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A simple, non-mean-field explanation of spin canting and reentrance is presented and applied to spin-
glasses. It is shown that the competition between ferromagnetic short-range order and a long-range in-
teraction of the Ruderman-Kittel-Kasuya-Yosida (RKKY) type is responsible for the canting transition.

Ferromagnetism on a site-diluted lattice with ferromag-
netic nearest-neighbor interactions is possible only if! the
concentration ¢ of the magnetic moments (spins) exceeds
the percolation threshold ¢, If ¢>c¢, one finds a
paramagnetic-to-ferromagnetic phase transition at a critical
temperature 7,.. Metallic spin-glasses, such as AuFe, have
not only a ferromagnetic short-range interaction? but also a
long-range, Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction with randomly oscillating sign, and they exhibit!-3
a second transition to a spin-glass state at a still lower tem-
perature Ty. This transition is commonly called reentrance.
Below T, spin canting sets in, i.e., the spins rotate away
from a certain axis determined by, say, the external field*
and they acquire static transverse-moment components. Fi-
nally, at a still lower temperature 7', torque experiments’
reveal a strong irreversibility in the magnetization process,
signalling the occurrence of many metastable states.

Up to a certain extent, these phenomena can be explained
by means of a mean-field theory,® which predicts a series of
transitions agreeing roughly with the ones indicated above.
However, it is difficult to decide unequivocally which exper-
imental feature is to be identified with a specific model tran-
sition. Moreover, one might wonder whether the transi-
tions persist if the interactions are not infinite range. Within
the context of equilibrium statistical mechanics’ we present
in this paper a simple physical argument that proves the
possibility of both reentrance and spin canting for realistic
interactions.

The relevant interactions in a metallic spin-glass consist of
a fairly strong, ferromagnetic short-range part (whose influ-
ence increases with ¢) and an RKKY-type interaction which
is weaker, but has a much longer range. The conduction
electrons of the metallic host, which have a finite mean free
path R, mediate the RKKY interaction. Though R greatly
exceeds the average minimal distarice between two spins, it
places an upper bound on the range of the interaction.

To simplify the discussion we start by assuming that the
spins are on a regular, hypercubic lattice in d=3 dimen-
sions, and take the XY Hamiltonian

H=-J33()3()+2 3 ﬁmg(i)-‘su),
o |i—';|=g5R =/
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where the S(i) are classical two-component spins. The first
sum in (1) is over nearest neighbors. The second, which
contains anti ferromagnetic terms only, models the long-
range part of the interaction and gives rise to frustration.?
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As yet there is no randomness. We can write S
-S(j) =cos(8,—8,). By assumption, 0 < € << Jq.

There is a stable ferromagnetic phase with a critical tem-
perature T, for e=0. It persists for € small and T just
below T.(e). We now show that the ferromagnet becomes
unstable as we lower 7. More precisely, for T low enough
there is a ‘‘canted’’ state with a lower free energy.

According to the variational principle® an equilibrium state
p minimizes the free energy u(p)— Ts(p) where u(p) and
s(p) are the energy and entropy per spin, respectively. If
we show that there is another state p with s(p) =s(p) but
u(p) > u(p), then p cannot be an equilibrium state any-
more. We write (&#),=Tr(p &) for any observable & ; in
the classical case the trace is replaced by an integral.
Though our notation suggests a large but finite system, we
implicitly assume that the infinite-volume limit has already
been taken.’

Suppose it were possible to have a ferromagnetic equilibri-
um state p which was stable down to low T. Every equilibri-
um state may be decomposed uniquely into its ergodic com-
ponents,” so we may assume that p itself is ergodic and,
hence,

Jim  (S()30G),= lim (S(),- S p=m? .
2

Since p is ferromagnetic, the spontaneous magnetization m
is strictly greater than zero for T < T, and increases as 7T is
lowered. Plainly,

SG)8(D)Y, > Fm?, i li—jl > k(e) . 3)

To simplify the ensuing formulae it is assumed that
k(e) =1, this is not a serious restriction.

The angle 6; characterizes the spin at i Let R:F6,
=0, +i(w/M) for i=(i,...,i;) and M a positive in-
teger. The operation R, rotates all the spins in a layer per-
pendicular to the 1 axis through /M with respect to the
previous layer. Whereas the state p itself is translationally
invariant, the canted state Ryp defined by Rpyp(&)
=(Ry &), for any observable & , is periodic with period
2M in the 1 direction and has no spontaneous magnetiza-
tion. Accordingly,

p=+(Ryp+ Rizp) )

has no spontaneous magnetization either. It has a periodic
long-range order of period 2M. The quantity M, which is
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still at our disposal, may be thought of as a typical cluster
size.
Since the entropy is affine,!?

s(p)=%s(Rifp)+ +s(Rizp)=s(p) .

Here we also utilize the fact that Ry, is induced by a unitary
transformation, which leaves the entropy invariant. Turning
to the energy, we use the formula

- %—[cés(x+y)+cos(x—y)]=cos(x)cos(y)
and find, with p on the left and p on the right,
(_S'(i)-—S'(j))‘-,= (8(i) -S(j))cosl (iy— j1)m/M] . )

In passing we note that precisely the same formula holds in
the quantum case. Taking advantage of (5) we now com-
pare u(p) with u(p) and show that u(5) < u(p) for suit-
able M and T low enough.

In the ferromagnetic state p the mean energy u(p) is in
first approximation given by

ulp)=—zJgU+em? 3" |jl-@+o) ()

' /<R
where U= (S(i)-S(j)), is the interaction energy between
nearest neighbors (there are z of them) and the primed sum
indicates that j =0 has to be excluded. There is a Uy> 0

such that U= U, for T<2T. because p is ferromagnetic.!! -

On the other hand, in the canted state we get
u(p)= —zJyUcos(w/M)

+em2|;' |jl~ 4+ cos(arji /M) @)
/I<R

so that
u(p)—u(p)= —z,Ull—cos(w/M)]
" jlm9* 1 —cos(mjy /M) .
=R
8)

The first term in the right-hand side of (8) is negative for
all M. The second is positive. Their sum may have either
sign; the sign depends on M and m=m(T). We now ex-
ploit our freedom to vary T and choose M suitably.

There are two interesting cases, 0 <o <2 and o<0,
which we consider in turn. We first take 0 < o < 2 and
suppose M >> 1. Then the first term may be written
- (n}-z.loU'zrz)M‘25 —aloUM~2  Since M is large, the
summation over j in the second term may be replaced by a
d-dimensional integral. Making the change of variables
X — MTX we then find the dependence upon M,

+em?

M'”ﬂTI‘R/Md'ili’l“("*")[l—cos(‘n'xl)]
=M""¢,(R/M) . (9)

The function ¢,(R/M) increases from zero as M decreases
from infinity, and approaches a finite value b for M < R,
say. And this is precisely the range of M we are interested
in. The point is that as (R/M)— 0, the function
¢4 (R/M) decreases as (R/M)?~7, so that the last term in
(8) behaves like (em?R?*~7)M~2, i.e., like the first term
—except for the sign. For large M we want the ferromag-
netic phase to dominate and, therefore,

zJoU > em*R?~° (10)

The antiferromagnetic interaction was required to be
“weak’> and we now have made this more precise.!? Just

below 7T, the ferromagnetic phase dominates. Hence,
M<R.
Collecting terms we obtain
ulp)—u(p)=—alyUM 2+ em?bM~° , an

where a and b are geometrical constants independent of M.
We maximize the right side of (11) with respect to M so as
to find a positive maximum (o < 2) provided

m?= (2aJyU/cbe) M*~2 =» M ~ (JoU/em?)V2=9)  (12)

Since M < R, condition (12) cannot be realized if m(7T) is
too small, i.e., just below T,. However, m(T) increases as
T decreases and at a certain T= T, < T, condition (12) can
be realized so that #(p)—u(p)=0. A canted state with
period approximately R appears and we have reentrance.
Surprisingly, the cluster size M decreases as the temperature
is lowered. This argument might provide an explanation of
the mechanism postulated by Malozemoff, Barnes, and Bar-
baral> who assume that the cluster size diverges as T ap-
proaches Ty from below. If at low temperatures the period
M becomes comparable with the distance between the spins
and the assumption M >> 1 breaks down, then we expect
many equivalent, low-lying states separated by relatively
small energy barriers and, thus, a crossover to irreversibili-
ty. There is no reason for yet another phase transition.
One might argue that at low T also the classical approxima-
tion breaks down and one has to take quantum spins in-
stead. However, the whole setup, in particular Egs.
(5)-(11), needs no modification for quantum spins.

Including a magnetic field along a certain direction in the
xy plane does not change the argument either. The field
stabilizes the ferromagnetic phase through a negative, con-
stant term in the right-hand side of (11) but, as the tem-
perature is lowered, the total energy difference still can be-
come positive, i.e., canting is advantageous.

Reasoning much as before, one easily verifies that for
o =<0 the right side of (11) is maximized if M = R, what-
ever m(T) and, thus, T. Depending on € we may get a
reentrance, but below T, no T-dependent canting.

For Heisenberg spins in not too strong an external field
one may use the above arguments down to 7. Without an-
isotropy the system then will undergo a transition into a
““spin-flop”’ state with the spins perpendicular to the exter-
nal field, except for a small longitudinal component. Below
Ty, the transverse components are frozen in a canted state
whose period M is still determined by (12). Anisotropy!* is
expected to modify the picture, however. Indeed, this may
be illustrated by the rich variety of phenomena which occur

 in heavy rare-earth metals.’> Note, however, that in these

metals the ferromagnetic phase is stable only at low tem-
peratures and that the present theory deviates rather strong-
ly from the traditional type of argument, whether spin-wave
or mean-field, in that the short- and long-range interactions
are treated on a different footing.!!

In a spin-glass we have site disorder and, therefore, the
gist of our argument still applies. To see this, replace SGi)
in (1) by £S(i) where £;=1 or 0 according to whether the
site iis occupied or not. Arguing as before and applying the
ergodic theorem!® one finds that u(p)—u(p), a spatial
average, is still given by the right-hand side of (8) provided
one makes the substitutions Jo— cJo and €— ce. The



point is that we want to show that the ferromagnet is un-
stable at low temperatures. In fact, the precise form of the
short-range interaction is immaterial. The only requirement
is that it is mainly ferromagnetic and percolates through the
lattice. This type of interaction certainly favors short-range
ferromagnetic order!-2 as it indeed occurs in spin-glasses. In
our model, the long-range RKKY interaction (o=0)
breaks the long-range ferromagnetic order at T,< T
through canting, but, owing to the disorder, the system now
decomposes into clusters with different canting period.
Again we must expect an equation of the form (11) to com-
pare the energies of the ferromagnetic and the canted,
spin-glass state. The physics behind this is a simple energy
argument: canting respects the short-range order, which is dis-
torted- at low cost of energy, while energy is gained via a
long-range, RKKY-type interaction. Accordingly, we expect
spin waves, i.e., delocalized elementary excitations, to per-
sist below T, Recent neutron scattering measurements!’
are consistent with this observation. If, at very low tem-
perature, the canting period becomes comparable with the
distance between the spins, our argument suggests the oc-
currence of many metastable states and, hence, a crossover
to irreversibility. A more detailed explanation of the cant-
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ing structures would critically depend on the nature of the
anisotropy, which is not very well understood yet.

The relevance of the interplay between ferromagnetic
short-range order, and long-range interactions has been con-
firmed by Cable, Werner, Felcher, and Wakabayashi'® who
showed the presence of a long-period spin modulation in
CuMn, with concentration dependent period M. Fixing the
temperature and increasing the concentration ¢, they found
that M decreased with c, in agreement with (12). Here, Uis
of the order unity, and Jy and € scale with c. However, the
system gets relatively colder as we increase ¢ so that m in-
creases also. Hence, we get a decrease in M.

Summarizing, we have argued that the competition
between ferromagnetic, short-range order, and a long-range
interaction of the RKKY type is responsible for the canting
transition. In fact, canting does not occur in short-range
spin-glasses such as (EuSr)S. Moreover, the present argu-
ment allows a conceptually simple, physical explanation of
the phenomena related to spin canting and reentrance.
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