
spins. The spin system is given a dynamics via the Ham-
iltonian

Hy(8)=—5 3 J;S(0S(j) . @
ij

The idea' is to choose the coupling constants (bonds) J;
in such a way that the &, are attracting fixed points for
the dynamics (2). Of course, the basins of attraction and,
hence, the efficiency, should be as large as possible. Here
we take

Jij= Ie[
a=1

l+§ia§' a
N

a=1

We remind the reader that the £;, are +1 so that the Jij
vanish if §;,§;,=—1 for some a and equal one if
§iaja=1 for all a. The patterns which have to be re-
trieved are stored in the bonds.

What is the effect of the ansatz (5)? To see this we im-
agine that all spins are connected ferromagnetically (stage
zero) and then add the J,-(j“) one after the other. See also
Fig. 1. We start with a=1.

The N spins may be divided into two groups: those
which have §;;=+1 and those where &;;=—1. The in-
teraction (1+§;,£;,)/2 allows the spins in each group to
interact ferromagnetically in the manner of Eq. (1) but
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FIG. 1. Schematic representation of the partition of the index
set {1<i <N} induced by the §;,. Start with the zeroth stage
where all —;—N (N —1) pairs are connected by ferromagnetic
bonds of strength 1. Upon introducing the £;,, we get a division
of the index set into two groups: One where &;=+1 and
another one where §;;=—1. Imagine that the spins are reor-
dered as indicated (+ to the left of —). The &;, induce an
analogous partition in each of these groups. This gives four of
them. And so on. At the pth stage (here p =3) we end up with
2? groups. Group to the most left has £;,= +1 for all i in the
group and all a. Each group is uniquely characterized by a se-
quence of p plus and minus signs. The groups do not interact
and the intragroup interaction is ferromagnetic as in the manner
of Eq. (1).

there is no interaction between the two groups. About
half of the &;, are positive and about half of them are neg-
ative, so both groups have nearly the same size. We can
reorder the spins so that the + spins are on the left and
the — spins are on the right; cf. Fig. 1.

We now turn to the second stage and introduce the &;,.
Among the + spins there are approximately as Mmany
with §,=+1 as with §,=—1. Since Ji '=(1
+£i26j2)/2, both groups interact ferromagnetlcally
among themselves but there is no interaction between
them. The same holds true for the — spins. As depicted
in Fig. 1, we now have four noninteracting groups of
spins. And so on, until we have built up the interaction
(5), each time chopping the system along the boundaries
where the patterns differ. Whence the name of the model.
In general, a group is a set of indices i such that, whatever
a, all the §;, have the same sign. So it may be character-
ized by p plus and minus signs, depending on whether &;,
is +lor —1,1<a<p.

There are 2” groups of approximately

x =2"PN (6)

spins each, the intragroup interaction is ferromagnetic
whereas the intergroup interaction is absent. We have ob-
tained, so to speak, an ultrametrically decoupled family.
By construction, each &, is a ground state of the Hamil-
tonian (4) with the interaction (5). Compare, for instance,
the stage =2 in Fig. 1. This is the key to the memory
function of the model. At whatever temperature, its sta-
tistical mechanics is trivial.
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Given N, there is a theoretical upper bound for p.
Combining Eq. (6) with the requirement x >1 we get
p =log,N for the maximal value of p. But this is some-
what academic as we will see shortly. We henceforth as-
sume x >>1, unless stated otherwise. In taking the ther-
modynamic limit N — o« we may either fix p or the mean
group size x =27PN. If we take the second possibility
and fix x, then the number p of stored patterns may in-
crease with N (though rather slowly). It is implicitly un-
derstood that the J;; are correctly normalized. One has to
multiply (5) by N =1 p is fixed and by x ~! if one fixes
x.

III. MEMORY FUNCTION

External noise perturbs the patterns. This may be
modeled by multiplying each &;,, 1 <i <N, by a random
phase 1; which assumes the values —1 and 1 with proba-
bilities g and 1— g, respectively. The 7; are assumed to be
independent. The new state,

Ea=1{&iami; 1<i<NY, (7

is taken as a starting point for the dynamics (2) and the
question is under what condition the system relaxes to the
original pattern &,,.

By (6), each group contains x spins on the average. Its
dynamics is governed by a Hamiltonian of the form (1).
Moreover, all groups are independent. If the thermo-
dynamic limit N— o« is taken with p fixed, then x — «
and, as we have seen in Sec. I, each g < % is allowed.
With certainty the system then relaxes to the original pat-
tern. In practical situations, however, N and x are finite.
Then we require g to be such that the probability P of
flipping more than half of the spins in each group is less
than a given error bound A,

q)x n x

2 q"(1—

nzx/Z

<A. (8)

This is the relevant probability estimate; cf. Fig. 2. A
whole group either relaxes back to where it came from or

-1 0 1
FIG. 2. The energy barrier associated with the Hamiltonian

H=—n[n""3!_ S(i)]*=—nu? of Eq. (1). The energy (verti-
cal scale) has been plotted as a function of the magnetization .
The dynamics of each group, which is governed by such a Ham-
iltonian, only allows a decrease in energy. We suppose the start-
ing point is on the left (solid circle). If the noise level g is not
too high, the system will remain on the left and relax back to its
starting point (solid line). However, either by too much noise or
by thermal activation, the system may cross the hill (dashed
line) and is then bound to relax to the right (dotted line). The in-
formation has been lost.
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has “crossed the hill” and falls into the wrong valley. We
may evaluate P by using the De Moivre-Laplace
theorem,’

s q"(lﬁq)“”[ f e O)
n=x/2
with
_ x/2—gx —_X—gx (10)
Vxq(1—¢q)’ Vxq(1—¢q)

The right-hand side of (9) has been tabulated.* In passing
we note that, for a given probability P, there are
P2’x =PN out of N spins that have the wrong sign (com-
pared to the original pattern). These also make up a frac-
tion P of the total number of spins.

What happens if n, the number of spins in a group, is
rather small? The average value of n is x, which is given
by (6). One spin cannot relax to its original state if it has
been flipped, so we should take x larger than one. But if
we take two spins and flip one of them, then with proba-
bility % the dynamics (2) will drive the system to the
wrong valley. We, therefore, take an average of at least
four spins per group (x =4). The maximal value of p
then follows from x,;, =4=2"?N which gives

pmax——‘logZJV""2 . (11

One also has to realize that x is a mean value. For
small x, the fluctuations of the group size n become im-

portant. In the Appendix we show that n is a random
variable with a Poisson distribution, i.e.,
xn
Prob(n)=e"‘—| , (12)
n!

where Prob(n) is the probability there are n spins in a
group. According to (12), the group size n has mean x, as
should be the case, and standard deviation V'x; cf. Ref. 5.
Now take x =4. Then Prob{n <2}=0.238. For x =9,
however, this probability is already very small (0.006).
The probabilities associated with the Poisson distribution
have also been tabulated.*

IV. DISCUSSION

Given p, there are 2° groups of about x spins each. The
spins in a group, which are coupled ferromagnetically, can
be in only two ground states. For 2? groups this makes 27
ground-state configurations and, hence, an equal number
of energy valleys which are separated by (free-) energy
barriers of height proportional to x as soon as the tem-
perature T is somewhat below the critical temperature T,
of the Curie-Weiss ferromagnet (x >>1). Only p configu-
rations out of this huge number of ground states are
relevant: the p original patterns &, we started with.

The remaining ground states are spurious. In spite of
their huge number, noisy patterns are recognized with ex-
tremely small error if x is large enough. It is to be noted,
though, that heating up followed by cooling down does
not remove the remaining faults. The faulty groups may
make a thermal jump over the energy barrier so as to land
in the original valley but other groups may migrate with

equal probability to the opposite valley (cf. Fig. 2) and,
hence, introduce new errors.

Finally, we would like to point out the relation between
the present work and a recent prescription proposed by
Kinzel.® Kinzel starts with the Sherrington-Kirkpatrick
model where the J;; are all independent Gaussians with
mean zero and variance N~!. Then the Jij with
§ialij€ja <0 for some a, that is, the frustrated J,j, are de-
leted. The procedure is a special case of what we have
done here. To see this, we perform the gauge (Mattis)
transformation S(i)—§;,S(i). Then the bonds J;; are
changed into J;;=§;,J;;;1, the patterns are given by
§ia=Eiaki1» and a bond is removed if Jj; <0 (a@=1) or
Eiakja=—1 (a>2). After the first stage a=1 we are left
with ferromagnetic bonds, which are cut if §;8jo=—1,
i.e., if they connect antiparallel spins for some pattern
a>2—as in Sec. II.

V. SUMMARY

The present model, though extremely simple, has all the
properties of a content-addressable memory. If the group
size is large enough, patterns are readily recognized.
Moreover, the network can easily learn patterns and it is
not necessary that they are random (uncorrelated). The
independence serves to guarantee that the different groups
have about equal size. The only proviso to limit errors is
that the different groups have a reasonable size. It is a
matter of elementary statistics to estimate this for a given
noise level q.
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APPENDIX

We want to determine the probability distribution of
the group size n as N— « and 27PN =x is fixed. It is to
be shown that » has a Poisson distribution,

n
Prob(n)=e -*% , (A1)

with characteristic function

c(t)=&fe™ = ze "—’;—e "—exp[x(e?—1)] (A2)

& { } denotes a mathematical expectation. A characteris-
tic function determines the probability distribution com-
pletely.

Since the £;,==*1 are independent, identically distri-
buted random variables, it suffices to pick a specific
group, say the one most to the left at level p in Fig. 1
where §;,=+1 for all i in the group and all . Our task
is to show that the group size has the distribution (A1).

Let X;,=(1+4§&;,)/2, 1<i <N, be the random variable
that equals one if §;,=1 and vanishes if £;,= —1. Furth-
ermore, let
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¥,= [T Xia (A3)

and

N
Sy=237Y. (A4)
i=1

Sy gives the size of the specific group under considera-
tion.
We now show

k
i =K)= —xX_
A}ﬁnw Prob(Sy =k)=e o (AS5)
The proof is simple. We calculate the characteristic func-
tion cy(t) and show that cy(t)—c(?) of (A2) as N— wo.
To this end we first note that either Y; =1 or 0 and

p
Prob(Y;=1)= ][] Prob(X;,=1)=2"7, (A6)

a=1

while Prob(Y;=0)=1-—272. By independence and this
simple observation,

N
en()=& {explitSy)} = [] & {explitY;)}

j=1

=[1427P(*—1)]V, (A7)

and since 27?=x /N we find, as N — oo,
exn(@®)=[14+(x/N)e"—1)]"—exp[x(e?—1)], (A8)
as advertised.
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