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Abstract Multimodal neuronal maps, combining input
from two or more sensory systems, play a key role in the
processing of sensory and motor information. For such maps
to be of any use, the input from all participating modali-
ties must be calibrated so that a stimulus at a specific spa-
tial location is represented at an unambiguous position in
the multimodal map. Here we discuss two methods based
on supervised spike-timing-dependent plasticity (STDP) to
gauge input from different sensory modalities so as to ensure
a proper map alignment. The first uses an excitatory teacher
input. It is therefore called excitation-mediated learning. The
second method is based on an inhibitory teacher signal, as
found in the barn owl, and is called inhibition-mediated learn-
ing. Using detailed analytical calculations and numerical
simulations, we demonstrate that inhibitory teacher input
is essential if high-quality multimodal integration is to be
learned rapidly. Furthermore, we show that the quality of the
resulting map is not so much limited by the quality of the
teacher signal but rather by the accuracy of the input from
other sensory modalities.
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1 Introduction

Neuronal maps play a crucial role in sensorimotor informa-
tion processing. A neuronal map is a neuronal representation
of the outside sensory world. Quite often this representation
is such that neighboring neurons respond to sensory stimuli
that are near to each other (van Hemmen 2002; Knudsen et al.
1987).

One advantage of information processing in neuronal
maps seems to be wiring efficiency. Generally, one can
assume that neurons coding for related events or properties
will be interconnected, either directly or indirectly. If neurons
coding for similar locations in sensory space are near to each
other, wiring costs are minimal. A beautiful example of this
is the connection between sensory and motor maps. In the
Superior Colliculus (SC), the connection between sensory
and motor maps has been studied in great detail (Knudsen
2002; Stein and Meredith 1993; Stein et al. 2004). Here the
motor maps lie on top of the sensory input maps and are in
spatial register. That is, sensory input is used to directly gen-
erate appropriate motor output; for example, in the form of a
gaze shift or eye saccade (van Opstal and Munoz 2004; Stein
and Meredith 1993; Stein et al. 2004). If, say, an interesting
event is detected at 20◦ to the right of the animal, a gaze-shift
of exactly 20◦ can be rapidly induced.

Another advantage of maps is found in multimodal inte-
gration, where several sensory input modalities merge so as to
form a unified map of multisensory space (reviews in Calvert
et al. 2004; Stein and Meredith 1993; Stein and Stanford
2008). In a multimodal map, most neurons respond to more
than one sensory modality. This kind of map is omnipresent
in the brain (Kaas and Collins 2004) and it has even been
questioned whether genuine monosensory maps exist at all
(Stein and Stanford 2008).
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A multimodal neuron is defined by its responsiveness to
sensory input from more than one modality. Several types
of interaction are possible if multiple input modalities are
stimulated simultaneously (Stanford et al. 2005; Stein and
Stanford 2008), but usually the presence of multiple input
modalities leads to an increase in firing rate, improving object
identification and localization accuracy. This means that the
response to two or more simultaneous stimuli is larger than
that to either stimulus when presented alone. Alternatively, a
response depression may be found. In this case, the firing rate
decreases if several modalities are activated concurrently. A
neutral response is of course also possible. Then a neuron
does respond to several different modalities, but there is no
clear response enhancement or reduction.

A general feature of multimodal maps is that all sensory
modalities are spatially aligned with each other and with
motor maps. This means that the spatial response of the neu-
ron is not primarily defined by the type of input that is pres-
ent, but rather by the spatial location of that input. To ensure
proper multimodal interaction, input from all participating
modalities must be calibrated so that a stimulus at a specific
spatial location is represented at an unambiguous location on
the multimodal map. Alignment of sensory and motor maps
is not present at birth and must be learned through experience
(Knudsen 2002; Stein and Stanford 2008).

In this paper, we will answer the question as to how sen-
sory maps can be aligned to form a calibrated representation
of multisensory space. There are actually two problems to
be solved here. The first problem is that of dynamic adap-
tation. Since many animals can move their sensory organs
(eyes, ears, whiskers, etc.) independently of their body, con-
tinuous dynamical map alignment is needed. The mechanism
underlying this adaptation is not known, but retinotopic coor-
dinate systems seem to play a key role (Gardner et al. 2008).
Dynamical alignment will not be considered here. The sec-
ond problem has to do with the development of multimodal
alignment. Even if it is clear how dynamic alignment can be
achieved, the question remains how static alignment is to be
achieved in the first place.

Directly below, we present a short overview of the rel-
evant literature. In Sect. 2, two models are discussed that
can explain alignment of multisensory maps through spike-
timing-dependent plasticity (STDP). The first model uses
excitatory learning input (the EL model) and the second uses
inhibitory learning input (the IL model). A complete math-
ematical treatment of the learning process is possible, based
on the methods developed by Kempter et al. (1999). Such
an analysis is presented in Appendix A and the ensuing con-
siderations are illustrated and analyzed in Sect. 3. In Sect. 4
we present numerical simulations. Finally, we discuss our
results in Sect. 5.

We will see that both models are very robust with respect
to parameter variation and noise, but inhibition-mediated

learning (IL) is much faster and more robust than excita-
tion-mediated learning (EL). Furthermore, the quality of the
resulting map is not limited by the quality of the teacher sig-
nal, but rather by the accuracy of the input from the other
sensory modality.

1.1 Mechanisms in the development of multimodal
integration

For many animals it has been shown that visual input is essen-
tial in guiding the development of other sensory systems and
multimodal integration. Early work was done on hamster and
ferret. Mooney et al. (1987) have found that somatosensory
spatial receptive fields in the SC of hamsters are disorga-
nized following destruction of visual input pathways. King
et al. (1988) have shown that neonatal rotation or lateral devi-
ation of the eye can lead to abnormal auditory spatial maps
in the SC.

Similar findings were obtained in the cat (Wallace and
Stein 2007; Wallace et al. 2004), the clawed frog (Claas
1994), and in snakes (Grace et al. 2001). In psychophysical
experiments using congenitally blind and normally sighted
subjects, it was shown that in humans multimodal integration
also partially depends on visual input in early life for accurate
development (Hötting et al. 2004; Putzar et al. 2007; Röder
et al. 2004). Audio-visual integration in barn owls has been
studied in great detail (for example reviewed in Knudsen
2002). This case will be discussed at length below.

It has been shown recently (Jiang et al. 2007) that visual
cortex long-term potentiation and depression in mice devel-
ops sequentially. Plasticity is gradually lost in development
and layers that come later in the processing pathway loose
their plasticity later than earlier processing layers. Appar-
ently, the visual cortex layers only settle into their final state
after earlier layers have stabilized. The work by Jiang et
al. (2007) also seems to support the idea that neuronal map
formation is often guided by stabilized visual “teacher” input.

Much of the work on multimodal integration has been
done in the SC or its non-mammalian homologue, viz., the
optic tectum (OT). Both are known to be a major site of
multimodal integration. Inputs from several sensory systems
converge in the SC and are used to initiate motor responses
(van Opstal and Munoz 2004; Stein and Meredith 1993; Stein
et al. 2004).

1.2 Audio-visual integration in the barn owl

In the barn owl, the integration of visual and auditory infor-
mation has been studied particularly well. The barn owl is
an interesting object of study since it is a highly specialized
auditory hunter and, in addition, its eyes have a fixed posi-
tion in the head, preventing any problems related to dynam-
ical coordinate transformations. A variety of experiments,
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Fig. 1 Audio-visual integration in barn owls. In the “normal” situation
(left), auditory positional information reaches the ICC in frequency-
specific channels. Information on sound source localization is coded in
the time-of-arrival difference (ITD) of the sound between the two ears.
The frequency-specific maps from the ICC are integrated and relay to
the ICX. From there, information is forwarded to the OT where it is

integrated with visual input. There is a permanent feedback signal from
the OT to the ICX (open arrows). If abnormal visual input is present (an
azimuthal shift is introduced), the feedback signal is used to reorganize
the synaptic connections between ICC and ICX so as to re-establish a
match between the map in the ICX and the OT. Figure adapted from
Knudsen (2002)

reviewed by Knudsen (2002), have shown that in barn owls
integration of auditory and visual input is not functioning
optimally in young hatchlings, but needs to be learned dur-
ing several weeks of training in an environment with both
visual and auditory stimulation.

Although it has been shown both theoretically and exper-
imentally that an (imprecise) map of azimuthal sound source
location can be learned in the absence of any visual input
(Kempter et al. 2001b; Knudsen et al. 1991), a map of sound
source elevation cannot be correctly learned without visual
information during development. Proper integration of the
auditory and visual modality is of course also impossible
without visual input.

Input from the visual and auditory system in the barn owl
converges in the OT. The last processing stages of the audi-
tory pathway just before the OT are the central nucleus of
the inferior colliculus (ICC) and the external nucleus of the
inferior colliculus (ICX). Knudsen and his coworkers fitted
barn owls with prisms displacing the view field of the ani-
mals. This was seen to lead to a change in the auditory input
to the OT.

The synaptic connections between ICC and ICX changed
in such a way that the auditory map in the ICX acquired
the topography of the visual input (Fig. 1). The connections
between ICX and OT did not change. That is, the multimodal
map itself was not adapted, but rather the last input stage
before multimodal integration was gauged to ensure proper
alignment of the visual and auditory input to the multimodal
map in the OT.

Furthermore, it has been shown that visual input pro-
vides a topographic teaching input to guide plasticity in the
ICC–ICX pathway (Hyde and Knudsen 2001; Knudsen and

Brainard 1991). This means that plasticity is not induced
through a global “error signal” telling the neurons what to
do, but rather on a per-neuron basis. It is even possible to
induce differently-sized shifts in different parts of the map.
Although the precise nature of this teaching signal has not
been clarified, inhibitory gain control, or gating, seem to play
an important role (Gutfreund et al. 2002; Winkowski and
Knudsen 2006).

We will see below that the presence of inhibitory teacher
input is essential for precise and quick tuning of input to
multimodal maps.

2 Description of the models

2.1 Two possible models of map tuning

Recently, Davison and Frégnac (2006) presented a mecha-
nism based on STDP that can account for map integration
and coordinate transformation between different (sensory)
maps. In their model, an array of output neurons receives
excitatory input from an input modality and also from a set
of teacher neurons. Because of the correlations between the
firing rates of the input neurons and the teacher neurons,
STDP causes strengthening of the “correct” input-to-output
connections. In due time the output layer neurons learn to
form a topographic spatial representation, even if the teacher
input is removed later on.

Two different methods based on supervised STDP used
to gauge input from different sensory modalities and ensure
proper map alignment will be discussed here. The first model
is very much like the one from Davison and Frégnac (2006)
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Fig. 2 Network topology of the models. There are three layers of neu-
rons. The input layer (I , corresponding to ICC) and the teacher layer (T ,
corresponding to OT) fire at a rate that depends on the input position y.
The output layer (O , corresponding to ICX) is driven by spikes from the
input and teacher layer. The synaptic connections from input to output
layer are subject to plastic weight changes and the connections from
the teacher layer to the output layer remain fixed. Every output neuron
receives spikes from one corresponding teacher neuron and from all
input neurons

discussed above, using excitatory input and teacher neuron
populations. The second model is inspired by the experi-
mental results obtained in the barn owl and uses inhibitory
teaching input instead of excitatory teaching input.

2.2 Network topology

For both models, we consider a network consisting of three
neuron populations (Fig. 2). There is an input population (I )
and a teacher population (T ) that fire in response to an exter-
nal sensory stimulus. These two populations are connected
to an output population (O). The teacher neurons are topo-
graphically connected to the output neurons. Every teacher
neuron connects to exactly one corresponding output neu-
ron. At the beginning of the learning procedure the input
population is connected to the output population through an
all-to-all feedforward network of synapses. The connections
between the teacher population and the output population can
be either excitatory or inhibitory (see next section) and are
considered as fixed. The synapses between the input popu-
lation and the output neurons are subject to learning through
STDP (see Sect. 2.4).

The teacher neurons exhibit a map-like response to an
external sensory stimulus. That is, each teacher neuron
(labeled by index p) has a preferred stimulus position xT

p ,
that varies smoothly along the array of teacher neurons.1

Without loss of generality, all stimulus positions are taken

1 This paper restricts itself to one-dimensional maps. The approach can
be generalized easily to include two-dimensional maps, but the compu-
tational costs of simulating learning in such a two-dimensional system
become very large, due to the large number of synapses needed.

to lie between 0 and 1. The preferred stimulus position of a
teacher neuron is then

xT
p = p − 1

N T − 1
, (1)

where p ∈ [1, N T ] is the teacher neuron index, a positive
integer, and N T denotes the number of teacher neurons.

The input neurons (labeled by index i) are also tuned to
specific directions, denoted by x I

i . Although a topographical
organization of the input neurons is mostly assumed here,
this is certainly not a necessary condition (see Sect. 4.4).

Before learning starts, the synaptic connections are not
yet structured and the output neurons do not have a direc-
tional preference. During learning, an output neuron acquires
a preferred stimulus direction that is determined by the pre-
ferred direction of the teacher neuron connected to it. Since
teacher neurons and output neurons are connected one-to-
one, the output neurons are labeled by the same index (p) as
the teacher neurons.

2.3 Sensory input and response of the output population

In the numerical simulations, all neurons are modeled as Pois-
son neurons; see Appendix B. Although this neuron model is
very simple, it captures some very important aspect of neu-
ron firing. First, neuronal firing is to some degree stochastic
and, second, explicit time-dependence of firing probabilities
is taken into account. Because of the simplicity of this neuron
model, an exact mathematical understanding of the learning
process is possible (Kempter et al. 1999).

It is important to note that the Poisson neuron model used
here is not simply a rate coding. Since spike generation is
explicitly taken into account, the theory and simulations are
much richer than they would be with a pure rate-based mod-
eling approach. In addition, the firing rate functions can have
an arbitrary time dependence.

If sensory input is present at position y ∈ [0, 1], the
teacher and input neurons fire with a rate λ that depends
on the neuron’s preferred position

λI
i = AI g(x I

i , y) input population, (2a)

λT
p = AT h(xT

p , y) teacher population. (2b)

The constants AI and AT give the amplitude of the firing rate
and g and h are normalized to have a maximal value of 1. The
function g describes the receptive field properties of the input
neurons. Typically, g depends on the difference between the
input position y and the neuron’s preferred position x I

i , with
its maximum for x I

i = y.
As stated above, the teacher-output connections can be

either excitatory or inhibitory.
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all-to-all, plastic

topographic, fixed

Fig. 3 Firing rates of input and teacher population. Both the input and
the teacher population are organized in a map. For an external stimu-
lus at a certain location, the firing rate strongly peaks at a well-defined
location in the input and the teacher map. The input and teacher map
can, however, be misaligned. The output population receives spikes
from the input and from the teacher layer. Left In the EL model, the
output neurons receive excitatory input from both the input and the
teacher population. The output neurons corresponding to the teacher
neurons with the highest rate will fire most and the connections from

the active input neurons to this set of output neurons will therefore be
strengthened by STDP. Right In the IL model, the output neurons are
all silenced by the inhibitory teacher input, except for a small number
of neurons receiving no inhibition. These neurons are driven by the
input population and—as for the EL model—the connections between
the active input neurons and the active output neurons are strengthened.
Both models are able to form a high-quality map based on the input and
the teacher signal. The resulting map is automatically aligned with that
in the teacher population

2.3.1 Excitatory teacher input

In the excitatory case (EL), the function h behaves in the
same way as described above for g, with a dependence upon
the difference between input position and preferred position
and maximal value for xT

p = y (Fig. 3, left). For a given
stimulus position y, the output neurons corresponding to the
teacher neurons with xT

p ≈ y receive strong teacher input
and the other output neurons remain silent. In addition, input
from all input neurons will arrive at the output population.
Since the input neurons with x I

i ≈ y fire at a high rate,
STDP selectively strengthens the connections between input
neurons and output neurons that encode the same stimulus
position y. After learning, a map will have been built in the
output population. This map then responds correctly to the
input population alone.

2.3.2 Inhibitory teacher input

In the case of inhibitory teacher input (IL), h behaves rather
differently. The firing rate will be close to zero for teacher
neurons with xT

p ≈ y and maximal for neurons that code for
any wrong position (Fig. 3, right). The output neurons are
therefore strongly inhibited, except for a few neurons that
correspond to the teacher neurons that are minimally active.
This mechanism is called selective disinhibition. The output
neurons that are not inhibited can fire freely and are now
solely driven by the input population. Again, STDP potenti-
ates connections between input neurons and output neurons

that code the same position and weakens the wrong connec-
tions.

As will become clear below, both EL and IL allow for a
topographical map to develop in the output population. This
map is aligned with the teacher map and after learning the
output neurons respond correctly to the input neurons even if
no teacher signal is present. Still, the learning process in the
two models differs in one important aspect. Because under IL
guidance, the output population’s firing is determined solely
by the input population, the output neurons are trained to
respond correctly to the input population only. In the case of
EL, the output population learns to optimally react to a com-
bination of input from the input population and the teacher
population. This has two major consequences.

1. With IL, the firing rate of the output neurons is deter-
mined solely by the input population. This holds during
training, but also if no teaching input is present anymore.
That is, after an initial transient at the start of the learn-
ing process the output firing rate is always normalized;
see for instance (Kempter et al. 1999, 2001a; Song et al.
2000). For EL, on the other hand, the output firing rate is
determined by the input population and the teacher pop-
ulation. This means that the output rate may vary greatly,
depending on whether teacher input is present or not.

2. If the temporal structure of the firing of the input neurons
is nontrivial (viz., time coding rather than rate coding)
it is advantageous to retain this temporal structure also
in the output population. If the output neurons receive
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excitatory input from both the input and the teacher pop-
ulation, the timing cues that are present in the input pop-
ulation spikes are “contaminated” by the simultaneous
input from the teacher neurons. In the IL case the teacher
input does not interfere with the input population sig-
nal. Any important temporal structure can therefore be
retained in the output neuron firing statistics.

2.3.3 Output population firing rate

The rate function λ for the input population and the teacher
population is given by Eqs. (2a) and (2b); see also Appendix
B, in particular (47). The rate function of the output neurons
depends on the firing of the input and teacher neurons. It is
given by

λO
p (t)

=
⎡
⎣

N I∑
i=1

∑
f

Jip(t
f

i )ε I (t − t f
i ) + J T

∑
g

εT (t − t g
p)

⎤
⎦

+
.

(3)

The firing times of the input neurons are denoted by t f
i and

those of the teacher neurons by t g
p . The strength of the synap-

tic connection from input neuron i to output neuron p is given
by Jip(t), which is a function of time, and the strength of the
connections between the teacher neuron p and the output
neuron p is given by J T . The postsynaptic response of the
output neuron to an incoming spike from an input neuron is
given by the kernel ε I and εT is the response kernel for input
from the teacher neurons. Since the teaching input may be
negative (J T < 0), the total rate function may become neg-
ative, which would not make sense for a probability density.
To avoid this, half-wave rectification is applied, as indicated
by [· · · ]+. The operation of half-wave rectification is defined
as

[ f (x)]+ := f (x) →
{

0 f (x) < 0
f (x) f (x) ≥ 0

. (4)

2.4 Learning protocol

2.4.1 Learning trials

To numerically simulate the behavior of the models, the neu-
rons are trained through many learning trials. In a single trial,
an input position y is picked from a uniform distribution on
[0, 1] and the firing rates of the input and the teacher neurons
in response to this input are calculated; see Sect. 2.6. The
stochastic firing of the input and teacher population is then
simulated during a trial of duration T and the spikes are sent
to the output neuron population, which fires in response. The
connections between input and output neurons are dynami-
cally adjusted according to the learning rules specified below.

At regular times during learning, the quality of the map
and the amount by which the weights have changed are mea-
sured as described in Sect. 2.5.

2.4.2 Plasticity rules

Learning in the brain occurs through spike-timing-
dependent plasticity (STDP) (Bi and Poo 1998, 2001; Dan
and Poo 2004; Gerstner et al. 1996; van Hemmen 2001;
Kempter et al. 1999; Markram et al. 1997; Song et al. 2000;
Zhang et al. 1998). Under normal circumstances and for
excitatory synapses, presynaptic spikes that come before
postsynaptic spikes lead to an increase in the synaptic weight
(potentiation) and presynaptic spikes that arrive after a post-
synaptic spike has been triggered lead to a weight decrease
(depression). The learning window W (Gerstner et al. 1996)
describes the dependence of the weight change on the differ-
ence between pre- and postsynaptic spike timing.

Many factors influence the precise result of any learn-
ing trial, but these influences do not radically alter the basic
results of STDP-based learning without bells and whistles
attached (Bi and Rubin 2005; Froemke et al. 2005; Lisman
and Spruston 2005; Pike et al. 1999; Rubin et al. 2005;
Tzounopoulos et al. 2004). This paper is therefore mainly
restricted to learning with independent additive weight
changes in dependence upon spike timing only. In Sect. 4.5
simulations are briefly discussed that take into account some
of the parameters that influence learning in addition to spike
timing.

The STDP rule used here consists of three parts,

1. If a presynaptic spike is emitted, the weight of the syn-
aptic connection is changed by an amount ηwpre.

2. If a postsynaptic spike is emitted, the weight of all synap-
tic input connections to this neuron changes by an amount
ηwpost.

3. For every pair of pre- and postsynaptic spike, the synap-
tic efficacy changes by an amount W (s) that depends on
the difference s = tpre − tpost between the spiking times
tpre and tpost. The shape of the learning window is given
by

W (s) =

⎧⎪⎨
⎪⎩

ηw+ |s|
(τ+)2 e−|s|/τ+

s < 0,

−ηw− s

(τ−)2 e−s/τ−
s ≥ 0.

(5)

The overall learning speed is set by the variable η, which
should be small. The parameters wpre, wpost, w+ and w− are
all of order 1.

The synapses connecting input and output population have
a starting weight of J I

0 and the weights are capped to always
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stay between the values J I
min and J I

min. The synapses between
teacher and output population are not subject to learning.

Only nearest neighbor spike-pair interaction is consid-
ered. This seems biologically plausible, since each back-
propagating action potential may be thought to reset the
voltage in the dendritic spines. Moreover, only the first
presynaptic spike after such a postsynaptic reset may be rel-
evant due to saturation effects; see also Izhikevich and Desai
(2003). The mathematical theory as developed in Kempter
et al. (1999) is only valid for all-to-all spike pairings and for
the sake of comparison, simulations are also carried out in
which all spike pairs are taken into account; cf. Sect. 4.2.

2.5 Performance measures

To gain insight into the performance of the models, some
measures are needed to assess the quality of the map in the
output population and the speed of learning.

2.5.1 Map quality

To measure how well the output map performs for a given
weight distribution the expected output firing rate without
teaching input is calculated (see also Eq. (27)) for 100 input
positions yl ranging from 0 to 1 in equally-sized steps. The
expectation of the output firing rate is

νO
p (y) =

∑
i

Jipν
I
i (y). (6)

In this equation, ν denotes a time-averaged firing rate over
one learning trial of length T . For each input position, the
output neuron pmax with the highest firing rate is determined
and the difference between its preferred position x pmax and
the input position yl is obtained. The localization error ERM S

of the map is then the root-mean-square (RMS) value of this
difference over all 100 input positions

ERM S =
√√√√∑

l

(x pmax − yl)2

100
. (7)

A small value for ERM S means that the map is of high quality.

2.5.2 Weight change and learning speed

The overall learning speed is set by the parameter η as
described above. However, because the two models that are
studied here have different connectivity properties, it is not
possible to simply compare the performance of both net-
works for equal values of η. In the EL model, only a small
number of teacher neurons are active simultaneously. In the
IL model, a majority of the teacher neurons is always active;
cf. Fig. 3. A measure of learning speed that is independent
of this difference is therefore needed.

To obtain such a measure, the RMS distance dRM S is
defined as follows,

dRM S =
√√√√∑

i,p

[Jip(t) − Jip(t = 0)]2

N I N T
. (8)

dRM S measures the distance between the initial weight distri-
bution and the weight distribution at some later time t . Dur-
ing learning dRM S changes from 0 at t = 0 to some maximal
value that is almost identical for both models. Let T be the
time it takes to reach a value dRM S = 0.01 (about 10% of its
maximal value for the parameters used in this paper). Then
we define the learning speed vlearn to be

vlearn := 0.01

T
. (9)

Through the learning speed vlearn the EL and IL model per-
formance can be compared in an objective way.

2.6 Specification of the model variables

The firing rate of the input and the teacher populations are
given by a Gaussian dependence upon the difference between
the input position y and the neuron’s preferred position x I

i
or xT

p .
For the EL model this means that the functions g and h in

Eq. (2) are specified to be

λI
i (y) = AI g(x I

i , y) = AI exp

[
− (x I

i − y)2

2 (σ I )2

]
, (10a)

λT
p (y) = AT h(xT

p , y) = AT exp

[
− (xT

p − y)2

2 (σ T )2

]
, (10b)

where the Gaussian is just a specific choice, while for the IL
model we take

λI
i (y) = AI exp

[
− (x I

i − y)2

2 (σ I )2

]
, (11a)

λT
p (y) = AT

{
1 − exp

[
− (xT

p − y)2

2 (σ T )2

]}
. (11b)

The postsynaptic response of the output neurons to an
incoming spike from the input population is taken to be an α

function

ε I (t) = t

(τ I )2 exp(−t/τ I )θ(t) (12a)

while the response kernel for spikes from the teacher neurons
is

ε I (t) = t

(τ T )2 exp(−t/τ T )θ(t). (12b)
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The function θ is the Heaviside step function given by

θ(t) :=
{

0 t < 0
1 t ≥ 0

. (13)

The preferred position of the teacher neurons is given by
(1), viz.,

xT
p = p − 1

N T − 1
, (14a)

and the preferred position of the input neurons is

x I
i = i − 1

N I − 1
. (14b)

The learning speed parameter η varies for different sim-
ulations and its value is indicated where needed. In Table 1,
the values of all further parameters are listed. Where

Table 1 Model parameters as used in the analytical calculations and
numerical simulations

Parameter Value

Network layout

Number of input neurons N I = 100

Number of teacher neurons N T = 100

Number of output neurons N T = 100

Initial strength of input→output synapses J I
0 = 0.1

Minimal strength of input→output synapses J I
min = 0.0

Maximal strength of input→output synapses J I
max = 0.25

Strength of teacher→output synapses J T (EL) = +1

Strength of teacher→output synapses J T (IL) = −1

Postsynaptic response time to input spike τ I = 10 ms

Postsynaptic response time to teacher spike τ T = 25 ms

Learning parameters

Learning trial length T = 0.5 s

Simulation time step 	t = 0.5 ms

Weight change upon input spike wpre = 1.5

Weight change upon output spike wpost = −4.0

Learning window potentiation amplitude w+ = 4.0

Learning window depression amplitude w− = 1.0

Learning window potentiation time τ+ = 20 ms

Learning window depression time τ− = 40 ms

Integral over learning window W̃ = 3η s

Integral over learning window and response kernel W = 29.6η

Input and teacher signal

Input tuning curve amplitude AI = 50 s−1

Teacher tuning curve amplitude AT = 100 s−1

Input tuning curve width σ I = 0.015

Teacher tuning curve width σ T = 0.025

The value of the learning parameter η varies for different simulations.
It is always explicitly specified where needed. The precise values of the
parameters are not important. There is a wide range of parameters that
enable stable learning; see also the discussion in Sect. 3

different parameter values have been used, it is indicated in
the text. It is important to realize that no parameter tuning is
needed. Both the EL and IL models are robust against param-
eter variations and the values in Table 1 represent reasonable
first guesses for the parameters.

3 Mathematical analysis of learning

Taking advantage of the methods developed by Kempter
et al. (1999) we can give an exact analytical description
of the learning process. Such a description is admittedly
somewhat technical. The problem is that the weight change
of a single synapse is determined by the activity of both
pre- and postsynaptic neuron. The postsynaptic activity is
in turn determined by the activity of all presynaptic inputs
and synaptic strengths inputting into this neuron. This means
that the weight change of a synapse is interconnected with
the weight changes of all other synapses contacting the same
output neuron.

Here we only discuss the main results for the EL and IL
model. A complete derivation of these results can be found
in Appendix A.

3.1 Excitatory teacher input

To represent the evolution of all the synaptic weights Jip,
we write the weights as a vector J(p). This vector contains
all synaptic weights from the connections terminating at the
output neuron with index p. As in (36), the rate of change
of the components of this vector is given by a matrix-vector
equation (cf. Eq. (36))

dJ(p)/dt = ÂJ(p) + ̂B(p). (15)

The matrix Â has constant entries that do not depend on
the output neuron p under consideration. The vector ̂B(p) is
different for each output neuron p.

The entries in Â and ̂B(p) can be directly calculated from
the parameters in Table 1. An important result is that the
shape of the learning window is not important. Apart from
the parameters AI/T ,σ I/T , andwpre/post the entries are deter-
mined by

W̃ =
∞∫

−∞
ds W (s), and W =

∞∫

−∞
ds W (s)ε I (−s). (16)

For the parameter set used here, the entries of AI/T , σ I/T ,
and wpre/post are explicitly given by

Â[i j] = η

[
−7.52 + 55.6 δi j +199 exp

(
− (x I

i − x I
j )

2

2 (0.021)2

)]
,

(17a)
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̂B(p)
[i] = η

[
−22.2 + 484 exp

(
− (x I

i − xT
p )2

2 (0.029)2

)]
. (17b)

Note that all values are scaled by the learning parameter η.
What, then, do Eqs. (15) and (17) mean?

For a wide range of parameter, the matrix Â has large
positive values around the diagonal and small negative values
away from the diagonal. The vector ̂B(p) has large positive
values for x I

i ≈ xT
p and small negative values otherwise. If

learning starts, the weight distribution is still unstructured.
This implies that ÂJ(p) ≈ αJ(p) for some number α that
depends on the precise values of the parameters. Â causes
all weights to increase or decrease by a fixed amount. For
the parameters used here, α happens to be about zero and
the initial weight evolution is dominated by ̂B(p). Even if
weight evolution is not dominated by ̂B(p), Â does not cause
structure formation during the initial stages of learning.

The vector ̂B(p) causes the weights for which x I
i ≈ xT

p
to increase and the others to decrease. In this way, a seed of
structure is generated and because of the diagonal form of
Â this structure is further increased. At the end, all weights
connecting input and output neurons with x I

i ≈ xT
p are max-

imal and all other weights vanish. Thus, the EL model indeed
leads to correct structure formation and the development of
a map in the output neuron population.

As stated above, we get the “right” learning for a wide
range of parameters. Correct learning occurs because Â has
a diagonal structure with negative entries off the diagonal.
Similarly, ̂B(p) > 0 for x I

i ≈ xT
p and ̂B(p) < 0 otherwise.

The conditions that must be satisfied by the parameters so as
to ensure this behavior are as follows:

– wpost < 0. This condition must always be satisfied for
weight stabilization to occur (Kempter et al. 1999).

– wpre > 0. This condition makes biological sense, since
synapses that receive much presynaptic input tend to be
strengthened.

– W > 0. This condition is always satisfied because of
definition (16).

– W̃ may be positive or negative. If it is negative, the abso-
lute value may not be larger than

∣∣W ∣∣. It needs, however,
quite an extreme shape of the learning window for this to
happen.

– σ I/T � 1. This means that the input and teacher sig-
nal are localized sufficiently well. It is a mathematical
statement of the fact that input and teacher signal are
organized in a map-like fashion.

The above conditions are all rather weak. A very broad
range of biologically realistic parameters can be chosen that
satisfy them. The EL model is therefore very robust with
respect to parameter variation but, as we will see shortly, it
is not with respect to performance.

3.2 Inhibitory teacher input

For the IL model, an equation describing the weight change
equivalent to Eq. (15) can also be given. However, the non-
linearity introduced by the rectification in Eq. (3) is problem-
atic. For the EL model, this problem did not arise since the
teacher weight J T is positive and the output neurons’ firing
rate is already positive without rectification. It is possible to
analytically treat the IL case but, to do so, we must take a
slightly different form of teacher firing rate.

The input firing rate function is still given by (11a), but
instead of being given by (11b), the teacher rate is taken to
be

λT
p (y) = AT θ

(∣∣∣xT
p − y

∣∣∣ − σ T
)

. (18)

We now assume that AT is very large. This means that the

output neuron can fire freely if
∣∣∣y − xT

p

∣∣∣ < σ T (no teacher

inhibition at all) and that the output neuron is completely

silenced if
∣∣∣y − xT

p

∣∣∣ > σ T .

Using this form of the teacher input and glancing (42), we
can describe the weight evolution by

dJ(p)/dt = D̂(p)J(p) + ̂E (19)

where the matrix D̂(p) depends on the output neuron under
consideration and the vector ̂E is constant.

Just as above, the entries can be calculated as a function
of the model parameters. The shape of the learning window
is again found to be irrelevant and only W̃ and W enter the
equation. For the parameter values from Table 1 the matrix
and vector components are

D̂(p)
[i j] = η

{
27.8 (δi j − 0.135)

×
[
erf

(
47.1 (xT

p − x I
j ) + 1.18

)

− erf
(

47.1 (xT
p − x I

j ) − 1.18
)]

+99.7 exp

[
− (x I

i − x I
j )

2

2 (0.021)2

]

×
[
erf

(
33.3 (2xT

p − x I
j − x I

i ) + 1.67
)

− erf
(

33.3 (2xT
p − x I

j − x I
i ) − 1.67

)]}
, (20a)

̂E[i] = 2.82 η. (20b)

Here “erf” denotes the error function. In contrast to the EL
case the vector ̂E, being constant, plays no role in struc-
ture formation. The matrix D̂(p) allows for more interesting
behavior.

Although D̂(p) looks impressive, its behavior is relatively
simple. For a large absolute value of its argument, the error
function becomes either −1 or 1. This implies that the dif-
ferences between the error functions in D̂(p) vanish if the
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separation between xT
p on the one hand and x I

i/j on the other

hand is large enough. If x I
j ≈ xT

p holds, the value D̂(p) is pos-

itive if i ≈ j and negative otherwise. Calculating D̂(p)J(p)

shows that J(p)
[i] is increased if x I

i ≈ xT
p and decreased

otherwise.
It is still possible that ̂E interferes with the weight evo-

lution by increasing all weights. Since ̂E is directly propor-
tional to the product of AI and σ I this simply means that
the input neurons should not fire too strongly. That is, AI

and σ I should not be too large. If they would, all weights
would evolve towards their maximal value because the input
neurons are completely dominating the firing of the output
neurons in spite of the inhibition from the teacher map.

The remaining conditions under which the analysis pre-
sented here is valid are identical to those discussed for the EL
model. If these conditions are fulfilled, a stable weight dis-
tribution evolves with strong connection between input and
output neurons if their preferred positions match and weak
connections if the preferred positions do not match.

The above mathematical analysis shows that the synaptic
weights converge to the correct set, leading to an accurate
spatial representation in the output neurons. However, this
analysis is limited to the case of all-to-all spike interactions,
which need not be biologically realistic; see Sect. 2.4.2. For-
tunately, numerical tests have shown that dropping all-to-all
interactions does not alter the results obtained in this paper.
Below, results of numerical simulations are discussed. These
results are then used to further analyze the performance of
the EL and IL model.

4 Numerical simulations

We now turn to discussing results of numerical simulations.
The learning procedure of Sect. 2 has been implemented
numerically using the c++ programming language. In the
first two subsections, the results for EL and IL are compared
with each other and with the analytical results from Sect. 3.

The most important results will be that inhibition-mediated
learning is faster and more accurate than excitation-mediated
learning.

The third subsection discusses coordinate transformations
between the input and the output map and, in addition,
restructuring of maps is analyzed. Although both excita-
tion- and inhibition-mediated learning are able to handle
a coordinate transformation, only the IL model is able to
drastically restructure existing maps. We therefore study the
inhibition-based model in more detail in the last two subsec-
tions (Sects. 4.4 and 4.5).

4.1 Comparing excitatory and inhibitory teacher input

At the start our discussion, it is useful to get a basic idea of
the typical course of the learning process. In Fig. 4 the weight
distribution at various times during learning is displayed for
EL with learning parameter η = 3 · 10−7.

Horizontally, the preferred position of the input neurons
is shown and, vertically, the preferred position of the output
neuron as dictated by the learning population. The synap-
tic strength of the input–output connections is gray-coded.
At the lower right of the figure one sees the evolution of
the localization error defined in Sect. 2.5. Clearly visible in
the figure is the strengthening of the correct synaptic con-
nections starting from a homogeneous synaptic strength
distribution.

Typically, ERM S first drops to a very low value as the
weights on the central diagonal get strengthened. As the diag-
onal band of strong weights broadens, the quality deteriorates
to a small extend. Finally, the accuracy stabilizes at about 2%.

Figure 5 shows the RMS deviation (Eq. (8)) of the weights
from their starting value and the evolution of the localization
error (Eq. (7)) for several values of η.

Although the learning parameter η varies by a factor of
100, all learning trials show the same behavior. After an ini-
tial drop of the localization error the quality slowly climbs

Fig. 4 Weight evolution for EL
with η = 3 × 10−7. The
development of a map-like
organization is clearly visible as
time progresses. The total
learning time is in the order of
days. The localization error
quickly drops to a small value
and then slowly approaches a
steady state value, here
about 2%
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Fig. 5 The RMS deviation of the weights (top, according to (8)) and
the RMS error (bottom, according to (7), with coding as in top) for sev-
eral values of the learning parameter η in the EL case. The vertical scale
(top & bottom) is logarithmic. For a large range of η values a steady
increase in dRM S is observed. The maximal value of dRM S is always
approximately 0.1. The final value of ERM S decreases with the value of
η, but even for relatively quick learning, the final error stays below 5%

towards its final value. If smaller values of η are used, the
final map quality improves.

In Figs. 6 and 7 the same plots are shown for the case of
inhibitory teacher input withη = 3·10−6. The results are very
similar, but there is an important difference. For inhibitory
teacher input, the localization error is much smaller than with
excitatory teacher input, even if the learning speed is much
larger. Just compare the time scales and the development of
the error in Figs. 4 and 6.

As suggested by Figs. 4, 5, 6 and 7, the IL scheme is
quicker and more accurate than the EL scheme. Figure 8
makes this difference explicit. If the final value of ERM S is
plotted against the learning speed as calculated by means of
Eq. (9), there is a large difference between EL and IL. For IL,

map quality is very good even for high learning speeds. In
practice, the final map quality is reached within a couple of
hours learning time. For EL, much slower learning is needed
(in the order of days) for the model to remain stable and,
even then the final map quality is poor as compared to the
quality achieved by IL. Due to the finite number of neurons,
the map quality cannot become arbitrarily small; there is a
plateau at an error of ≈ 0.5%. Decreasing the learning speed
any further to obtain a better map is impossible.

4.2 Comparison with analytical results

We now compare the analytical results from Sect. 3 with
our numerical simulations. To arrive at the analytical result,
the deterministic Eqs. (36) and (42) were integrated, taking
into account that the weights must always stay within the
range [J I

min, J I
max]. Figure 9 shows the comparison between

analytical result and numerical simulation for both models.
The agreement between theory and numerical simulation

is excellent, proving that the mathematical framework devel-
oped in Appendix A indeed provides a valid description.

Unfortunately, theory does not remain valid throughout
the whole learning process. As soon as some of the weights
reach the value J I

min or J I
max, these weights are not allowed to

decrease (increase) any further. This cutoff introduces a non-
linearity into the description of the weight change and the
theory does not hold any more. The result is that the theoreti-
cal curve diverges from the numerical simulation results from
t ≈ 2, 500 s for EL and t ≈ 400 s for IL. Here the seconds
are formal ones, depending on the timescale set by η.

4.3 Learning spatial transformations

Throughout this paper, it was tacitly assumed that the neuro-
nal maps in the input and teacher population are similar. That
is, both maps are organized in such a way that the preferred
location increases smoothly from 0 to 1 from the leftmost to
the rightmost neuron. In reality, this need not be the case.

A good example of such a flexible transformation is
provided by the experiments of Knudsen and coworkers
(Knudsen and Knudsen 1985; Knudsen and Knudsen 1990).
If barn owls with normal visual and auditory capabilities
are equipped with prism glasses that shift their visual field,
the auditory map in the ICX changes to reflect this devia-
tion. Below we have simulated a rather drastic version of this
experiment. Whereas Knudsen et al. had only introduced a
moderate shift in the visual input, we completely reversed the
teacher input after learning has been completed and a stable
map is formed.

The weight distribution after learning (see Fig. 6) is now
the starting point for the simulations, but the teacher map will
be inverted. That is, the teacher neurons now have a preferred
position running from 1 to 0 instead of a preferred position
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Fig. 6 Weight evolution for IL
input with η = 3 · 10−6. As in
the EL case, map formation is
clearly visible. In contrast to
Fig. 4, map evolution proceeds
much faster than in the EL case.
Only several hours of learning
time are needed
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Fig. 7 The RMS deviation of the weights (top, according to (8)) and
the RMS error (bottom, according to (7)) for several values of η in the
IL case. Here too the vertical scales are logarithmic. The same picture
as in Fig. 5 arises. The weight deviation converges to 0.1 and the local-
ization error ERM S decreases for smaller values of the learning speed.
The final error (< 2% even for fast learning) is decidedly smaller than
in the EL case

 0.02
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 0.005

final E rms
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 1e-4 1e-5 1e-6

speed [s-1]

Fig. 8 Localization error versus learning speed for excitatory and
inhibitory learning input (Eqs. (7) and (9)). The speed of the learning
process basically measures the time it takes for the weight distribution
to change significantly. Clearly, IL outperforms EL: at equal values of
the learning speed, the quality of the map learned with the IL model is
far better than the quality of the map formed with the EL model. This
implies that the IL model is more robust than the EL model

running from 0 to 1. Based on the new teacher input, the
output neurons must learn the correct transformation and the
weights connecting input and output population must radi-
cally change in order to completely reverse the output map.

The result of this simulation using the IL model is dis-
played in Fig. 10. Clearly, dramatically altering an existing
map is unproblematic with inhibition-mediated teacher input.
The quality of the resulting inverted map is just as good as
that of the original map.

For excitatory learning, the picture is quite different.
Although the antidiagonal structure forms correctly, the origi-
nal diagonal band never vanishes. This is shown in Fig. 11.
Although there is no teacher input present to strengthen the
old—now incorrect—connections, they stay in place solely
because of the excitatory input they receive from the input
population. If an inhibitory teacher signal is present, this
ensures that the incorrect connections are actively weakened.
Reorganizing the map is then unproblematic.
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Fig. 9 Comparing analytical (solid line) and numerical (squares)
results for EL (top) and IL (bottom). All spike pairs are taken into
account instead of just neighboring spike pairs (see also the discus-
sion in Sect. 2.4). For EL η = 3 · 10−7 and for IL η = 3 · 10−6. For
both models, the analytical and numerical results fit very well. After the
first synaptic strengths reach a value J I

max, the capping of the weights
introduces a nonlinearity into the model and the theoretical description
breaks down. This explains the deviation of the theoretical and numer-
ical curves in these plots

Another example of a spatial transformation has been
discussed by Davison and Frégnac (2006). They analyzed
the transformation between two cortical maps, one of these
containing the angle between upper and lower arm as mea-
sured by the proprioceptive system and another encoding the
spatial position of the hand as perceived by the visual sys-
tem. The coordinate transformation between these two maps
is effectively a sine function. Davison and Frégnac showed
that such a transformation can indeed be learned using their
model, which is very much like the EL model discussed here.
Below we demonstrate that such a transformation can also
be achieved easily through the IL model. In this test the

preferred position of the teacher population is not given by
(14a), but instead by a sine function,

xT
p = 1

2

[
1 + sin

(
2π

p − 1

N T − 1

)]
. (21)

The preferred position of the input population is still given by
(14b). The result of the corresponding simulation is shown in
Fig. 12. As was to be expected, learning a sinusoidal trans-
formation is unproblematic in the IL model.

4.4 Influence of noise

The above comparison of EL and IL suggests that inhibitory
learning is quite robust; even at high learning speed, stable
learning occurs and radical alterations of the weight distri-
bution are possible. Here the robustness of the IL model with
respect to noise is tested in three separate test cases.

In the first test, noise is added to the firing rates of the
input and teacher neurons as given by Eqs. (10) and (11). For
each learning trial, when we present a stimulus at one par-
ticular position y, the input firing rate of each input neuron
is changed according to

λI
i → λI

i · (1 + χi ) (22)

with χi a Gaussian distributed stochastic variable with mean
0 and standard deviation 0.25. The teacher firing rate is
changed in the same way.

In the second test, the initial weights are not all equal but
instead the input weights Jip are randomly chosen from a
Gaussian distribution with mean J I

0 and standard deviation
0.1J I

0 .
The third test assesses the influence of the absence of map-

like organization in the input population. All input neurons
do have a preferred position in this setup, but there is no
topographical organization. Rather, the preferred direction
of every input neuron is randomly taken from a uniform dis-
tribution on [0, 1].

The results of these tests are shown in Figs. 13 and 14.
From Fig. 13 it is clear that a normal map is built if noise is
added to the firing rates or if random input weights are used.
This is confirmed by the localization error in Fig. 14. In both
cases, the output neurons are able to form a high-quality map
through STDP.

If the input neurons are not topographically organized
the map quality may not become extremely high. Although
most output neurons are strongly connected to the correct
input neurons, some output neurons get input from the wrong
neurons. This is due to the fact that some positions will
be “overrepresented” and others will be “underrepresented”.
This may lead to a chain reaction in which wrong connections
from an overrepresented input position start dominating. In
the case shown here, the output positions x O

p ≈ 0.03 and
x O

p ≈ 0.32 receive too much input from the wrong input
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Fig. 10 Weight evolution after
inverting the teacher map for the
IL model. The weights change
to form a radically altered map
in the output population within
just a couple of hours learning
time. The quality of the newly
developed map is nearly as good
as the quality before
restructuring

Fig. 11 Weight evolution after
inverting the teacher map for the
EL model. The weights change
to form a new antidiagonal
structure. The old main diagonal
remains in place, however, and
this leads to a useless map.
Since there is no inhibition from
the teacher map, the input
population can sustain strong
connections from the situation
before reorganization
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Fig. 12 Final weight distribution after a sine-transformation has been
learned. Clearly, the IL model can be used to account for the learning
of coordinate transformations between different modalities

neurons. This causes the poor quality of the output map. In
Fig. 14 (right) the chain reaction can be recognized. At time
t ≈ 18, 000 s the localization error suddenly increases. At
this time, a stable seed with strong incorrect connections has
formed.

If many more input neurons would be present, the change
of some positions being under or overrepresented decreases
and the map will have a much higher quality. If, in addition,

learning is very slow, the chance that an initial seed of
incorrect connections is formed is also smaller.

4.5 Influence of model parameters

As discussed in Sect. 2.4, linear and independent weight
changes are generally used in this paper. This section further
investigates the impact of the learning rules on the simulation
results. In addition, the effect of varying the width of the tun-
ing curves of the input and teacher neurons on the learning
process is examined.

4.5.1 Multiplicative weight change

Instead of linearly adding weight changes, one might use a
learning window in which the weight changes depend on the
actual strength of the weight itself see e.g., van Rossum et al.
(2000). A regularly used learning rule consists of taking a
“multiplicative” learning window. This learning window has
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Fig. 13 Final weight distribution for several learning runs including
noise. Left noise in input and teacher rate; Middle: random initial syn-
aptic weights; right random preferred positions. In all cases the distri-

bution of the synaptic strengths guarantees the existence of a neuronal
map in the output layer, although the map is less precise if the input
population is not organized in a map
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Fig. 14 Localization error ERM S if sources of noise are taken into
account. Noise in the input and teacher signals and random initial
weights do not influence the final quality of the map. If the input neurons
are not organized in a map, but rather have random preferred positions,
quality is not so good. Still, a localization error below 10% is attained

the following form:

W (s) =

⎧⎪⎨
⎪⎩

w+ |s|
(τ+)2 e−|s|/τ+ · (J I

max − J ) s < 0

−w− s

(τ−)2 e−s/τ− · J s ≥ 0
. (23)

All parameters used here are identical to those given in
Table 1. The learning window above ensures that the size
of weight increases tends to zero as the weight approaches
its maximum and that the amplitude of weight decreases
becomes zero as the weight goes to zero. In this way a soft
bound on the synaptic weight is achieved.

4.5.2 Symmetric weight change

Another possibility is to take a learning window that does not
behave in a strictly Hebbian way (see overview in Abbott and
Nelson 2000; Roberts and Bell 2002). Instead of increasing
the weight if presynaptic spikes precede postsynaptic spikes

 0.01
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symmetric learning window
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Fig. 15 Localization error ERM S for different learning rules. The final
localization error does not depend on the precise nature of the learning
rule. This finding confirms the mathematical analysis, which predicts
that only integrals over the learning window are needed to describe the
learning process

and decreasing the weight if a postsynaptic spike precedes a
presynaptic spike, a symmetric learning window is taken

W (s)=w+ 1√
2πτ+ e−s2/2(τ+)2 −w− 1√

2πτ− e−s2/2(τ−)2
.

(24)

Again all parameters are as given in Table 1. Through this
window, the weight is increased if pre- and postsynaptic
spikes occur in close temporal distance and if the tempo-
ral distance is large the weight is decreased. Although this
learning rule cannot be used to learn precise temporal struc-
ture, correlations between input and output signal can still be
learned.

The results of simulations using these two alternative
learning windows are shown in Fig. 15. There is no influence
of altering the learning rules on the quality of the resulting
map. Although the learning speed is different for the dif-
ferent rules, the final localization error approaches the same
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Fig. 16 Localization error ERM S for different widths of the tuning
curves. A twofold increase of the width of the teacher tuning curve
leads to about the same increase in the localization error. If the width
of the input tuning curve is doubled, the error increases approximately
fivefold. The quality of the map in the output population thus depends
more strongly on the quality of the input map than on the quality of the
teacher signal

value. In Appendix A it is shown that indeed learning only
depends on the integral over the learning window and on
the convolution of the learning window with the output neu-
ron postsynaptic response to input spikes. This simulation
confirms that the precise shape of the learning window is
irrelevant.

4.5.3 Tuning curve width

As a final numerical experiment, we have investigated the
effect of the accuracy of the input and the teacher neurons.
It would be expected that a wider tuning curve increases
the learning speed (see (35) and (44)), and at the same time
decreases the map quality. The behavior of the IL model has
been tested for two cases.

In the first case the width of the input tuning curve (σ I )
was doubled, leaving all other parameters constant. In the
second the teacher tuning curve width (σ T ) was doubled.
The results are shown in Fig. 16.

The figure indicates a clear increase in the localization
error if the tuning curve of the input or teacher neurons is
wider. If the tuning curve of the teacher neurons is made
twice as large, ERM S increases by about the same factor.
Changing the input tuning curve has a much larger effect.
If σ I is doubled, the localization error of the output map
increases approximately five-fold. Perhaps surprisingly, the
quality of the output map is therefore mainly determined by
the accuracy of the input neurons and not by the precision of
the teacher signal.

5 Discussion

5.1 Inhibitory or excitatory teacher input?

In this paper we have discussed two different possibilities to
gauge neuronal maps through STDP, viz., through an excit-
atory and an inhibitory teacher system. Both models can
account for map formation based on a topographic teacher
template. The first model that suggests itself, using excitatory
learning input (EL), is clearly not the most efficient learning
paradigm. If inhibitory teacher input (IL) is used the qual-
ity of the map and the learning speed can be expected to
be much better. This is because not only strengthening of
the correct synaptic connections between input and output
layer occurs, but the incorrect connections are also actively
suppressed.

Regarding the EL model, the results in this paper confirm
the work done by Davison and Frégnac (2006). Robust map
formation is possible and the learning of spatial transfor-
mations is no problem. Restructuring of existing maps was
not considered by Davison and Frégnac, but we have shown
here that radically altering a completely developed map is
not possible by means of an excitatory teacher signal.

The IL model is robust against noise (Sect. 4.4) and
learning is flexible with regard to parameter variation
(Sect. 4.5). Spatial transformations can easily be learned and
completely developed maps can be radically restructured, as
has also been demonstrated biologically (Sect. 4.3, compare
Knudsen and Knudsen 1985; Knudsen and Knudsen 1990).
This property of the model matches the finding that neuronal
maps retain some degree of plasticity even after the devel-
opmental stage (Kaas 1991; Knudsen and Knudsen 1990;
Linkenhoker and Knudsen 2002).

Although such an inhibition-mediated learning paradigm
need of course not be realized in the brain at every location
where neuronal maps are learned, evidence from the barn
owl brain (Gutfreund et al. 2002; Hyde and Knudsen 2001;
Knudsen and Brainard 1991) strongly suggests that at least
in this animal a topographic and inhibitory teacher signal is
used.

Especially if map changes must be radical and rapid, the
learning algorithm must be very stable. The IL mechanism
fulfills this requirement. A complete reorganization of the
map such as shown in Fig. 10 poses no problem for the IL
model but is not possible through the EL scheme. With excit-
atory teacher input it is of course possible to strengthen new
synaptic connections, but since the wrong connections are
not actively weakened they will continue to exist alongside
the newly strengthened ones.

From the work presented here it can therefore be pre-
dicted that especially if the spatial accuracy and the learning
speed of neuronal maps need to be high, inhibition-mediated
learning can be expected to play a key role, whereas
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excitatory-based learning may still do a good job if demands
are not so high.

5.2 Influence of learning rules

Although Hebbian-style plasticity can be implemented in
several ways, STDP is the only local mechanism that pre-
vents runaway firing rates and at the same time is able to learn
precise temporal input correlations (Abbott and Nelson 2000;
Gerstner et al. 1996; Kempter et al. 1999, 2001a; Song et al.
2000). As argued above in Sect. 2.4.2, incorporating more
complicated behavior into the learning rules is not expected
to change the results; see Sects. 2.4 and 4.5 and also (Pfister
and Gerstner 2006; Standage et al. 2007).

By using a learning protocol that is radically different from
the one proposed in this paper, it might be possible to obtain
good results for EL-like models. A possibility is to include
global inhibition or a constant decay term in the weight evo-
lution. Another option is to use a learning rule that depends
on post-synaptic bursting (Pike et al. 1999). A third possi-
bility is to use a negative value for wpre. We do not feel that
these scenarios are satisfying. The first “solution” violates a
very important learning principle. STDP is a local mecha-
nism and constant inhibition or weight decay terms destroy
this desirable feature of our models. The second and third
possibility to “fix” the EL model require precise parameter
tuning, which is biologically unrealistic.

Another question of interest is whether to use all-to-all
spike pairings or just neighboring spike pairs. It was argued
above that using just neighboring spike pairs is biologically
more plausible; see also discussion in Izhikevich and Desai
(2003). Taking, however, all-to-all instead of finite range
spike pairings does not change the results of the simulations.
Learning proceeds a bit faster if all spike pairs are taken into
account, but the map quality again stabilizes at the same level
as in the standard case (data not shown).

The shape of the learning window does not strongly influ-
ence the learning process. The mathematical analysis has
shown that only the integral over the learning window and
the convolution of the learning window with the postsynap-
tic response of the output neurons to input spikes play a role
in the dynamics, as is highlighted by (16) and confirmed by
numerical simulations (Fig. 15).

The fact that the precise shape of the learning window is
unimportant has to do with the lack of temporal structure in
the input and teacher signal. If for a given input site y the input
and teacher rate are constant—as chosen here—the output
rate (27) will be constant as well. If the firing rates have a
richer temporal structure, the mathematical description from
Appendix A breaks down. Preliminary simulations suggest,
however, that the output population can learn a map based
on temporal features of the input signal. Obviously, this only

works for inhibitory teacher input, since excitatory teacher
input would interfere with the signal from the input neurons
and the temporal structure would be destroyed. Accordingly,
the precise form of the learning window does play an impor-
tant role in learning.

The mathematical discussion explicitly shows the depen-
dence of the learning process upon the model parameters
(Sect. 3 and Appendix A). Especially the width and the ampli-
tude of the tuning curves of the input and teacher neurons are
important (as is clear from Eqs. (35) and (44)). A wide and
high-amplitude tuning curve allows for faster learning, but
of course the resulting map quality is worse, as is brought
out by Fig. 16.

The effect of the tuning curve width on the accuracy of the
resulting map is different for the teacher and the input popu-
lations. The dominant influence in determining map accuracy
is not the tuning width of the teacher neurons but rather the
precision of the input neurons. It should be possible to exper-
imentally verify this prediction by designing experiments in
which learning takes place while the response of one of the
input modalities is artificially blurred. For vision and audi-
tion this could for example be achieved by equipping animals
with distorting glasses or ear plugs.

5.3 Origin of the teacher map

One of the questions that remains to be answered is why the
visual system always seems to function as a teacher for the
other modality. An important property of the visual system is
that a spatial map is automatically induced through the input
mapping upon the retina by a lens. The retina is therefore
intrinsically ordered in a map-like fashion. Activity waves
spreading over the retina have been found in the embryos
of many species (Wong 1999). Such retinal waves, occur-
ring regularly on a time scale of seconds to minutes, provide
coherent input to the visual system, aiding the development
of high-quality spatial maps. Even if the animal does not
use its eyes, or opens them relatively late in development
(as many mammals do), a spatial template from the visual
system would be present to guide multimodal integration.

As early as 1976, Willshaw and Von der Malsburg (1976)
showed that layers of neurons can self-organize into topo-
graphical maps, provided that a small set of correctly-
organized neurons exists. In this way, the intrinsic topography
from the retina might dictate the organization and alignment
of all multimodal maps in the brain.
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A Analytical description of multimodal sensory
integration

We now analyze the learning process mathematically. In
so doing, we follow the methods developed by Kempter
et al. (1999). The first step is to focus on a single stimu-
lus that is applied at position y. The evolution of the synaptic
weights is given by the learning equation. For the network
architecture used in this paper it reads

dJip(t)/dt = wpreν I
i (y) + wpostνO

p (y)

+
∞∫

−∞
ds W (s)Cip(s, t, y). (25)

The learning parameters wpre, wpost and the learning win-
dow W have been defined in Sect. 2.4. The quantities ν I

i and
νO

p are the time-averaged expectation values of the input
rate and the output rate, respectively. Cip(s, t), finally, is the
time-averaged expectation value of the correlation between
the spike trains of input neuron i and output neuron p,

Cip(s, t) =
〈
SI

i (t + s)SO
p (t)

〉
(26)

where the brackets denote the expectation value over sto-
chastic realizations of the Poisson process and the overbar
denotes the time average over one learning trial of length T .
Furthermore, SI

i denotes the spike train of the input neuron
i and ST

p is the spike train of the teacher neuron p.

The time-averaged mean input firing rate is just ν I
i (y) =

AI g(x I
i , y) from (2a). The time-averaged mean output rate

is

νO
p (y)

=
⎡
⎣∑

i

Jip(t)

∞∫

0

dt ′ ε I (t ′)λI
i (t − t ′) + J T

∞∫

0

dt ′ εT (t ′)λT
p (t − t ′)

⎤
⎦

+

=
⎡
⎣∑

i

Jip(t)ν I
i + J T νT

p

⎤
⎦

+
. (27)

The second equality holds because the firing rate functions
λI/T are constant in this case and

∫∞
0 dt ε I/T = 1.

The expectation of the correlation between input and out-
put spike train is more difficult to obtain. The definition
results in

〈
SI

i (t + s)SO
p (t)

〉
=
〈

SI
i (t + s)

[∑
j

J jp SI
j (t) + J T ST

p (t)

]+〉
. (28)

Depending on whether the teacher input is excitatory (J T >

0) or inhibitory (J T < 0), a different result is obtained for
the right-hand side of (28).

A.1 The learning equation for excitatory teacher input

A.1.1 Form of the learning equation

When the teaching input is excitatory (J T > 0), the recti-
fication in (28) does nothing since the argument is already
positive. The correlation can then be calculated straightfor-
wardly (for detailed methods see Kempter et al. 1999), giving

Cip(s, t) = ν I
i

⎛
⎝J T νT

p + Jip(t)ε I (−s) +
∑

j

J jp(t)ν I
j

⎞
⎠ . (29)

The learning Eq. (25) then becomes

dJip/dt =
∑

j

ν I
j

(
wpost + W̃ν I

i + δi j W
)

︸ ︷︷ ︸
Ai j

J jp

+wpreν I
i + J T (wpost + W̃ν I

i )νT
p︸ ︷︷ ︸

Bip

(30)

with the definitions

W̃ =
∞∫

−∞
ds W (s), W =

∞∫

−∞
ds W (s)ε I (−s). (31)

For every output neuron p, the result is a matrix-vector
equation describing the weight evolution of its input connec-
tions:

dJ(p)/dt = AJ(p) + B(p). (32)

The vector J(p) contains all the input connections to the out-
put neuron p and the components of the matrix A and the
vector B(p) are taken from (30). The notation stresses that
B(p) depends on which output neuron p is considered. A is
the same for all output neurons.

The matrix A and vector B(p) give the response of the
system to sustained input at some particular input position
y. To find the average learning result over all positions, the
expectation value of (32) with respect to y is to be calculated.
Such an expectation value, denoted by a hat, is given by

f̂ =
1∫

0

dy ρ(y) f (y), (33)

where ρ(y) specifies the probability distribution of the var-
iable y. Taking this average is allowed if learning proceeds
slowly enough.

The assumption that all positions are equally likely (jus-
tified by the learning protocol, see Sect. 2.4) gives ρ(y) = 1
and for the components of A and B(p) this leads to
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Â[i j] = (
wpost + δi j W

)
ξ1

j + W̃ ξ2
i j , (34a)

̂B(p)
[i] = wpreξ1

i + wpost J T ξ3
p + W̃ J T ξ4

i p (34b)

where δi j is the Kronecker delta (δi j = 1 if i = j and δi j =
0 if i 
= j) while

ξ1
i =

1∫

0

dy ν I
i (y), (35a)

ξ2
i j =

1∫

0

dy ν I
i (y)ν I

j (y), (35b)

ξ3
p =

1∫

0

dy νT
p (y), (35c)

ξ4
i p =

1∫

0

dy ν I
i (y)νT

p (y). (35d)

The complete evolution of the weights for excitatory learning
input is thus described by

dJ(p)/dt = ÂJ(p) + ̂B(p) (36)

together with (34) and (35).

A.1.2 Interpretation of the learning equation

The complete Eq. (36) can be solved exactly through Duha-
mel’s formula,

J(p) = S exp(���t)S−1
(

J(p)
t=0 + Â−1

̂B
)

− Â−1
̂B. (37)

In this solution, S is the matrix containing as columns the
eigenvectors of Â and ��� the matrix containing the eigen-
values of Â on its diagonal. The matrix S diagonalizes Â
and therefore S−1ÂS = ���.

Unfortunately, this solution is of limited use, since the
maximal and minimal values of J(p) are not taken into
account. It therefore makes more sense to focus on the val-
ues of the ξ ’s in (35) to understand how the learning Eq. (36)
behaves. Because the input neurons and the teacher neurons
are tuned to specific positions, the averaged firing rates ν I

i (y)

and νT
p (y) are large if the neuron’s preferred position matches

y (x I
i ≈ y or xT

p ≈ y) and zero if the positions do not match.
If the width of the tuning curves is not too large, the inte-
grals in (35) can be extended to range from −∞ to ∞, since
only a small domain lying completely within [0, 1] will give
a significant contribution anyway.

The value of ξ1
i is then just a constant independent of i

that is given by the total area under the tuning curve of the
input neurons. Similar reasoning applies to ξ3

p. The value of

ξ2
i j sharply peaks for x I

i ≈ x I
j (meaning that i ≈ j) and if

the input neurons are organized topographically, this implies

that ξ2
i j is a square matrix with large values around the main

diagonal and values very close to zero elsewhere. The same
reasoning applies to ξ4

i p. The matrix {ξ4
i p} has large entries

when x I
i ≈ xT

p and very small values if this is not the case.
For the input and teacher firing rates defined in (10) the fol-

lowing expressions are found, which are discussed in Sect. 3,

ξ1
i = AI σ I √2π, (38a)

ξ2
i j = (AI )2σ I √π exp

(
−

(x I
i − x I

j )
2

4 (σ I )2

)
, (38b)

ξ3
p = AT σ T √

2π, (38c)

ξ4
i p = AI AT σ I σ T

√
(σ I )2+(σ T )2

√
2π exp

(
− (x I

i − xT
p )2

2 [(σ I )2+(σ T )2]

)
. (38d)

A.2 The learning equation for inhibitory teacher input

A.2.1 Form of the learning equation

If J T < 0 the rectification in (28) leads to problems. Since
rectification is a nonlinear operation, it cannot simply be
pulled out of the expectation value.

This problem can be solved by taking a slightly different
form for the teacher signal. Instead of taking (11b) we assume

that inhibition is very large for inputs
∣∣∣y − xT

p

∣∣∣ > σ T so that

the output neuron is perfectly silent. For
∣∣∣y − xT

p

∣∣∣ < σ T the

teacher signal vanishes completely and the output signal is
only determined by the positive contributions from the input
neurons. This is called shunting inhibition. Then the corre-
lation term becomes
〈
SI

i (t + s)SO
p (t)

〉
=
〈
SI

i (t + s)
∑

j

J jp SI
j (t)

〉
θ
(
σ T −

∣∣∣xT
p −y

∣∣∣
)

, (39)

with θ as the Heaviside step function. The temporally aver-
aged mean is given by (using again the methods outlined in
Kempter et al. 1999)

Cip(s, t) = ν I
i

⎛
⎝Jip(t)ε I (−s)+

∑
j

J jp(t)ν I
j

⎞
⎠ θ

(
σ T −

∣∣∣xT
p −y

∣∣∣
)

. (40)

The learning Eq. (25) now becomes

dJ (p)
i /dt =

∑
j

ν I
j

(
wpost+W̃ν I

i +δi j W
)

θ
(
σ T −

∣∣∣xT
p −y

∣∣∣
)

︸ ︷︷ ︸
Di jp

J jp

+ wpreν I
i︸ ︷︷ ︸

Ei

. (41)

The position-averaged learning equation can be written

dJ(p)/dt = D̂(p)J(p) + ̂E, (42)

and the expectation values over the input y are now

D̂(p)
[i j] = (

wpost + δi j W
)
ζ 1

j p + W̃ζ 2
i j p, (43a)

̂E[i] = wpreζ 3
i (43b)
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where

ζ 1
j p =

1∫

0

dy ν I
j (y) θ

(
σ T −

∣∣∣xT
p − y

∣∣∣
)

, (44a)

ζ 2
i j p =

1∫

0

dy ν I
i (y)ν I

j (y) θ
(
σ T −

∣∣∣xT
p − y

∣∣∣
)

, (44b)

ζ 3
i =

1∫

0

dy ν I
i (y). (44c)

A.2.2 Interpretation of the learning equation

To understand the complete learning Eq. (42) in the case of
inhibitory teacher input, a closer look at the ζ ’s as defined in
(44) is needed. As in the case of excitatory teacher input, the
integrals in (44) are extended to run from −∞ to ∞. This
leads to

ζ 1
j p =

xT
p +σ T∫

xT
p −σ T

dy ν I
j (y), (45a)

ζ 2
i j p =

xT
p +σ T∫

xT
p −σ T

dy ν I
i (y)ν I

j (y), (45b)

ζ 3
i =

∞∫

−∞
dy ν I

i (y). (45c)

It can be seen that ζ 1
j p peaks for x I

j ≈ xT
p and is very small

elsewhere. Furthermore, ζ 2
i j p has a maximal value if x I

i ≈
x I

j ≈ xT
p and is nearly zero otherwise. Finally, ζ 3

i is con-
stant.

Using the rates from (11) to explicitly calculate the ζ ’s
gives

ζ 1
j = AI σ I

√
π/2

×
[

erf

(
xT

p − x I
j + σ T

√
2σ I

)
− erf

(
xT

p − x I
j − σ T

√
2σ I

)]
, (46a)

ζ 2
i j p = (AI )2σ I

√
π/4 exp

(
− (x I

i − x I
j )

2

4 (σ I )2

)

×
[

erf

(
2xT

p − (x I
i + x I

j ) + 2σ T

2 σ I

)

− erf

(
2xT

p − (x I
i + x I

j ) − 2σ T

2 σ I

)]
, (46b)

ζ 3
i = AI σ I

√
2π. (46c)

B Poisson neuron

The Poisson neuron is a simple model neuron with stochastic
firing dynamics. The neuron lacks a threshold and may there-
fore be seen as biologically unrealistic. On the other hand,
precisely because of its lacking threshold, the model is linear
and can be described very easily mathematically (van Hem-
men 2001; Kempter et al. 1999), see also Tuckwell (1988).
On the other hand, due to (48) it does incorporate refractory
behavior.

The Poisson neuron model is defined by the following
properties:

– The probability P that a spike occurs in the small time
interval [t, t + δt) is given by

Pspike in [t, t + δt) = λ(t)δt. (47)

– The probability of getting more than one spike during an
interval of length δt is of order o(δt), that is,

Pmore than one spike

δt
→ 0 for δt → 0. (48)

– The probability of firing a spike does not depend on the
previous spiking history of the neuron.

Although this neuron model is very simple, it captures
some very important aspects of neuron firing. First, neuro-
nal firing is to some degree stochastic and second, explicit
time-dependence of firing probabilities is taken into account.
Because of the linearity of (47), an exact mathematical under-
standing of the learning process is possible (Kempter et al.
1999).

It is to be stressed that the Poisson model is not simply
equivalent to a rate coding. Since spike generation is explic-
itly taken into account, the theory and simulations are much
richer than they would be with a pure rate-based modeling
approach. In addition, the firing rate functions are allowed to
have an arbitrary time dependence. The firing rate can there-
fore vary on a very small time scale, whereas a rate-based
description always uses time-averaged firing rates.

The expectation value of the output from a Poisson neu-
ron can be calculated analytically. If a spike occurring at
time t = t0 of the Poisson neuron gives rise to a response
h(t − t0), a post-synaptic current, the total response is given
by van Hemmen (2001)

t∫

−∞
ds h(t − s)λ(s). (49)
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If h is chosen so that causality is ensured, i.e., h(t) = 0 for
t < 0, the expectation of the output is given by

∞∫

−∞
ds h(t − s)λ(s). (50)

Since a Poisson neuron fires stochastically two realizations
of the firing dynamics governed by some particular λ(t) will
always differ. The variance of the output response can also
be calculated explicitly (van Hemmen 2001) and is given by

∞∫

−∞
ds h2(t − s)λ(s). (51)
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