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Abstract The lateral-line system is a unique facility of aquatic
animals to locate predator, prey, or conspecifics. We present
a detailed model of how the clawed frog Xenopus, or fish, can
localize submerged moving objects in three dimensions by
using their lateral-line system. In so doing we develop two
models of a slightly different nature. First, we exploit the
characteristic properties of the velocity field, such as zeros
and maxima or minima, that a moving object generates at the
lateral-line organs and that are directly accessible neuronal-
ly, in the context of a simplified geometry. In addition, we
show that the associated neuronal model is robust with respect
to noise. Though we focus on the superficial neuromasts of
Xenopus the same arguments apply mutatis mutandis to the
canal lateral-line system of fish. Second, we present a full-
blown three-dimensional reconstruction of the source on the
basis of a maximum likelihood argument.

Keywords clawed frog Xenopus · underwater localization
of moving objects · neuronal model · superficial neuromasts

1 Introduction

The lateral-line system is a mechanoreceptive system for the
detection and analysis of water movements along an ani-
mal’s body. It is found in fish, tadpoles, and adult aquatic
amphibians. These animals use it to detect the velocity or
pressure of the surrounding water for catching prey, commu-
nicating with conspecifics, or navigation (Russell 1976, Has-
san 1985, Coombs and Fay 1993, Bleckmann 1994, Coombs
et al. 2000). A typical example, which we will analyze in
detail, is the clawed frog, Xenopus laevis laevis, which is
dominantly aquatic and will be henceforth called Xenopus.
It is nocturnal and lives mainly in turbid stagnant waters.
Its eyes are not adapted to seeing in water and the animal’s
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lateral-line system has become the central sensory system for
spatial orientation (Elepfandt 1996). Xenopus uses this sys-
tem for catching prey in water. When an insect drops onto the
water surface, a wave is generated that passes along Xenopus
and the frog will turn toward the wave’s origin, its prey. This
localization is done by means of the frog’s lateral-line system
(Kramer 1933).

In Xenopus the lateral-line system’s detectors comprise
approximately 180 small superficial lateral-line organs dis-
tributed in various lines along the sides of the body, around
the eyes, and at a few other locations of head and neck. See
Fig. 1 for Xenopus with lateral-line organs; the reader may
consult Russell (1976) or Tinsley and Kobel (1996) for a
review. Each lateral-line organ contains small cupulae, gelat-
inous flags protruding into the water, which are deflected as
a consequence of the local water velocity (Kalmijn 1988).
The cupulae are only sensitive to the water velocity in one
direction in that they measure the projection of the veloc-
ity vector onto the direction of maximal sensitivity (Görner
1963, Görner and Mohr 1989).

The lateral line of fish responds to submerged moving
objects (Engelmann et al. 2003). There are similar results for
Xenopus (Görner and Mohr 1989, Kramer 1933, Elepfandt
1984). Franosch et al. (2003, 2005) have developed a mathe-
matical model for prey localization at the water surface. Here
we construct a mathematical model that allows Xenopus to
localize a submerged moving object in three dimensions and
determine its velocity vector.

2 Hydrodynamics of the stimulus

For simplicity, we assume that the object that is to be detected
is a moving sphere; cf. Fig. 2 for the streamlines.

For further analysis, the water velocity is needed at the
positions of Xenopus’ lateral line organs because the deflec-
tion yi(t) of cupula i is roughly proportional to the local
velocity (Russell 1976, Kalmijn 1988). In an ideal fluid, a
moving sphere with radius a and velocity w at the origin of
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Fig. 1 The clawed frog Xenopus laevis laevis. Its lateral line organs can
be clearly seen as white “stitches”

the coordinate system generates a velocity potential as due
to a dipole (Lamb 1932)

φ(r) = a3

2r3
w · r .

The negative gradient of the velocity potential is the water
velocity at position r,

v(r) = −∇φ(r) = a3

2r5

[
3(w · r) r − r2 w

]
. (1)

If, as shown below, the body of Xenopus does not significantly
influence this velocity field then Xenopus can never detect the
size of a moving sphere but only the product a3w of the third
power of the radius of the sphere and size w := ‖w‖ of its
velocity. Experiments indeed show that the absolute size of

Fig. 2 The streamlines in an incompressible fluid caused by a sphere
(green) moving in x-direction. Streamlines in the x-y-plane are depicted
blue, streamlines in the x-z-plane in orange. The numerical calculation
was performed on a 100×100×100 grid using the SOR method (Young
1971, Roache 1972, Hackbusch 1986, Marsal 1989, Griebel et al. 1995,
Press et al. 1995, Braess 2003, Varga 1999)

the object cannot be determined independently of its velocity
(Vogel and Bleckmann 2001).

We can calculate the water velocity at position r caused
by a moving sphere at r0 as v(r − r0). The cupulae of lateral-
line organ number i, 1 ≤ i ≤ 180, at position ri measure
the projection vi of the water velocity v(ri − r0) onto the
direction of maximal sensitivity si of the cupulae.
vi = si · v(ri − r0), ‖si‖ = 1 (2)
We combine all cupulae of each lateral-line organ because
the different cupulae are approximately at the same position
r and point into the same direction si . Of course, Xenopus’
body influences the velocity field in the fluid. However, as
shown in Fig. 3, its influence is small.

Equations (1) and (2) show that the lateral-line response
vi of organ i is linearly dependent on the velocity w of a
moving object. By implicitly defining the vector ti , we can
therefore write
vi = ti (a, ri − r0) · w (3)
According to Eqs. (1) and (2), with pi := ri − r0, we get
for ti

a3

2r5




six(3p2

ix − p2
i ) +3siypixpiy +3sizpixpiz

3sixpiypix +siy(3p2
iy − p2

i ) +3sizpiypiz
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We combine all vi into a 180-dimensional vector v := (v1,
. . . , v180), define the 180 × 3-matrix T by its rows ti , i.e.,
Tij = (ti )j , write
v = T (a, r0)w , (4)
and get a simple linear expression to be used later on for the
measured velocities v on Xenopus’ skin, given the velocity
w, the position r0, and the radius a of the moving object.

Fig. 3 The relative difference between the approximation (2) and the
numerically calculated velocity at Xenopus’ body is color-coded. As
the differences are small (less than about 20 %, corresponding to yel-
low color), the approximation is appropriate. The calculation has been
performed on a 160 × 160 × 160 grid. The sphere moves in x-direction
right away from the frog
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3 Model A: Short-range detection

We now assume that the prey moves very near to Xenopus’
skin. In experiments, fish can localize prey that moves less
than a fish length away from the fish’s body. Moreover, in
experiments with the mottled sculpin (Coombs and Conley
1997, Coombs 1999), the fish approaches a source stepwise.
First, it turns one side of its body in parallel to the axis of
motion of the prey. Second, the fish approaches the source
frontally. The fish repeats the two steps until it is near enough
for the final strike. In the following, we develop a very sim-
ple model for underwater prey detection of Xenopus that also
accounts for experiments on the mottled sculpin.

3.1 The stimulus and its properties

A prey moves with velocity w = (wx, wy, wz) and has radius
a. For simplicity, we assume it is located in the x, y-plane.
Of course, Xenopus can only measure the projection of the
velocity field onto its skin. From (1) we get

vx(r) = a3

2

[

3
(wxx + wyy) x

(x2 + y2)
5
2

− wx

(x2 + y2)
3
2

]

. (5)

at position r = (x, y, 0). As we only account for short-range
detection here, we neglect the curvature of the frog’s skin and
assume that the lateral-line organs lie in a line parallel to the
x-axis, as depicted in Fig. 4; the fish analogy is evident.

Figure 5 shows the water velocities vx along the line
of lateral-line organs for several values of c := wy/wx =
tan α, where α denotes the angle between the lateral-line
array and w.

Say, the prey is at position (x0, d) and a lateral-line organ
is at position (x, 0). Then r = (x − x0, −d). In the follow-
ing we show that Xenopus is able to compute both the prey’s
position and the direction c of its velocity by measuring only
characteristic points, such as the zeros and the extrema of
vx(x), since these are neuronally easily accessible (Hofmann
et al. 2004). The zeros of vx are at

x± = 1

4
d
(

3c ±
√

9c2 + 8
)

+ x0 . (6)

Fig. 4 Lateral-line organs are arranged parallel to the x-axis. A prey at
position (x0, d) is moving with velocity w = (wx, wy) and has momen-
tary distance d

Fig. 5 The water velocity vx along the line of lateral-line organs for a
prey with radius a = 1 mm, distance d = 1 cm, position x0 = 0 and
prey velocity w = 0.1 m/s for different values of c. For c = 0 the graph
is symmetric. The graph becomes antisymmetric for large values of c,
when w is practically orthogonal to the lateral-line system of Fig. 4

With the abbreviations

� :=
√

9 + 8c2 (7)

and

θ := 1

3
arctan

(
3
√

3
√

54 + 117c2 + 64c4

27c + 32c3

)

(8)

the minimum of vx

xmin = 1

3
d
(√

2� cos(θ) + 2c
)

+ x0 (9)

and the two maxima are at

xmax± = d

(
2

3
c −

√
2

6
� cos(θ) ± 1√

6
� sin(θ)

)

+ x0 .(10)

As we can verify easily, the quotient

κ(c) := x+ − x−
xmin − xmax−

(11)

is a function of c only.

Fig. 6 As in Fig. 5, for c = 0 and different values of the distance d of
the prey. The distance of the zeros is proportional to d
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Fig. 7 The function κ(c) and its Taylor approximation κ(c) ≈ 2
3

√
3 +√

2
3 c + 5

√
3

24 c2 at c = 0 as well as its asymptote κ(c) = 467
768

1
c

+ 3
2 c for

c → ∞

By measuring the zeros and the extrema of vx , Xenopus
can therefore determine c, as κ(c) is a monotonic function
of c, depicted in Fig. 7. E.g. neurons that react specifically
to a maximum stimulus were found in the goldfish as well
as in the mottled sculpin (Coombs et al. 1998). As soon as c
is known the prey’s distance d can be determined from the
distance of the zeros in (6)

d = 2(x+ − x−)√
9c2 + 8

(12)

and the prey’s position x0 can be computed through

x0 = x+ + x−
2

− 3

4
cd . (13)

We note that for “small” c, e.g. c ≤ 0.5, which corresponds
to an angle of α = 26◦ between the velocity of the prey and
the skin of the frog, the distance d as determined by (12) is
approximately

d ≈ d1 := 1√
2
(x+ − x−) , (14)

directly proportional to the distance between the zeros. Fur-
thermore, because of (6)

x0 ≈ (x+ + x−)/2 (15)

with a maximum error of 3d/8. As the distance is underes-
timated for all values c > 0, the frog could continuously
approach the prey, correct its orientation, and re-measure it
until the prey is near enough.

As shown in Fig. 8, for large values of c we get

d ≈ d2 := xmin − xmax− . (16)

If the distance d of the prey is too large or if the posi-
tion x0 is far away from the center of the animal, too few
characteristic points (minimum, maxima and zeros) lie in the
range of the lateral-line organs. Therefore, the animal can no
longer determine the three unknowns c, d, and x0 by con-
sidering characteristic points of vx only. E.g., if c = 0 and

Fig. 8 Relative error d2/d − 1 in the approximation of the distance d
of (16) in dependency of c. The approximation is exact for c → ∞

d > (length of the animal)/
√

2, the distance x+ − x− be-
tween the zeros of vx becomes larger than the length of the
animal. In fact, experiments show that the longer a fish, the
further away a given source can be detected (Denton and Gray
1989, Kalmijn 1989). On the other hand, if x0 is “too” far
away, the performance of the fish decreases (Coombs 1999).

3.2 Neuronal model

Xenopus has only inexact information about the velocities vx

because the velocities are encoded by the number of spikes
that occur in the lateral-line nerves during a certain period of
time, which must be assumed to be shorter than the response
time of Xenopus, about 500–700 ms (Claas and Münz 1996).
The neuronal model described below shows that the informa-
tion Xenopus gets about the velocities vx suffices to determine
the distance d of the prey as well as its location x0.

The firing rate of a lateral-line nerve in Xenopus depends
logarithmically on the water velocity if the velocity is above a
threshold of about vϑ := 0.05 mm/s. The firing rate increases
by about 40 Hz when the velocity doubles and saturates at
350 Hz for velocities beyond 10 mm/s. Below threshold, the
(spontaneous) firing rate is about 50 Hz (Görner 1963), cf.
also Strelioff and Honrubia (1978). We therefore model the
firing rate r(v) by

r(v) =






50 for v < vϑ

50 + 40 ln
(

v
vϑ

)
/ ln(2) for v ≥ vϑ

350 for large v

(17)

Each lateral-line organ is innervated by two nerves; the firing
rate in one nerve increases for positive velocities vx and vice
versa. For a given vx , the firing rate in a nerve sensitive for
positive velocities is r(vx) so that the expectation value of the
number of spikes that occur during a time TR is TR r(vx). In
simulations TR was set to be 500 ms. The number of spikes
that occur in a nerve during an “experiment” is modeled as
a Poissonian distribution with mean TR r(vx). We denote by
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#{r(vx)|TR} the number of spikes of a concrete realization
of the process in a time interval of length TR . To account
for the information encoded in both nerves, one sensitive for
positive velocities and the other one for negative velocities,
in the neuronal model we estimate the velocity vx at a certain
lateral-line organ by

vest = γ [#{r(vx)|TR} − #{r(−vx)|TR}] (18)

so that vest tends to be positive for vx > 0 and negative
otherwise. In the present context, γ is an irrelevant propor-
tionality factor. We calculate velocities vest for each lateral-
line organ in an array of 50, with a distance of 1 mm between
them. Then c is estimated by inverting κ(c) in (11).

If c < 1.5, which corresponds to an angle of 56◦ between
the velocity of the moving prey and the row of lateral-line
organs, the model takes (12) to estimate the distance d and
(13) to estimate the position x0 of the prey. Else, the model
takes (16) and x0 ≈ (xmin + xmax−)/2. A neurophysiological
hint that the neuronal system indeed uses the zeros of vx is the
fact that in the mottled sculpin there are neurons that react to
a change in the sign of the pressure gradient (Coombs 1999).
Simulations are shown in Figs. 9 and 10.

4 Model B: Optimal Xenopus

As yet there are no neuroanatomical data suggesting or sup-
porting any model so that in addition to model A we now
investigate a minimal model here, viz., answering the ques-
tion of how Xenopus reconstructs the velocity of the moving
object that has the highest probability under the influence
of omnipresent noise. There are experimental data, however,
clearly indicating the animal’s ability to chase after small fish
under water (van Netten 2005, personal communication). We
suppose that in Xenopus’ neuronal system, the velocity w of

Fig. 9 The distance estimated by the neuronal model versus the true
distance of the prey during 10 trials for each distance. The model param-
eters are c = 0, w = 10 cm/s, and a = 1 mm. At large distances (here
about 2 cm) the model tends to undershoot the distance d whereas for
small d it is quite accurate. Experiments with the mottled sculpin show
the same trend (Coombs and Conley 1997)

Fig. 10 As Fig. 9 but for c = 100. The velocity of the prey is now nearly
perpendicular to the line of lateral-line organs. As is to be expected, the
estimated distance scatters around the exact value

the moving object and its position r0 are determined by a
maximum likelihood estimator. We thus have to maximize
the likelihood or probability (van der Waerden 1969)

p(v|w, r0) (19)

of the measured water velocities v = (v1, . . . , v180) at the
lateral-line organs given the velocity w and the position r0 of
the prey. As in model A, the only information that Xenopus
has to determine the water velocities on its skin are action
potentials coming from the nerves of the lateral-line system,
resulting in inevitable errors.

Here we model these errors by adding a Gaussian ran-
dom variable ni with a standard deviation σn to the measured
projections vi of the water velocities onto Xenopus’skin. Al-
though a Poissonian distribution of action potentials as taken
in model A may be more appropriate, with Gaussian white
noise the problem is mathematically tractable. We rewrite (3)
as the exact velocity plus noise vi = ti (a, ri − r0) · w + ni .
The likelihood in (19) is then

p(v|w, r0) = 1
√

2πσ 2
n

180 exp

(

− 1

2σ 2
n

180∑

i=1

ni(w, r0)
2

)

,

which can, according to the notation of (4), be written

p(v|w, r0)= 1
√

2πσ 2
n

180 exp

{
− 1

2σ 2
n

[v − T (a, r0)w]2

}
.

(20)

Instead of maximizing the likelihood, we maximize its log-
arithm ln p(v|w, r0) so that we just have to maximize the
expression

L(w, r0) := −[v − T (a, r0)w]2 (21)

with respect to w and r0. Maximization with respect to w
gives as a necessary condition

∂L

∂w
(w, r0) = − 2

σ 2
n

(
T T v − T T T w

)
∣∣∣∣
w=ŵ

= 0
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Fig. 11 The figure shows L(ŵ, r0) of model B’s Eq. (21) at different
positions r0 of a moving sphere. The sphere has a radius a = 2 cm and
moves at velocity w = (0, 1 m/s, 0) at position (0, 0.1 m, 0). Xeno-
pus is assumed to have 180 lateral-line organs arranged, for the sake
of computational convenience, in two circles in the x, y-plane, where
90 organs are most sensitive for velocities tangential to the boundary
of the circle and 90 organs are most sensitive for velocities in z-direc-
tion. For simplicity, there was no noise, i.e., σn = 0. At the position
(0, 10 cm, 0), where the sphere is located, L has a maximum. That is,
the position of the sphere can be determined

for the maximum ŵ, which leads to the linear system of equa-
tions
(
T T T

)
ŵ = T T v .

If we denote the pseudo-inverse (Press et al. 1995) of the
matrix T T T by

(
T T T

)†
, the solution with minimal ‖w‖ is

ŵ = (
T T T

)†
T T v where T = T (a, r0). Figure 11 shows

numerical results for L(ŵ, r0) at different positions r0 of a
moving sphere. Figure 12 shows that it is not only possible to
reconstruct the position but also the velocity of the moving
sphere.

To test whether it is still possible for Xenopus, using the
method suggested here, to determine the position of a sub-
merged moving sphere under noisy conditions, noise was
applied to the simulation shown in Fig. 13. A standard devi-
ation of the noise of σn = 10−4 m/s seems plausible be-
cause this is the velocity threshold for Xenopus’ lateral line
organs (Bleckmann 1994). Clearly, Xenopus could still deter-
mine the position of a moving sphere under noisy conditions.
Figure 14 shows that it is indeed possible to determine the
distance under noisy conditions independently of the velocity
of the moving sphere.

5 Discussion

It is as yet unknown how precisely under-water detection of
moving objects by fish and other animals works, performed
solely by analyzing the local water velocities caused by the
moving object. The model presented here demonstrates how

Fig. 12 The upper panel shows L(ŵ, r0) (color-coded) of model B
with the same parameters as in Fig. 11. The arrows additionally indi-
cate the directions ŵ/|ŵ| of the reconstructed velocities of the mov-
ing sphere at different assumed positions r0 of the sphere. At the true
position (0, 10 cm, 0), the reconstructed direction of the velocity ŵ =
(0, 1 m/s, 0) is accurate. In the lower panel, the velocity of the moving
sphere is ŵ = (1, 1, 0), which is also reconstructed appropriately

Xenopus could in principle accomplish localization of a mov-
ing object by using the inputs from the lateral-line organs
only. Both models are able to localize moving objects. Model
A is a neuronal model that performs short-range localiza-
tion only from characteristic points (minimum, maxima and
zeros) of the measured water velocities vx and is thus robust
against almost any monotonic nonlinear distortion of vx by
nonlinear neuronal transducers. Model B can even localize
the object in full three dimensions, as well as determine its
velocity and 3d-direction of motion. Model B also accounts
for the fact that Xenopus uses 180 lateral-line organs that are
distributed around its body and have different orientation.
In contrast, for model A a linear arrangement of lateral-line
organs with a single orientation is sufficient, as found in many
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Fig. 13 The dots show the positions r0 where L(ŵ, r0) had a maximum
in 25 different runs. The position of the moving sphere with velocity
w = (0, 1 m/s, 0) was at 10, 20, 30 cm and at infinite distance in y-
direction from left to right and top to bottom. The standard deviation
of the noise is σn = 10−4 and all other parameters are the same as in
Fig. 11. Although noise is present, the position of the sphere can be
determined rather accurately up to about 30 cm

fish. The models developed here for superficial neuromasts,
i.e. velocity detectors, can in principle also be applied to
many fish, e.g. goldfish, that use their superficial neuromasts
to detect prey in still water (Vogel and Bleckmann 2001).

Fig. 14 Same type of plot as in Fig. 13. The y-coordinate of the moving
sphere is fixed at y = 20 cm while its velocity is w = (0, 1 m/s, 0),
(1 m/s, 0, 0), (0, −1 m/s, 0), and (−1 m/s, 0, 0) from left to right and
top to bottom. Xenopus being at the origin, its performance is best when
the prey’s position r and velocity w are parallel and worst when r and
w are perpendicular
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