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Abstract Acoustic signals transmit information by tempo-
ral characteristics and envelope periodicity as well as by
their frequency content. Many animals can extract the fre-
quency content of a signal by means of specialized organs
such as the cochlea but for the detection and identification
of higher-order periodicity, e.g., amplitude modulations, this
type of organ is useless. In addition, many animals do not
have a cochlea but still depend on a reliable identification of
different frequencies in the vast variety of acoustic signals
they perceive in their natural environment. Hence, neural
mechanisms to decode periodicity information must exist.
We present a detailed mathematical analysis of a recurrent
and a feedforward model of neuronal periodicity extraction
and discuss basic constraints for neuronal circuitry perform-
ing such a task in a biological system. Both the recurrent and
the feedforward model perform well using neuronal param-
eters typical for the auditory system. Performance is limited
mainly by the temporal precision of the connections between
the neurons.

Keywords periodicity detection · Auditory signal process-
ing · Neuronal modeling

1 Introduction

Sound and vibration play a very important role in commu-
nication throughout the natural world. Vertebrates possess
a highly specialized vibration detector, the cochlea, which
is used to detect and to decompose signals into their con-
stituent frequencies.

Many naturally occurring vibrations carry information
about their source in the form of frequency content and tem-
poral structure [45]. To be able to effectively use this in-
formation, it is important that a perceiving animal has the
ability to decode both spectral and temporal cues present
in the signal. Obviously animals without a mechanosensory
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frequency decomposer, viz, a cochlea, at their disposal need
to extract this information by neuronal means. But even an-
imals with a cochlea can only extract spectral information
using this organ — temporal information, slow variations of
amplitude over time, still needs to be decoded neuronally.
Several examples of neural temporal information extraction
are known. In the human auditory system, these effects in-
clude speech recognition [62,65], the identification of acous-
tic events (the “cocktail party effect” [21]), subjective pitch
perception [37,6], and the “missing fundamental” effect [6,
63]. A spectacular example of temporal information extrac-
tion is the nearly perfect recognition of speech under con-
ditions of greatly reduced spectral information. With only
three bands of noise modulated with the temporal envelopes
of speech, the recognition rate of sentences is still above
80% [62]. It has often been suggested that detection of signal
periodicity is essential in the recognition of auditory objects
[70,13].

Within the animal kingdom, echo-locating bats provide
an interesting example of temporal information extraction.
Several species of bat discriminate different insect species
by their characteristic wing beat frequency which leads to a
species-specific time-varying Doppler shift in the echo [61].
It has been shown that the bullfrog can extract the periodicity
of complex stimuli using temporal cues [53].

Surface feeding fish can detect the frequency of vibra-
tion of the water surface with an accuracy of about 10% [11]
and they use the dispersion of surface waves to determine
prey distance [39]. However, the vibration-sensitive cupulae
located on the skin of the animal [23] have no frequency
specificity apart from low-pass filtering the signal [38]. The
clawed frog, too, is able to detect small frequency differ-
ences in water surface wave trains [29]. All these examples
clearly show that a neural mechanism to detect temporal in-
formation is a common feature shared by many animals.

The above statement is supported by physiological find-
ings. In spiders, frequency-specific neurons have been found
in the central nervous system [66], although the vibration-
detecting slit sensilla, located in the joints of their feet [4],
do not exhibit frequency tuning. The sensilla rather func-
tion as acceleration detectors with a frequency-independent
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threshold sensitivity [5]. In the mammalian auditory system,
neurons sensitive to specific modulation frequencies of au-
ditory signals have been identified. There is a very strong
sensitivity to temporal modulation of input in the Inferior
Colliculus (IC) [37]. In the IC of the cat a topographical
arrangement of amplitude modulation-sensitive neurons has
been demonstrated [60].

Below, we will mathematically describe two fundamen-
tal neuronal architectures for detecting signal periodicity.
We have restricted ourselves to a minimalistic implemen-
tation of the models and do not take into account specific
physiological details. There are two reasons for doing so.
First, discussing simple models allows a detailed mathemat-
ical treatment leading to comprehension of the abilities and
limitations of the circuitry. Second, since periodicity detec-
tion is a capability present in many animals, it is important
to understand general mechanisms rather than specific real-
izations in a certain group of animals.

The organization of this paper is as follows. Section 2
gives a short introduction to the characteristics of vibratory
signals. We introduce two different models of neuronal peri-
odicity detection in section 3, and study their mathematical
properties in section 4. We consider numerical simulations
in section 5, and in section 6 we discuss our results.

2 Characterization of vibratory signals

To arrive at a clear understanding of the models discussed in
this paper, it is necessary to briefly describe some properties
of vibratory signals. We have to bear in mind that vibratory
signals are not limited to air-borne sound but may propagate
in a variety of substrates such as sand [14,1], the water sur-
face [10,8], spider webs [50,43], or leaves [48]. All vibra-
tory signals consist of a time-dependent change in pressure
or medium deflection. Fast periodical variations in signal
strength are normally designated as spectral content, or fre-
quencies, and slow variations are denoted as temporal con-
tent. In general the distinction between temporal and spectral
content is a matter of convention. In our setting, we consider
all periodic signal fluctuations which can be resolved neu-
ronally as temporal content. That is, signal variations with
frequencies lower than approximately 500 Hz are temporal.

Natural signals are composed of a mixture of spectral
and temporal components, leading to complex wave forms
(Fig. 1). The slowly varying amplitude of the signal is called
the signal envelope. Even if no explicit modulation is im-
posed on a signal, slow modulations of the signal strength
generally occur. This is because of interference effects be-
tween the frequency components present in the signal, which
lead to a “beating” effect. In vertebrates, the cochlea is re-
sponsible for extracting spectral information; temporal clues
need to be decoded neuronally. In animals lacking a cochlea
or similar structure, both spectral and temporal information
must be extracted neuronally.

The simplest example of a nontrivial vibration is sinu-
soidal amplitude modulation (SAM). An SAM signal s(t) is
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Fig. 1 The top panel shows a complex wave signal, composed of three
frequency components (solid gray) and the signal envelope, or instan-
taneous amplitude (dotted black). The interference of the frequency
components causes amplitude modulation on a slow scale. One of the
modulation frequencies ( fm ∼ 100 Hz) has been indicated in the plot.
The bottom panel shows the Fourier transform of the signal (solid gray)
and the envelope (dotted black). Although the signal consists of three
frequencies in the 1500−2000 Hz range, the envelope shows only slow
variations, mainly below 500 Hz. Because the envelope has a nonzero
mean value the Fourier spectrum shows an additional peak at 0 Hz.

described by

s(t) = Acos(2π fct)[1+msin(2π fmt)] , (1)

with fm � fc. The amplitude of the signal is A, fc is the car-
rier frequency, fm is the modulation frequency and m is the
modulation depth of the signal. Of course, an SAM signal is
not a realistic input. Natural signals typically consist of some
superposition of frequencies that are comodulated [55] by a
characteristic profile instead of a simple sine wave. The fun-
damental period of this profile is then called the modulation
frequency.

On the surface of the water [3,7,9,44], in spider webs
[49], and on plant leaves [3,33], discrimination of prey is
achieved by using only the frequency content of the incom-
ing signals. In both cases prey-generated signals contain high
frequencies (& 50 Hz). In contrast, background noise such
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Fig. 2 There are basically two possible ways to extract frequency
or timing information from a signal using spiking neurons. The first
method (upper panel) uses a recurrent loop with time delay ∆ . This we
call the recurrent model. The neuron is driven by a continuous input
function sin. If the neuron emits a spike at time t = t0, the firing proba-
bility is enhanced at time t = t0 +∆ . Signal periodicity with character-
istic time ∆ then leads to a higher number of spikes in the output signal
sout.
The second method (lower panel) is based on the same idea, but uses
a feedforward network, and is called the feedforward model. The first
neuron, again driven by sin, sends two spikes to the output neuron with
a delay differing by an amount ∆ , e.g. using interneurons. Again, cor-
relations in the input signal with period ∆ lead to an augmented firing
probability for the output neuron.

as abiotic signals and vibrations caused by the movement
of the animal itself is limited to low frequencies (. 15 Hz).
To detect prey, the animal needs to know whether the signal
has predominantly high-frequency content or low-frequency
content. Amplitude modulations are believed to be of less
importance in this case.

3 The models

The goal of our models will be to identify slow fluctuations
present in a specific input signal. Mathematically, periodic
features of a signal s(t) can be detected by calculating its
autocorrelation χ (see e.g. [51]), defined by

χ(∆) = lim
T→∞

1
2T

∫ T

−T
dτ s(τ)s(∆ + τ) . (2)

The autocorrelation has maxima for correlation times ∆ cor-
responding to the frequencies present in the signal, but also
for the periods of the envelope fluctuations (Fig. 1). The
above calculation immediately suggests two neuronal mech-
anisms for detecting periodicity (Fig. 2).

The first model consists of a neuron that receives an input
signal sin(t). As the neuron spikes, the output spike is fed
into a pathway that ultimately projects onto the neuron itself
with a particular delay ∆ , corresponding to the correlation
time above. This pathway need not be a direct connection
from the axon onto the neuron’s own dendritic tree. One or
more processing steps may occur before the output from the
neuron returns but a well-defined delay can be associated
with the pathway. This matter will be further discussed in
section 6.1. Because of the delay loop, the neuron detects
correlations on a time scale ∆ . An array of such neurons, all

with different ∆ , can then function as a periodicity analyzer.
We call this model the recurrent model.

The second model consists of a two-neuron network. If
the input neuron fires, it’s spikes are fed into two pathways
to the output neuron. The temporal durations of these path-
ways differ by an amount ∆ . The output neuron will have a
high firing probability if spikes arrive from the two different
pathways at the same time. Again, the network reveals corre-
lations on time scale ∆ . We call this model the feedforward
model.

Both types of networks have been discussed before in
the literature. To our knowledge, the first author to propose
a network of delay lines to detect signal periodicity has been
Licklider [47]. More recent work on feedforward-like mod-
els has been done by Borst et al. [12] and Meddis and O’Mard
[52]. Both articles proposed a very detailed model, based on
specific properties of neuronal circuitry found in the mam-
malian auditory system. Although Borst et al. and Meddis
and O’mard have used neuronal oscillators instead of delay
lines, our analysis can be applied to their models as well.
Cariani [19,20] discussed a recurrent-like model. He has
used an overly simple model in which formal neurons ma-
nipulating strings of 0s and 1s are used. None of these au-
thors have included a detailed mathematical analysis of their
models. In this paper, we provide this missing analysis and
use fairly realistic neuron models for our simulations with-
out settling on a specific neuronal architecture. We will now
analyse the characteristics of our models in more detail.

3.1 Detailed description of the recurrent model

The recurrent model consists of Nout output neurons that all
receive the same external continuous input sin(t). All input
neurons have a recurrent connection that feeds output spikes
back into the neuron itself. The recurrent spikes are charac-
terized by a delay ∆ that is different for each neuron and has
strength J. The feedback current is described by a general
function g (see also section 4.1) for which we will take an
α-function in our simulations [31]

g(t) = θ(t− t0−∆)
t− t0−∆

τ2 e−(t−t0−∆)/τ . (3)

The width of the α-function is given by τ , t0 is the spiking
time of the neuron and θ denotes the Heaviside step func-
tion, i.e., θ(t) = 0 for t < 0 and θ(t) = 1 for t ≥ 0.

The neurons are simulated as leaky integrate-and-fire (LIF)
neurons; see appendix A.2. To get the model at work the
output neurons must fire a first spike to start with, since the
feedback loop needs input, which can only come from the
neurons themselves. It is not possible to use supra-threshold
input since this would imply that all output neurons would
fire in response to the input, regardless the length of their
delay loop. The solution is to use subthreshold input with
added internal neuronal noise. Every now and then the neu-
ron will fire. But only if the delay loop length has the right
value the neuron will be able to resonate in response to the



4 Paul Friedel et al.

input. The mechanism described here is called stochastic
resonance for which there exists a detailed review [30].

3.2 Detailed description of the feedforward model

The feedforward model consists of Nin input neurons, which
we simulate as Poisson neurons; see appendix A.1. This is
convenient but by no means necessary. The input neurons
are driven by an external input sin(t). If one of the input neu-
rons fires its spike is fed into an axon branching off to Nout
different output neurons. One spike reaches the output neu-
rons directly and another spike resulting from the same event
reaches the output neuron with a delay ∆ . A specific delay
∆ is associated with every output neuron. In this way, every
output neuron will turn out to encode a particular frequency
f = 1/∆ .

The output neurons are simulated as leaky integrate-and-
fire (LIF) neurons without noise; see Appendix A.2. If a
spike is emitted at time t = t0 by any of the input neurons
it leads to two postsynaptic current injections arriving at the
output neurons, again in the form of α-functions,

εdirect = Jθ(t− t0)
t− t0

τ2 e−(t−t0)/τ (4)

and

εdelayed = Jθ(t− t0−∆)
t− t0−∆

τ2 e−(t−t0−∆)/τ . (5)

The former spike travels to the output neuron without delay
and the latter arrives with a delay ∆ . The synaptic coupling
strength is again given by the parameter J.

4 Mathematical discussion of the models

In this section we will mathematically discuss the behavior
of the two types of periodicity detector. Explicit analysis of
LIF neurons is generally quite difficult (for an extensive re-
view, see [16,17]). We will see, however, that no explicit
analysis of LIF neuron dynamics is needed to gain valuable
insight into the dynamics of our models. In fact, the key
properties of the models are independent of the specific type
of neurons that are used.

4.1 Recurrent model

The problem of analytic calculations using integrate-and-fire
neurons lies in the nonlinearity of the spike-generation. In
the case of the recurrent network we discuss here, the prob-
lem is even more difficult than usual since the feedback in-
troduces an extra complication into the system. We therefore
simplify our discussion by considering Poisson neurons; see
appendix A.1. We will later compare the findings obtained
here with the simulations (section 5) to see whether the cal-
culations using Poisson neurons can serve to understand the
dynamics of the LIF neurons used here.

 0  0.05  0.1  0.15  0.2
time [s]

g  s [arbitrary units]

s

Fig. 3 Stochastic fluctuations in the response of a Poisson neuron are
smaller if the firing rate is higher. The convolution of a signal s (inset)
with the response kernel g in black is compared with two explicit re-
alizations of the firing process (normalized for comparison). The gray
curve was obtained using about 40 spikes, the black dotted curve re-
sults from about 300 spikes. Clearly, a high firing rate (or, mathemat-
ically equivalent, a large population of Poisson neurons) is needed for
Eq. (6) to apply.

We can describe the rate function λ of a single Poisson
neuron projecting back to itself with a particular delay time
∆ by the integral equation

λ (t) = sin(t)+ J
∫

∞

−∞

ds g(s;∆)λ (t− s)

= sin(t)+ J(g?λ )(t) .
(6)

The rate function consists of the sum of the extenal input sin
and the delayed input from the recurrent loop, “smeared out”
by the kernel g. The feedback strength is given by J and we
choose g to ensure causality (g(t) = 0 if t < 0) and to have
unit weight∫

∞

−∞

dt g(t) = 1 . (7)

Since g has a finite width the delay loop smears out the feed-
back.

In (6) the convolution integral of λ with the kernel g as-
sumes that we may use the expectation value of the firing
rate λ to describe the neuron output instead of a specific re-
alization of the output. We thereby ignore the “spiky” char-
acter of the neuron output. This approach is only correct for
very high firing rates or, mathematically equivalent, a large
number of Poisson neurons with a low firing rate. The to-
tal amount of output spikes must be high enough so that the
output signal is reliably sampled by the output spikes. An
example of such a smooth convolution of λ and g is shown
in figure 3.

To solve Eq. (6) for the output firing rate λ we take the
Fourier transform of the equation. The Fourier transform of
a function h is defined by

H(ω) = F [h(t)] (ω) :=
∫

∞

−∞

dt e−iωth(t) (8)
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and has the useful property that, when transformed, a con-
volution becomes an ordinary product. Denoting the Fourier
transform of each input term by a capital letter we obtain

Λ(ω) = Sin(ω)+ JG(ω)Λ(ω) . (9)

The solution is then given by

Λ =
Sin

1− JG
. (10)

The solution as a function of time can then be found by tak-
ing the inverse Fourier transform

λ (t) = F−1 [Λ(ω)] (t) :=
1

2π

∫
∞

−∞

dω eiωt
Λ(ω) . (11)

Given any input function sin and response function g(t)
we can now explicitly calculate the firing probability of the
neuron. In our simulations we will use an α-function for g
to model the response function [see Eq. (3)]. The Fourier
transform of this response function is given by

G(ω) =
e−iω∆

(1+ iωτ)2 . (12)

Since we are interested in identifying periodicity, we must
know which frequency f corresponds to a certain delay time
∆ . A first guess would be to set f = 1/∆ , but since the re-
sponse function transforms the recurrent signal this relation
cannot be expected to hold exactly. We therefore consider
the response of the system to an incoming pure sine wave
of frequency f and find the corresponding ∆ that maximizes
the amplitude of the response. We then have an explicit con-
nection between the delay ∆ and the signal frequency that is
decoded optimally through this delay.

For harmonic input given by

sin(t) = Acos(ωt) = Acos(2π f t) (13)

we calculate the response to be

λ (t) = Lcos(ωt +φ) , (14)

where φ is a phase that is not relevant for our further calcu-
lations and L is an amplitude given by

L = 2(1+ξ
2)2/√

J2 +(1+ξ 2)2− J [2(1−ξ 2)cos(ω∆)−4ξ sin(ω∆)] ,

(15)

with the definition ξ := ωτ . The amplitude L of the response
is maximal if the relation

2(1−ξ
2)cos(ω∆)−4ξ sin(ω∆) = 0 (16)

holds. The delay must therefore satisfy

∆ = ω
−1

[
arctan

(
2ξ

ξ 2−1

)
+nπ

]
, (17)

with n = 1 if ξ > 1 and n = 2 for ξ < 1. If the width of
the kernel g approaches zero (ξ → 0) this relation indeed
reduces to

∆ =
2π

ω
=

1
f

. (18)

As a more complicated and realistic example let us con-
sider an input of the form

sin(t) =
∫

∞

0
dσ B(σ)cos [σt +φ(σ)] . (19)

Instead of a single harmonic component we now describe
the input by a distribution of input frequencies with arbitrary
amplitude and phase. The Fourier transform of the input is
given by

Sin(ω) =
∫

∞

0
dσ B(σ)πeiφ(σ)ω/σ

× [δ (σ −ω)+δ (σ +ω)] , (20)

with δ (.) the Dirac delta function. Plugging this result into
(10) and (11) gives the solution for the firing rate of the out-
put neuron

λ (t) =
∫

∞

0
dσ B(σ)R

[
ei(φ(σ)+σt)

1− Je−iσ∆ /(1+ iστ)2

]
, (21)

where R[x] denotes the real part of x. We note that the signal
function (19) need not be positive, although a negative firing
rate certainly does not make sense for a Poisson neuron. In
the simulations we always use half-wave rectified signals.
Unfortunately exact calculations are not feasible in this case.
In spite of this drawback Eq. (21) captures the essence of the
network response. If the solution (21) is plotted for various
input spectra B(σ) the amplitude of λ is largest if the length
of the delay loop ∆ corresponds to a frequency that is present
in the input signal (plot not shown).

4.2 Feedforward model

For the analytic description of the feedforward model we
will use an input population of Poisson neurons which are,
just as before, driven by an input sin(t) identical for each
neuron. We consider LIF neurons as output neurons; every
output neuron receives input from the Poisson neurons via
two distinct pathways: a direct connection and a connection
with a delay ∆ which is different for each output neuron.

If we calculate the expectation value of the current that
arrives at the output neurons a sinusoidal function results.
The response of LIF neurons to harmonic input is difficult
to calculate but several exact results have been presented by
Burkitt [18] as will be discussed below.

We start our calculations by considering input given by

sin(t) =
A
2

[1+ cos(ωt)] . (22)
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The input current that one output neuron with a particular
delay time ∆ receives from the set of Nin input neurons is
given by [referring to (4) and (5)]

εtotal = εdirect + εdelayed . (23)

The expectation value of the current to the output neurons is
given by (see appendix A.1)

〈I〉=
∫

∞

−∞

ds sin(s) εtotal(t− s) (24)

and the variance of the current is given by

varI =
∫

∞

−∞

ds sin(s) ε
2
total(t− s) . (25)

Equations (24) and (25) can be evaluated exactly for the
given input function (22). The current is

〈I〉= NinAJ

{
1+

cos(ω∆/2)
(1+ξ 2)2

[
(1−ξ

2)cos
(
ω(t−∆/2)

)
+2ξ sin

(
ω(t−∆/2)

)]}
(26)

with ξ = ωτ . The amplitude (current arriving at the output
neuron) is thus maximal for integer

∆ · ω

2π
∈ N . (27)

That is, a maximal response of the output neurons is to be
expected if the input frequency matches the delay of the sys-
tem. If the input signal contains a periodicity with frequency
f̄ the neuron with a delay time ∆̄ corresponding to this fre-
quency will respond optimally. All neurons sensitive to a
subharmonic frequency ( f̄ /n, with n ∈N) will also respond,
as can be seen from (27). This is because an input signal with
a periodicity f̄ is automatically also periodic with frequency
f̄ /n.

The variance of the current is given by

varI =
NinAJ2

τ

{
1
4

+
2cos(ω∆/2)

(4+ξ 2)3

×
[
(8−6ξ

2)cos
(
ω(t−∆/2)

)
+ξ (12−ξ

2)sin
(
ω(t−∆/2)

)]
+M

} (28)

where M is given by

M =e−∆/τ

{
1−∆/τ

4
+

1
(4+ξ 2)3

×

[(
16−8ξ

2 +
∆

τ(16−ξ 4)

)
cos

(
ω(t−∆)

)
+2ξ

(
12−ξ

2 +
2∆

τ(4+ξ 2)

)
sin

(
ω(t−∆)

)]}
.

(29)

In order to allow correct periodicity detection, the time
scale of the periodicity must clearly exceed the time scale τ

of the individual current response functions ε . We thus ex-
pect the system to work best if the relation ∆ � τ holds,
meaning that the time scale of the periodicity is much larger
than that of the post-synaptic response. In the auditory sys-
tem we can expect this condition to hold. M can then be ne-
glected because of the exponential prefactor e−∆/τ in (29).
If low-frequency input is presented, we have ω � 1/τ and
thus ξ = ωτ → 0. The current and its variance are then given
by

〈I〉= NinAJ
[
1+ cos(ω∆/2)cos

(
ω(t−∆/2)

)]
(30)

and

varI =
4NinAJ2

τ

[
1/16+ cos(ω∆/2)cos

(
ω(t−∆/2)

)]
.

(31)

The relative variation of the current is proportional to

δ I
I

=
√

varI

I
∝

1√
NinAτ

, (32)

which also holds if we do not assume ∆ � τ and ξ → 0.
As expected, the current is less sensitive to random fluctua-
tions if the number of input neurons or the input amplitude
increases. The fact that the current fluctuates more if τ gets
smaller is because a very short synaptic time scale tends to
enhance the “spiky” character of the current. The system,
however, does not become less reliable since a short post-
synaptic current enables better coincidence detection by the
output neurons [40,41].

The expression (26) for the mean current, which is a
good approximation if there are enough input neurons, shows
that all output neurons receive a harmonic (sinusoidal) cur-
rent. The amplitude of the current is largest if the delay
matches the periodicity of the input signal. The response of
integrate-and-fire neurons to harmonic input is difficult to
calculate but it has been done for a slightly different system
in [18]. The results show that the periodicity of the input cur-
rent is retained in the firing of the output neuron. This means
that the output signal is phase locked to the current. The vec-
tor strength V , which is defined as the absolute value of the
first Fourier coefficient of the signal divided by the zeroth
Fourier coefficient, measures the amount of synchronization
or phase locking. For perfect phase locking V = 1. For a ran-
dom distribution of phases (complete absence of phase lock-
ing) we find V = 0. V tends to be larger in the output neuron
than in the current itself. Due to the phase locking the mod-
ulation present in the input signal sin tends to be enhanced
by the system in accordance with physiological findings in
the mammalian auditory pathway [37].
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First summary. Stepping back for an overview we would
like to quickly summarize what we have obtained so far. We
have derived analytical expressions for the network response
to simple periodic input signals [equations (21) and (26)]. As
expected the response of the output neurons is maximal if the
periodicity of the input signal matches the time delay ∆ . The
relationship between delay time ∆ and the optimal decoding
frequency f is given by a simple inverse function in the feed-
forward model (27), and by a more complicated expression
in the recurrent model (17). We now turn to numerical sim-
ulations to characterize the response of the models to more
realistic input.

5 Simulation results

In this section we discuss results obtained by numerical sim-
ulations. The neural networks as described in section 3 have
been inplemented through the C++ programming language.
To test the performance of the models we have provided
the networks with three different kinds of input: amplitude-
modulated (AM) input, a Gaussian distribution of frequency
components, and input mimicking the “missing fundamen-
tal” effect, as explained below. The response of the system
was characterized by counting the number of output spikes
that occurred during one second of input presentation as a
function of the coding frequency of the output neuron. The
coding frequency of the output neurons was calculated using
(17) for the recurrent network and (27) for the feedforward
network. We will see that in both networks the neurons en-
coding the periodicity present in the input signal respond
maximally. The networks are thus able to convert a period-
icity code into a rate code.

Half-wave rectification of the signals was always per-
formed before presenting them to the network. Hair cells,
the basic receptor units of the ear and the lateral line sys-
tem, depolarize following one direction of displacement and
hyperpolarize if displacement is in the other direction [34].
Half-wave rectification is therefore automatically performed
upon detection in many sensory systems.

The input signal to the network was normalized to de-
liver the same time-integrated input power in each case. Ob-
viously, it is not realistic to expect external input to a vibra-
tion detection system to be normalized but several mecha-
nisms of neuronal gain adaptation have been shown to ex-
ist; e.g., in the auditory pathway [64,69,36,25]. Such mech-
anisms are thought to keep neuronal firing rates within an
optimal range. In our case power normalization is needed
to keep the output firing under control. If the input power
is too low, the output neurons cannot fire at all. If, on the
other hand, the input power is too high all neurons will fire
at a high rate and the discriminative capacity of the system
is lost.

The numerical values of the parameters used in the com-
putations are given in appendix B.

5.1 Amplitude-modulated input

We consider two types of AM input signals. First, we present
a modulated pure tone

sin(t) =
A
2

[1+ cos(2π fmt +φ)]cos2π fct (33)

with modulation frequency fm = 50 Hz or fm = 200 Hz and
random modulation phase φ . The carrier frequency is fc =
2000 Hz.

In the second case we consider noise by composing a
signal from 50 sinusoidal components with frequencies f n

rand
chosen from a uniform distribution on [0,1000 Hz] and ran-
dom phases φ n

rand with uniform distribution on [0,2π] so as
to obtain

snoise(t) =
50

∑
n=1

cos(2π f n
randt +φ

n
rand) . (34)

We then modulate this signal with modulation frequency
fm = 50 Hz

sin(t) =
A
2

[1+ cos(2π fmt +φ)]× snoise . (35)

In both cases the amplitude has been chosen in such a way
that the rectified input signal is normalized appropriately.

The results of these simulations are displayed in Fig. 4.
Obviously both network types succeed very well in detect-
ing the periodicity of the input signal. Clear peaks in the re-
sponse occur for the correct frequencies. The response peaks
for the subharmonic frequencies are also distinctly recogniz-
able. Although the response of the recurrent model is quite
noisy, this drawback may be overcome easily by combining
input from several close-by channels.

5.2 Gaussian frequency distribution

The second test for the feedforward and recurrent models
consists of taking a distribution of frequencies as input. To
mimic the real biological situation we have built an input
signal from 30 different frequency components chosen ran-
domly from a Gaussian probability distribution with a cen-
ter frequency µ and a width σ . The components were added
together with random phases and the resulting signal was
half-wave rectified and presented to the network. This sig-
nal can be considered as a rough model for a strampling in-
sect on the water surface or in a spider web. The results of
these simulations are displayed in Fig. 5. It is pretty evident
that both frequency profiles with (µ,σ) = (30 Hz,5 Hz) and
(µ,σ) = (100 Hz,20 Hz) are correctly identified by the two
networks.
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Fig. 4 Response to AM input of an array of neurons, each with a dif-
ferent delay and corresponding frequency (horizontal axis). The total
number of spikes in one second is shown vertically. Top panel: feedfor-
ward model; bottom panel: recurrent model. The peaks corresponding
to the input periodicity clearly appear in the graphs. Evidently, both
networks correctly identify the signals.

5.3 Missing fundamental

If several pure tones with a common fundamental frequency
are presented to a listener, the subject often perceives a tone
with a pitch corresponding to this fundamental frequency,
even though the fundamental frequency itself is not present
in the input signal. Nonetheless a clear neuronal represen-
tation of this frequency is formed by the subject. To mimic
such an experiment we give both models input consisting of
three harmonics

sin(t) =
3

∑
n=1

cos(2π fnt +φn) , (36)

with f1 = 200 Hz, f2 = 300 Hz, f3 = 400 Hz and the phases
random. The response of the feedforward model is shown in
Fig. 6, together with the response to a pure tone of 100 Hz.
Although the peak is not as clear as with pure tone stimula-
tion, a pitch of 100 Hz is still easily recognizable.

Because of the noisy response, the missing fundamental
effect is not reproduced very well by the recurrent model. A
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Fig. 5 Response of an array of neurons to a distribution of frequencies.
Input was presented to an array with neurons, each with a different de-
lay and specific frequency (horizontal axis). The total number of spikes
in one second is shown vertically. Top panel: feedforward model; bot-
tom panel: recurrent model. Similar to figure 4 the signals are reliably
identified.
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Fig. 6 Response of the feedforward network to “missing fundamen-
tal” input as in Eq. (36) with three frequencies 200, 300 and 400 Hz
compared to the response to a pure 100 Hz tone. The peak at 100 Hz is
clearly recognizable.
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Fig. 7 Phase locking strength as a function of best frequency for the
feedforward and the recurrent model. 50 Hz modulated input as in Eq.
(35). Vector strength of the input signal is 0.5, as indicated by the hor-
izontal line. Surprisingly, output phase locking is stronger than input
phase locking in the relevant frequency range.

very good response can sometimes be obtained but this cru-
cially depends on the precise values of the phases φn, which
is not realistic biologically. Results for the recurrent network
are therefore not shown.

5.4 Phase locking

A very important concept in auditory or vibratory process-
ing is phase locking. Phase locking describes the capability
of neurons to spike preferentially at a specific phase of the
input signal. Phase locking is especially important to extract
precise temporal clues from a signal; for instance, in sound
localization [56,32]. The amount of phase locking is charac-
terized by the vector strength V as discussed above.

For AM noise input, as in (35), the vector strength has
been displayed in Fig. 7. Interestingly, phase locking is quite
good in the recurrent model although the output firing rate
fluctuates a lot. This behavior results from the subthresh-
old input dynamics of the recurrent model. Only the pres-
ence of noise in the input assures that every now and then a
spike occurs. The occurrence of a spike is of course much
more likely if the input amplitude is large and consequently
the output firing tends to be phase-locked to the input peri-
odicity. For the feedforward model phase locking is good
if the decoding frequency of the output neurons matches
the periodicity of the input. Again, spike generation is most
likely when the input amplitude is large and the delay time
matches the frequency of the input signal. Phase locking
results. Remarkably, phase locking of the output is signifi-
cantly stronger than in the input signal for both models.

5.5 Temporal jitter of delays

The ability to identify signal periodicity crucially depends
on the timing of the delays ∆ . We therefore investigate the
effect of temporal jitter in the delays on identification perfor-
mance. We present four different pure tones with frequency
fin to both networks and add stochastic jitter to the delay
time for every emitted spike. The jitter is Gaussian distributed
with mean 0 and a standard deviation from 0.2 ms to 20 ms.
For each trial (a specific combination of input frequency and
jitter strength) we calculate the selectivity Q defined by

Q =

∣∣∑ j r je2πi∆ j fin
∣∣

∑ j r j
. (37)

Here ∆ j is the temporal delay corresponding to output neu-
ron j and r j is its firing rate. This definition has again the
form of a vector strength. If the output firing rate peaks for
neurons with the correct delay (∆ j fin integer) the value of
the numerator in Eq. (37) will be large. If much temporal
jitter is present all output neurons will respond, even if their
delay does not match the input signal frequency. In this case
the phases in the numerator of Eq. (37) will cancel out and
Q will have a low value.

In Fig. 8 the selectivity for different input frequencies
and jitter magnitudes is plotted, normalized to the selectiv-
ity without jitter. As could be expected, the selectivity de-
teriorates if jitter is present in the delays. For high input
frequencies the sensitivity to temporal jitter is largest. For
low frequencies, say . 25 Hz, both models are quite robust
and can cope with temporal jitter up to ∼ 10 ms. A jitter of
about 20% of the input periodicity leads to a 50% decrease
in selectivity. The amount of jitter thus determines the fastest
input periodicity that can still be identified. For a temporal
jitter of 1 ms this upper limit is approximately 200 Hz.

6 Discussion

6.1 Performance limits

The capability to distinguish different frequencies hinges on
the fact that the delay times ∆ are well known and constant.
Only then is it possible to reliably assign a particular fre-
quency to the output neurons. In reality the time it takes for
the signal to complete the delay line may vary somewhat.

As shown in section 5.5 the system works best for rela-
tively low frequencies up to about 200 Hz. Even if the delay
were much more accurate than has been suggested here, it
would not be possible to detect very high frequencies reli-
ably. The width of the post-synaptic current response presents
a fundamental limit to the delay time that can be detected. In
the experimental literature it has been found that AM sensi-
tivity reaches a frequency as high as 1000 Hz but the vast
majority of neurons is sensitive to modulation frequencies
in the range of 10−300 Hz, most of them lying in the even
more restricted range of 30− 100 Hz. This finding is valid
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Fig. 8 The selectivity as defined in (37) for the feedforward (top) and
recurrent (bottom) model for several input signal frequencies fin as a
function of jitter. The selectivity Q is normalized with respect to the
value in the absence of jitter. As expected, increasing jitter leads to
a decrease in selectivity. For both the feedforward and the recurrent
model a jitter of 20% of the input period leads to a 50% decrease in
selectivity.

for various animals [46,42,57–59]. Relevant biological stim-
uli on the water surface and in spider webs also tend to con-
tain most of their information in the low frequency range
. 250 Hz [10,43]. These findings agree very well with our
calculations.

In section 3 we have seen that the delay times ∆ need
not necessarily arise from a direct connection between two
neurons but that they could be the result of a number of in-
terneurons. These interneurons then have to be driven by a
very reliable synapse: every input spike should trigger an
output spike, and the delay between input and output spike
should be fixed. A very prominent example of such a re-
liable “one-to-one” synapse in the auditory pathway is the
so-called Calyx of Held at the end of the auditory nerve.

Although this specific type of reliable synapse is only
found in the lower auditory pathway its existence demon-
strates that fast and reliable synapses are present in the au-
ditory system, a neuronal system of exceptional acuity. For
exmple, in the mammalian auditory brain-stem nuclei neu-

rons can preserve the relative timing of action potentials
passed through sequential synaptic levels [67]. In the avian
auditory system, too, single presynaptic stimuli can produce
short (and thus precise) suprathreshold spikes with a time
constant of about 0.5 ms resulting in reliable information
transmission [71]. Another possibility to reliably transfer precisely-
timed signals is the use of synfire chains [28]. Depending on
the input strength, synfire chains can relay information with
a temporal precision around 1 ms, accurate enough for use
in long-delay feedback and feedforward loops.

We conclude that relatively long and well-defined de-
lay times ∆ can be realized in biological systems by means
of interneurons, thus posing no fundamental problem to our
model.

6.2 Conclusions

In this work we have quantitatively analyzed two different
models of periodicity detection. We have shown that both
a feedforward architecture and a recurrent loop architecture
can be used to extract periodic modulation from input sig-
nals. Furthermore, we have provided an extensive mathe-
matical characterization. It has been shown that for both ap-
proaches the basic constraints are the same.

As expected, neuronal time constants are a limiting fac-
tor for recognizing the periodicity of the input modulation.
The non-zero width of the response kernel theoretically lim-
its modulation recognition to about . 1000 Hz. In real bi-
ological systems, however, the limiting factor will probably
be the accuracy of the delay ∆ . Using an estimate δ∆ ≈
0.5 ms cuts down the accessible detection range to about
200 Hz. This value is reasonably close to the reported limi-
tations of about 300 Hz in biological systems.

Another limitation common to both feedforward and re-
current circuitries is that they detect only the highest mod-
ulation frequency components in any signal. Since activ-
ity in high-frequency channels also excites low-frequency
channels it is not possible to distinguish subharmonics of
a high-frequency signal from a direct low-frequency input.
The known phenomenon of the missing fundamental fits well
into the behavior of such a simple network for periodicity
extraction. Equivalent to the above is the fact that every neu-
ron responds not only to its own specific frequency but also
to all of its harmonics. Consequently the perceived similar-
ity between tones one octave apart from each other [35,27,
26] and the interference of harmonic target-distractor com-
binations at low frequencies [15] are a natural side-effect of
the proposed architecture.

The two models differ in their behavior as far as their
robustness is concerned. By design, the recurrent network
is much more susceptible to noise and, as a consequence,
can be disturbed by noise more easily than the feedforward
model. This is a common problem of excitatory recurrent
networks in general since in such networks perturbations
tend to amplify themselves.

We have shown that without any specialized architec-
tural features —a generic neuron model and simple delay
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lines— the modulation frequency components of a signal
can be resolved neuronally. Considering the simplicity of
the setup, the models already show remarkable properties
that are in good agreement with experimental data. We stress
that no parameter tuning was needed to obtain our results.

A small number of input neurons suffices to sample the
input signal with a high enough accuracy, and neuronal pa-
rameters lie in the range of milliseconds, comparable to typ-
ical auditory time scales. If a cochlea is present, signal pro-
cessing is further facilitated by the prior frequency decom-
position but the presence of a cochlea is certainly no prereq-
uisite for periodicity analysis. The output of the networks
could be enhanced by postprocessing mechanisms. For ex-
ample, lateral inhibition can be used to detect and sharpen
the peaks in the output (consider Fig. 4, 5 and 6 in this re-
gard).

At this point we want to emphasize that extracting the
slowly-varying envelope from an input signal is easily ac-
complished biologically. Half-wave rectification of the sig-
nal and low-pass filtering suffice. This can be accomplished
by a slow synapse filtering out all high frequency compo-
nents, a mechanism that has been demonstrated explicitely
to work in the electric fish sensory pathway [54]. Even if the
slow envelope of the signal has been extracted, however, the
frequency of the envelope oscillations is still unknown. Our
models, on the contrary, are able to identify the frequency
of the envelope oscillations. This is of great biological im-
portance since recognition of sounds often depends on the
ability to quantitatively determine the periodicity of the in-
put signal.

As an example, human speech consists of several fre-
quency bands that are comodulated by a guttural fundamen-
tal frequency called the voicing frequency or fundamental
frequency [2]. A speaker can be distinguished by his own
voicing frequency and this immediately suggests a mecha-
nism for the identification and separation of people speaking
simultaneously. It is possible to separate contributions from
different speakers by focussing attention on specific period-
icity frequencies. The now isolated sound source can then
be localized using standard mechanisms based on interau-
ral time differences (ITD) recognition, since phase locking
to the input remains intact throughout the processing in our
models. In such a setting, auditory object recognition would
therefore occur before the localization of the object. This
agrees with previous experimental work showing that spa-
tial separation of sounds is indeed linked to comodulation of
the signal amplitude across several frequency channels [24,
22,45].
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A Model neurons

A.1 Poisson neuron

A Poisson neuron is a simple model neuron with stochastic firing dy-
namics. The neuron lacks a threshold and may therefore be seen as
biologically unrealistic. On the other hand, precisely because of the
lacking threshold, the neuron can be described very easily mathemat-
ically [68]. The firing dynamics of a Poisson neuron is determined by
an instantaneous rate function, or spike probability density λ , which
in general depends on time. The probability that the neuron fires in the
small time interval [t, t +δ t) is given by

Pspike in [t,t+δ t) = λ (t)δ t . (38)

The stochastic firing dynamics is completely determined by the rate
function λ , which means that firing events do not influence the fu-
ture firing probability. If the size of the time interval δ t is taken small
enough the probability of getting more than one spike within that inter-
val (even for very high firing rates) is taken to be negligible viz, o(t).
The firing of the neuron is thus a renewal process and refractoriness is
taken into account through the o(t)-condition.

The expectation value of the output from a Poisson neuron can be
calculated analytically. If a spike occurring at time t = t0 of the Poisson
neuron gives rise to a response g(t − t0), a post-synaptic current, the
total response is given by [68]

∫ t

−∞

ds g(t− s)λ (s) . (39)

If we choose g(t) so that causality is ensured, i.e. g(t) = 0 for t < 0,
we can write the expectation of the output∫

∞

−∞

ds g(t− s)λ (s) . (40)

Since a Poisson neuron fires stochastically two realizations of the firing
dynamics governed by some particular λ (t) will always differ. The
variance of the output response can also be calculated explicitly and is
given by [68]∫

∞

−∞

ds g2(t− s)λ (s) . (41)

A.2 Leaky integrate-and-fire neuron

The firing dynamics of a leaky integrate-and-fire (LIF) neuron is gov-
erned by a differential equation for the membrane potential V [31],

dV
dt

=−(V −V0)/τmem +(Iext + Inoise)/Cmem . (42)

The potential changes under influence of an external input current Iext
that drives the neuron. If no input current is present the potential relaxes
to a resting value V0 with characteristic membrane time constant τmem.
The last term, Inoise, takes into account internal noise of the neuron that
will be needed in the case of the recurrent model. The constant Cmem is
the membrane conductance of the neuron determining how effectively
the current can change the membrane potential.

If the potential in (42) reaches a certain threshold value Vθ a spike
occurs and the potential is reset to a value VR. Refractoriness of the
neuron can be taken into account by disallowing the neuron to fire for
a certain period after spiking, by changing the threshold voltage tem-
porarily to a higher value, or by temporarily ignoring the input current
(see also [31]).
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B Numerical implementation of the models

Both neuronal models have been implemented using the C++ pro-
gramming language. Below, all model parameters are listed, as well as
the internal noise mechanism adopted for the neurons in the recurrent
model.

B.1 Recurrent model

parameter value

number of output neurons Nout = 491
output frequency range 10−500 Hz
synaptic time constant τ = 1 ms
synaptic strength J = 2.5×10−5

input normalization 1/T
∫ T

0 sin dt = 300
output neuron

membrane time τmem = 1.25 ms
absolute refraction time τref = 1.0 ms
rest potential V0 = 0
reset potential VR = V0 = 0
threshold Vθ = 1
capacitance Cmem = 1

Internal noise of the neurons has been implemented by adding a
noise term Inoise to the input of each neuron given by

Inoise =
50

∑
n=1

Anoise cos(2π f n
noiset +φ

n
noise) (43)

where the frequencies are chosen from a uniform distribution f n
noise ∈

[0−1000 Hz]. Phases are uniformly distributed in φ n
noise ∈ [0−2π] and

the amplitude of every component is given by Anoise = 0.01/50. For
each neuron, independent noise is assumed and the noise is then added
linearly to the input for each neuron.

B.2 Feedforward model

parameter value

number of input neurons Nin = 25
number of output neurons Nout = 491
output frequency range 10−500 Hz
input neuron mean rate 20 Hz
synaptic time constant τ = 1 ms
synaptic strength J = 3.5×10−4

output neuron
membrane time τmem = 1 ms
absolute refraction time τref = 0.25 ms
rest potential V0 = 0
reset potential VR = V0 = 0
threshold Vθ = 1
capacitance Cmem = 1
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33. Hergenröder, R., Barth, F.: The release of attack and escape behav-
ior by vibratory stimuli in a wandering spider (Cupiennius salei
Keys.). J Comp Physiol A 152, 347 (1983)

34. Hudspeth, A., Corey, D.: Sensitivity, polarity, and conductance
change in the response of vertebrate hair cells to controlled me-
chanical stimuli. Proc Natl Acad Sci USA 74, 2407 (1977)

35. Humphreys, L.: Generalization as a function of method of rein-
forcement. J Exp Psych 25, 361 (1939)

36. Ingham, N., McAlpine, D.: Spike-frequency adaptation in the in-
ferior colliculus. J Neurophysiol 91, 632 (2004)

37. Joris, P., Schreiner, C., Rees, A.: Neural processing of amplitude-
modulated sounds. Physiol Rev 84, 541 (2004)

38. Kalmijn, A.: Hydrodynamic and acoustic field detection. In:
J. Atema, R. Fay, A. Popper, W. Tavolga (eds.) Sensory Biology
of Aquatic Animals, chap. 4, p. 83. Springer, New York (1988)
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