
PRL 95, 078106 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
12 AUGUST 2005
How a Frog Can Learn What Is Where in the Dark
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During the night 180 lateral-line organs allow the clawed frog Xenopus to localize prey by detecting
water waves emanating from insects floundering on the water surface. Not only can the frog localize prey
but it can also determine its character. This suggests waveform reconstruction, and a key question is how
the frog can establish the appropriate neuronal hardware. Detecting time differences arising from the input
on the skin is a key to neuronal information processing, and spike-timing-dependent synaptic plasticity
(STDP) therefore seems to be the natural tool. We show how supervised STDP allows a frog to learn what
is where in the dark. Learning can also be derived from a minimization principle.

DOI: 10.1103/PhysRevLett.95.078106 PACS numbers: 87.19.Bb, 05.40.2a, 87.18.2h, 87.19.La
In nature animals interact with their surroundings, and,
conversely, their surroundings influence the way in which
their brain and, hence, their handling of sensory data
develop. In so doing they ‘‘learn,’’ and questions that
have tantalized learning theory for so long are whether or
not a neuronal system needs a teacher and, if so, who is
teaching and how?

Sensory input arrives as a spatiotemporal activity pat-
tern. Learning happens in general at the level of synapses,
and there is a detailed biophysical theory describing how
synapses learn as they are driven by their presynaptic and
postsynaptic neurons. Here we study the clawed frog
Xenopus laevis laevis, an aquatic animal living in ponds
and hunting at night for insects floundering at the water
surface. This prey generates surface waves that activate
about 180 receptor organs on the frog’s skin and, hence, the
underlying lateral-line system [1] in the frog’s brain.

Not only can the frog determine a prey direction but it
can also determine its character, say, edible or not. How
does it do so? We have shown [2] that neurons can perform
a waveform reconstruction, which solves the problem—
except for the key question of how a frog attains the
neuronal ‘‘hardware’’ needed to do the waveform recon-
struction job. Here we suggest a solution to this problem by
indicating how this can be done through supervised learn-
ing with, e.g., the visual system of a young frog as teacher.
Learning now means supervised spike-timing-dependent
synaptic plasticity handling input patterns as they evolve in
space and time.

The lateral-line system of Xenopus has 180 sensory units
measuring the local water velocity. Each receptor projects
to afferent fibers that lead to the medulla in the central
nervous system. All fibers possess identical response char-
acteristics. For comparison, the visual system [3] of a
human has millions of light-sensitive receptors with differ-
ent characteristics, and in the human ear [4] there are about
3500 inner hair cells sensitive to different frequencies and
levels of loudness. In contrast, the lateral-line system has
relatively few organs of only one type. Their anatomy [1] is
relatively simple.
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The sensory organs project to the medulla, and from
there via the torus semicircularis to the optical tectum.
Here the visual and the lateral-line systems ‘‘meet’’ and
form maps [5] in register with each other [6]. There we also
find bimodal neurons that react to a visual as well as a
lateral-line stimulus [6]. The neuronal model presented
here reveals how the two simplest tasks of a remote sensory
system, namely, to determine what happens where, may be
performed and learned by a single neuronal circuit.
Computer simulations support the underlying ideas and
show that the learning algorithms are feasible, given the
known constraints of neuronal hardware.

Each of the 180 lateral-line organs on the skin of
Xenopus’ body consists of 4–8 cupulae [1] being deflected
proportionally to the local water velocity [7]. This deflec-
tion is transferred into action potentials (spikes) in the
nerve fibers attached to the lateral-line organs.

The deflection yi�t� of the cupulae of lateral-line organ i
at time t is taken proportional to the local water velocity
and thus a linear function of the stimulus xp at direction p
on the water surface. We therefore write

yi�t� � �hpi ? x
p��t� �

Z 1

�1
hpi ���x

p�t� ��d�; (1)

where hpi is the impulse response at cupula i while being
stimulated by a Dirac delta impulse at direction p on the
water surface, the star ? denoting convolution. The Fourier
transformation of the impulse response hpi is the transfer
function [2]Hp

i �!� �
R
hpi �t� exp��i!t�dt. For the sake of

simplicity we discretize the directions p, here 180
altogether.

Xenopus is able to distinguish different wave sources,
say, 17 and 18 Hz, presented simultaneously at different
positions on the water surface so that they impinge on the
frog in an overlapping fashion. In principle, it can recon-
struct [2] the waveform at its origin through neuronal
hardware by minimizing the expectation value of the qua-
dratic error

R
�x̂p�t� � xp�t��2dt between be the true wave-

form xp of the source and its estimate x̂p. With �x denoting
the standard deviations of Gaussian wave source noise and
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FIG. 1. Power spectrum jSp�!�j of a theoretical reverse trans-
fer function computed from (6) (solid line) and power spectra of
learned reverse transfer functions according to (4) after different
numbers of learning steps (see legend, � � 10�5). White noise
(�x � 1) at random angles 10 cm away from the frog was used
as learning stimulus. As the number of learning steps increases,
the learned transfer functions converge to the theoretical result.
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�n of additional Gaussian white noise added to the de-
flections of the receptor organs and � :� �n=�x, the so-
lution is [2]

x̂ p �
X
j

spj ? yj; Spj �!� �
Hp�
j �!�

�ijH
p
i �!�j

2 
 �2 : (2)

A reverse impulse response spj may be computed from its
given Fourier transformations Spj , the reverse transfer func-
tion. The transfer functionHp

i , as given in [2], as well as its
complex conjugate Hp�

i , depend on the position p an
animal is interested in.

Say a prey has position p. The Kronecker delta �p;p0 � 1
if p � p0, otherwise 0. To learn where the prey is as well as
what waveform xp it generates, let us assume that Xenopus
somehow minimizes the expectation value of

E �
X
p0

Z
�x̂p

0
�t� � �p;p0xp�t��2dt; (3)

where the sum is over all different directions p0 on the
water surface. This minimization ensures that, first, the
reconstruction x̂p

0
resembles the source xp as closely as

possible if p0 � p and, second, when reconstructing at the
wrong position p0 � p, it is as close to zero as possible.
The source can therefore be localized by calculating x̂p

0
for

every position, choosing position p where the norm kx̂pk of
the reconstruction is maximal.

Let us suppose a learning neuronal system uses the
simplest optimization procedure, a ‘‘steepest descent.’’ It
is, for the moment, learning by adapting the reverse im-
pulse responses spj in the direction of the negative func-
tional derivative of the error E of (3),

	sp
0

j ��� � ���E=�sp
0

j ���; (4)

where � is a (small) learning parameter. Using the expres-
sion for x̂p from (2) we find

�E

�sp
0

j ���
� 2

Z �X
i

�sp
0

i ? yi��t� � �p;p0xp�t�
�
yj�t� ��dt:

(5)

The solutions sp
0

j of the minimization problem can also be

computed by solving (5) for �E=�sp
0

j ��� � 0 directly,
which leads, after Fourier transformation, to the linear
system of equations

X
i

�X
p
Hp�
j H

p
i 
 �2�ij

�
Sp

0

i �
X
p
�p;p0Hp�

j : (6)

Figure 1 shows a comparison between the power spectrum
jSp�!�j of a theoretical reverse impulse response sp and
that of the numerically learned one after different numbers
of learning steps.

Convergence of the model based on (5) is very slow.
Furthermore, according to the authors’ experience, a
‘‘map’’ of reconstruction norms as suggested above still
07810
contains a good deal of randomness, which depends on the
specific learning procedure. Reconstruction quality is
strongly influenced by noise. Hence we suggest to replace
the ‘‘sharp’’ � expression �p;p0 in (3) and thus in Eqs. (5)
and (6) by a larger window of reference F�p;p0�, e.g., the
Gaussian

F�p;p0� � expf��’�p� � ’�p0��2=�2�2
’�g; (7)

which depends on the angular difference ’�p� � ’�p0�
between the actual position p of a prey and the reconstruc-
tion position p0.

The underlying idea is the following and is, in fact,
biological. We cannot expect the error E of (3) to become
exactly zero because the norm kx̂pk is a smooth function of
p so that at neighboring positions the reconstructions are
bound to ‘‘look’’ similar. So for discrete directions we
replace the Kronecker delta by a finite window F�p;p0�
and minimize

EW �
X
p0

Z
�x̂p

0
�t� � F�p;p0�xp�t��2dt: (8)

Figure 2 shows the result of a numerical simulation with a
window of reference.

A neuronal implementation of the model developed
above has to solve two problems. First, how is the wave
source reconstruction x̂p computed according to (2), given
the functions si? Second, how are the latter found through a
learning process?

A neuron whose membrane potential approximates the
convolution of (2) is depicted in Fig. 3. We denote the so-
called ‘‘spike train’’ by ypik. This is the sequence of spikes
that arrive from lateral-line nerve fiber i at synapse k of the
neuron that is responsible for a reconstruction of the wave
source at position p. The spike train is the same as that
coming from the lateral-line nerve, only delayed by a time
	p
ik. If fi denotes times when spikes are generated in

lateral-line nerve i, then
6-2
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FIG. 2. A model minimizing the error EW from (8) has been
learned applying the method of Fig. 1 with the window of
reference (�’ � 14�) of (7) for 200 000 times. The figure shows
a map of norms of reconstructions kx̂pk (thick solid line) at
different angles ’�p� around Xenopus. As expected, the norm is
maximal where the actual test stimulus is, viz., at 0�, 10 cm right
in front of Xenopus. Moreover, at 0� the model reconstructs
(solid line in the inset on the right) the given test stimulus
(sinusoidal with amplitude 1, dashed line in the inset) quite
well. At angles far off ( � 180� in the inset on the left), the
reconstruction is basically noisy with a low amplitude. The
Gaussian white noise added to the deflections yi of the lateral-
line organs has a standard deviation of �n � 0:01.
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ypik�t� �
X
fi

��t� fi � 	p
ik�; (9)

where � denotes the Dirac delta function describing an
action potential. Each spike arriving at a synapse generates
a membrane potential "�t�. Denoting synaptic strengths by
Jpik, we can compute the membrane potential Vp of a
neuron, modeled as a spike-response neuron [8],

Vp�t� �
X
ik

Z 1

�1
Jpik"�t� ��ypik���d�: (10)

For simulations, we take "�t� � t=�2s exp��t=�s� for t � 0
and "�t� � 0 for t < 0, with a synaptic time constant �s �
10 ms. The membrane potential Vp�t� of our neuron at time
t should closely resemble the deflection xp�t� T� of the
source at a time t� T in the past so that we are able to
construct a causal system with 	p

ik � 0. Accordingly, the
neuronal learning process should minimize the error,

EN �
X
p0

Z
�Vp0

�t� � F�p;p0�xp�t� T��2dt:
j

y
j

V

+

− ∆
J

∆

j1

j1 jk

Jjk

FIG. 3. Circuit diagram of a neuron with membrane potential
V that is connected to lateral-line nerve fiber j by excitatory (full
circles) and inhibitory (open circles) synapses with synaptic
strengths Jjk and delays 	jk. The neurons labeled by ‘‘
’’ and
‘‘�’’ signs accommodate the observation that a single fiber can
have synapses of only one type, excitatory or inhibitory.
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After substituting Vp0
from (10), minimization with respect

to Jp
0

ik leads to the learning equation

	Jp
0

ik � �2�
ZZ 1

�1
�Vp0

�t� � F�p;p0�xp�t� T��yp
0

ik���

� "�t� ��d�dt: (11)

The ‘‘teacher’s’’ feedback F�p;p0�xp�t� T� is provided
through synapses with strengths F�p;p0� and projecting
from the visual system to the lateral-line ‘‘map.’’
Equation (11) is similar to a more general learning rule [8],

	J � �
ZZ 1

�1
yout�t�yin���W��� t�d�dt; (12)

where yin is the input spike train as in (9), yout the output
spike train, and W the learning window. If we identify yin
with yp

0

ik and set W�t� � �2"��t�, Eqs. (11) and (12)
match. We just have to give the original stimulus xp as
additional inhibitory input to our neuron, delayed by T and
weighted by the window of reference so that its output
spike train yout approximates the function Vp0

�t� �
F�p;p0�xp�t� T�. As it is not known yet for sure which
learning rule real neurons implement, the authors have
used the more exact (11) for the simulations.

In experiments [9], the frog turns into the direction of a
wave caused by a moving plunger. In Fig. 4, the model frog
can even discern two simultaneous stimuli, just as in
experiment [10]. The Xenopus model of Fig. 5 learns to
localize the prey with high accuracy after 50 000 learning
steps (about one day of practice).

Action potentials in the lateral-line nerves are generated
by an inhomogeneous Poisson process approximating the
real input-output characteristics [11] of the lateral-line
organ. Nerve i generates an action potential in the time
FIG. 4. A map of 180 neurons learned to reconstruct the source
at 180 positions arranged in a circle with radius 10 cm around
Xenopus. After 50 000 learning steps, i.e., presentations of
Gaussian white-noise stimuli during 2 s, performed according
to (11), the map is able to accurately localize both of two
simultaneous wave sources at ’ � �45� (17 Hz) and 45�

(18 Hz). In addition, the neurons indicating the respective angles
reconstruct the wave source (solid lines in the insets). The delays
	p
ik, k � 1; . . . ; 100, of (9) are randomly distributed in an interval

of 500 ms. In this way the animal could easily distinguish
position and waveform of the sources. As �’ (here 14�) be-
comes larger, the two ‘‘hills’’ become broader and the discrimi-
nation ability of Xenopus decreases accordingly.
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FIG. 5. Xenopus’ simulated response angle versus stimulus
angle ’ during 25 trials at angle ’ � n� 5�, �36< n � 36.
Xenopus was assumed to turn into the direction ’�p�, such that
the model response kVpk of the neuron reconstructing the
stimulus at position p is maximal. The neuronal system has
learned as in Fig. 4. The frog’s performance is excellent.
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interval �t; t
 dt� with a probability of ��Ryi�t� 
 Rs�dt,
R � 300 Hz, giving realistic spike rates lower than about
150 Hz and spontaneous rates Rs � 10 Hz [12]. The nega-
tive sign is for nerves that are excited by negative deflec-
tions yi�t�< 0. Action potentials generated by Gaussian
random noise produce the feedback F�p;p0�xp�t� T� in
(11). The postsynaptic potential " for the feedback is the
same as above.

The model presented here shows how Xenopus can learn
how to localize prey. It is based on realistic properties of a
neuronal system. Moreover, it also learns an internal rep-
resentation of the wave source at its origin that would al-
low the frog to discern different kinds of prey. The model,
based on a minimization principle, is so general that it can
learn any linear relationship between a reference input and
sensory input. It solves the problem of determining what is
going on where through a map of neurons indicating by
their activity where the source is and by their activity
pattern what kind of stimulus it is, independently of its
origin.

The model may well be applicable to other animals, such
as crocodilians that use about 2000 dome pressure recep-
tors on their face to localize prey [13]. Fish use canal
organs to measure water accelerations [14]. The barn owl
uses visual feedback to match its auditory prey localization
[15] to its visual system [16]. Many animals use indepen-
dent sensory systems like vision, audition, the equilibrium
sense, and tactile senses that have to work together to form
some representation or ‘‘picture’’ of the outer world in the
animal’s brain.

The exact kind of feedback Xenopus needs to calibrate
its neuronal system is not known yet. One possibility is that
07810
its eyes are designed to view accurately in air, i.e., above
the water surface [1]. In the barn owl, visual input guides
auditory plasticity. The visual activity that results from a
bimodal stimulation encodes the mismatch between spatial
representations of auditory and visual stimuli [16] in the
nucleus where learning takes place, just as what we assume
here for Xenopus.

It would suffice if Xenopus were able to see the prey
moving only during the learning phase. There is no need to
observe the water surface at the wave’s origin directly as
we can assume a linear coupling between the prey’s move-
ments and the waveform of the source. If so, just the prey’s
movements as being observed by the eyes would be
matched with the lateral-line input, which would be per-
fectly adequate to distinguish different kinds of prey.

Finally, the present model suggests that experimentally
observed and theoretically analyzed learning ‘‘rules’’ [8]
like Eq. (12) might be derived from an error minimization
principle. The minimization procedure leads to an exact
learning window that can be used in the learning rule but
also in applications, whenever two sensory modalities,
such as a visual and mechanosensory one, shall be matched
or in underwater localization.
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