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Models that describe qualitatively and quantitatively the activity of en-
tire groups of spiking neurons are becoming increasingly important for
biologically realisticlarge-scale network simulations. At the systems and
areasmodeling level,itis necessary to switch the basic descriptional level
from single spiking neurons to neuronal assemblies. In this article, we
present and review work that allows a macroscopic description of the as-
sembly activity. We show that such macroscopic models can be used to
reproduce in a quantitatively exact manner the joint activity of groups of
spike-response or integrate-and-fire neurons. We also show that integral
as well as differential equation models of neuronal assemblies can be
understood within a single framework, which allows a comparison with
the commonly used assembly-averaged graded-response type of models.
The presented framework thus enables the large-scale neural network
modeler to implement networks using computational units beyond the
single spiking neuron without losing much biological accuracy. This ar-
ticle explains the theoretical background as well as the capabilities and
the implementation details of the assembly approach.

1 Introduction

The choice of the right modeling level is a serious challenge for neural net-
work modelers concerned about large-scale, biologically realistic architec-
tures. Although there exists an abundance of detailed single-neuron models,
there are only a few models available at the next modeling level of neuronal
groups of assemblies,! which are usually described by using a dynamics for

! Early approaches on assembly dynamics include the work of Wilson and Cowan
(1973), an up-to-date analysis is presented by Gerstner (1998), and recent work related to
this topic can be found in Knight (2000), Knight, Omurtag, and Sirovich (2000), Nykamp
and Tranchina (2000), Omurtag, Knight, and Sirovich (2000), and Sirovich, Knight, and
Omurtag (2000).
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their macroscopic variables. The most commonly encountered macroscopic
models are of the assembly-averaged graded-response type, but their use is
not justified in dynamical regimes away from quasistationary activity and
their derivation from single neuron dynamics is not exact.

In this article, we start from quite general assumptions on the dynamics
of single spiking neurons and develop a framework that allows for an exact
derivation of assembly dynamics. A first central result of the article is given
in Figure 3, which explains the essence of the assembly dynamics ina graph-
ical way. We then show how the framework can be applied to a well-known
and widely studied model of spiking neurons, the spike-response model
(SRM) (for a review, see Gerstner & van Hemmen, 1994), which contains in
its formulation the integrate-and-fire (IF) type models as a special case.

The work presented in this article elucidates some of the models for as-
sembly dynamics available within a common conceptual framework. Many
of the known models turn out to be special cases or approximations of the
derived assembly dynamics. A few of the results have been derived and
presented elsewhere, and they are not explained in detail in this work, since
our focus is on a common framework that shows the modeler which mod-
els and techniques are available and how they are related to each other.
Therefore, a second central result of this article is the diagram of Figure 11,
which summarizes our approach as well as related models and indicates
their interdependencies.

The article is divided into a series of sections and two appendixes. Sec-
tion 2 deals with the assumptions on which our derivation and the entire
framework are based, with special attention on the assembly definition. In
sections 3 and 4, integral equation expressions are derived that serve to
model the assembly dynamics. They are presented first in a general form
and then in a specific form that is applicable to assemblies of SRM neurons.
In section 4, we also show good quantitative agreement between the derived
assembly dynamics and simulations using assemblies of explicitly modeled
single neurons. In section 5, the integral equation dynamics are converted
into a differential equation system, which allows a comparison with other
comparable models for assembly dynamics based on differential equations.
In section 6, we show how our framework can be used to investigate and
understand many well-known properties and existing models of assembly
dynamics. Section 7 summarizes the work and gives an overview of how the
different models depend on each other in Figure 11. Finally, in appendixes A
implementation details are summarized that should allow circumventing
the main difficulties of a numerical application of our framework.

2 Assemblies of Spiking Neurons

2.1 Assembly Definition. Large, biologically realistic network models
of cortical systems cannot be described yet on a single-unit basis because
of the sheer amount of required computational resources. But do we have
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to model single neurons explicitly, or is it sufficient to group large numbers
of neurons together and simply describe their joint activity? In the primate
cortex, there are numerous dendrites running orthogonally to the cortical
layer structure, collecting input from many of the layers they cross on their
way. This means that the corresponding neurons potentially have access to
the information available in all layers of their column. Accordingly, it might
make sense to group all neurons of a column into a functional unit that can
be described by a single model, neglecting the fine neuronal structure.

Another motivation to group neurons is the experimental observation
that cortical neurons of the same type that are located near each other tend
to receive similar inputs. In experiments one often finds that neurons of the
same type that are located close to each other are activated simultaneously
or in a correlated fashion. In cortical networks, this may be due to reciprocal
connections and common convergent input.

In modeling studies, it therefore seems sensible to consider all neurons
of the same type in a small cortical volume as a computational unit of a
neuronal network. We will call this computational unit a neuronal pool or
assembly (sometimes also called a neuronal ensemble or neuronal clique).
All pool neurons have to be equivalent in the sense that they have the same
input-output connection characteristics and, additionally, the same dynam-
ics parameters. This is explained in Figure 1. All neurons that constitute a
pool feel a common synaptic input (because of the identical input connec-
tivity structure), but still, each neuron evolves according to its own internal
dynamics (because it is subject to an independent realization of common
stochastic noise).

In the visual cortex, we can, for example, assume that all neurons of the
same type located in the same layer and in the same cortical column, and
with a similar stimuli selectiveness, constitute an assembly. In the following,
we will assume that for some parts of the brain, these assemblies constitute
thebasic building blocks that can be connected to simulate large, biologically
realistic neural networks.

2.2 Assumptions on Single-Neuron Dynamics. In this section, we pre-
sent three assumptions that are central to our dynamics derivation in later
sections: the concept of spike trains composed of § pulses for describing neu-
ronal activity, the renewal property of spiking neurons, and the stochastic
process for spike release.

2.2.1 Spike-Trains. Common to many threshold models of spiking neu-
rons is the assumption that the exact form of the action potential does not
vary considerably from spike to spike, so that it can be neglected in network
simulations. All that matters for neuronal behavior (e.g., for the neuronal
refractory properties and neuron-neuron interactions) are the exact spike
times t/, f € N. This assumption also implies that the maximal temporal
resolution of single neuronal dynamics will be on the order of the width of
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Figure 1: A pool or assembly of neurons. We assume that pools are the ba-
sic computational elements of some cortical networks. Neurons belonging to
the same pool or assembly are characterized by having the same input-output
connectivity pattern. Furthermore, all neurons of the same pool have the same
parameters. This is an idealized definition that is fulfilled in some parts of the
cortex to a good approximation. In the figure, different types of neurons and
connections are characterized by different textures (white neurons are of any
type). According to the assembly definition, only the two neurons in the oval
belong to the same pool. This rather restrictive pool definition is consistent in
the sense that it allows, for a network with fixed connectivity, a complete de-
scription of the architecture and dynamics in terms of interacting assemblies
instead of single neurons.

the action potential (e.g., about 1 ms in typical neurons of the visual cortex
of primates).

If we neglect the form of the action potentials, the spike train S(¢) elicited
by aneuron canbe characterized by a sequence {tf } of delta pulses at times tf,

S(t) = ié(t—tf), (2.1)
f=1

with t/ < t and ordered from present to past, so that t/™1 < t/. For the
calculation of the synaptic input to other neurons, it is then sufficient to
consider the incoming spike trains only, characterized by the set of firing
times {t/} from presynaptic neurons. Similarly, for the refractory behavior
of a neuron, it is sufficient to know its own past spike times.

2.2.2 Renewal Hypothesis. The most recent spike time,
Fo= (2.2)
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can be special in the sense that in some models, it has a leading influence
on the neuronal dynamics. This is the case if the refractory properties of a
neuron depend on only the time

s=t—t* (2.3)

elapsed since the last action potential. This assumption is also referred to as
short-term refractory memory approximation, or renewal hypothesis (Tuck-
well, 1988) for neuronal models. It is often justified to use models of spiking
neurons with renewal hypothesis because the last spike can have shunt-
ing properties that “reset” the state of a neuron so that the influence of the
older spikes can be neglected. The renewal property of spiking neurons is
a requirement for the assembly dynamics derivation in later sections.

2.2.3 Stochastic Spike Release. In biological neuronal systems, the role
and origin of noise is still a debated issue. Although a single, isolated neu-
ron seems to be a deterministic device with a fixed membrane potential
threshold for spike generation (see, e.g., Mainen & Sejnowski, 1995), neu-
rons in networks elicit spike trains with a great variability of apparently ran-
dom temporal patterns. One intrinsic source of noise identified in biological
neural networks is the interneuronal synaptic transmission process using
chemical transmitters. Another factor that enhances noisy effects may be
a delicate balance between excitation and inhibition in neuronal networks,
so that neurons are mainly driven very close to their firing threshold, en-
abling small input fluctuations to trigger action potentials. In any case, the
input to neurons often “looks” noisy, making necessary the incorporation
of stochasticity into networks.

In the following, we will be dealing with models of spiking neurons that
release spikes according to a stochastic process that can be described by
a release probability density function A. We assume that for neurons with
renewal properties, the probability of releasing a spike during the interval
(t, t+At] depends on the internal state of the neuron, which can be quantified
interms of t and t* because it depends on the time s since its last spike release
and the driving input at time t. The spike release probability of a neuron i
is then

Prob {i fires in (¢, t + At]} = AtA(t, t¥). (2.4)

The function A(t, +*) will play a central role when deriving the assembly
dynamics.

2.3 Macroscopic Quantities and Neuronal Density.

2.3.1 The Macroscopic Pool Activity A(t). We will denominate pools by
bold letters, such as x, y, or subindices m, n. Looking at the pool as a whole,
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Figure 2: Joint activity of an assembly of spiking neurons. A(t)At is the total
number of spikes elicited by neurons of the assembly during the interval (¢, f +
At].

we can define a pool activity using the spike trains of the pool neurons
A, =Y 51 (2.5)
jex

For extensively many pool neurons, we introduce a continuous pool activity
(or spike density) A(x, t) by integrating A(x, t) over a small time interval At,

t+At . t+At
Alx, t)At:/ dr A(x, t) =/ dr " si(t). (2.6)
t t

jex

Then A(x, t)At is the total number of spikes released by the pool neurons in
the interval (¢, t + At].2 Figure 2 shows the interpretation of the pool activity
by summation of spikes in a time interval. The pool activity A(x, t) has the

2 Under rigorous considerations, to get results that are independent of Atf, equa-
tion 2.6 with im At — 0 has to be used for calculations with the pool activity A(x, t).
But since this does not modify the results of our calculations, we will use A(x, t) and
A(x, t) interchangeably.
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dimension spikes/time and is extensive. If desired, it can be normalized by
the number of pool neurons,

N(x) =) 1. (2.7)

jex

Since neurons communicate with each other by means of their spike
trains, the joint poolactivity A(x, t) is essentially everything a neuron “feels”
from a pool x.

2.3.2 Neuronal Density. So far we have always calculated a sum over
all neurons of an assembly to calculate pool-averaged quantities. In the
following, we define the discrete assembly average as

(L= ... (2.8)

jex
Then, we can write for the total number of pool neurons 2.7
N(x) = (1). (2.9)

For extensively many neurons in an assembly, the sum can be approxi-
mated by an integral over the relevant state variables if the neuronal density
function p(...) is known.

If the internal state of a neuron (without considering input from external
sources) isindependent of input priorto the last firing at t* (i.e., if the renewal
hypothesis from section 2.2.2 holds), we may formulate the neuronal density
as a function of #*. The current pool density p(x, t, t*) then quantifies the
number of neurons of pool x at time ¢ that are in a refractory state defined
by their last spike at ¢*.2 For such a system we define an assembly average
as

t
(o (x,B) ;:/ dF p(x, £ 1) ... 2.10)

In the following sections, we use a density function that is normalized to
the total number of neurons available in the assembly, so that

N(x) = (1) . (2.11)

For pools composed of large numbers of neurons (say, > 10?), it is often
convenient to describe assembly dynamics directly in terms of neuronal
density dynamics, instead of regarding single neurons individually. This
will be our approach in the following sections.

3 We interpret p(x, t, t*) as a density function of #*, so that x and t can be understood
as parameters. Therefore, we could also write px ¢ (t*).
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Figure 3: Densities p(t — At, t*) and p(¢, t*) of spiking neurons with renewal,
with fixed last spiking times t*. (a) Old density p(t — At, #*). (b) New density
p(t, t*). All neurons that spike cause a decrease of the density (small arrows).
The same amount contributes to the density p(f, t) (right end of the function in
b), since their last spike time was modified to * = t, and, in addition, the total
number of neurons remains constant (i.e., the density remains normalized).

3 Integral Equation Assembly Dynamics

In section 2 we argued that a description at the level of single neurons is
too detailed in many cases and proposed the level of neuronal assemblies
as appropriate to understand both neuronal dynamics and functional or-
ganization. The neuronal assembly may thus constitute the computational
unit for large-scale biologically realistic networks. In this section, we de-
rive expressions in the form of integral equations that can be used to model
the dynamics of the joint activity of an assembly of spiking neurons with
renewal property in a quantitatively exact manner.

3.1 Derivation of the Assembly Activity Dynamics. The assembly dy-
namics of a pool of spiking neurons with renewal (i.e., neurons with refrac-
tory properties that depend only on the time ¢t — * elapsed since their last
spiking time *) can be described using the neuronal density p(x, , +*) of sec-
tion 2.3.2. By definition, the density is > 0 only for t* < t (and 0 elsewhere)
and goes to 0 for t — t* — oo. This is shown in Figure 3a.
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All that remains to do is to calculate an explicit expression for the dynam-
ics of the density p(x, t, t*). Having accomplished this, every macroscopic
(i.e., assembly-averaged) quantity can be calculated, including the activity
A(x, t). The argument that allows calculating the density dynamics is as
follows. The density is modified by a single process. When moving in time,
t — At — t, neurons with a fixed t* can fire with a probability At A(x, ¢, t*)
(see equation 2.4), which causes them to jump out from the subpopulation
of neurons with last firing time +* and, accordingly, to diminish the density
p(x, t,t*). The process is shown in Figure 3b, together with the resulting
new density p(x, t, t*). At the right end of the density function in Figure 3b,
the new density p(x, t, t) appears, which has a special significance that will
be explained below.

Since p(x, t, t*) is modified solely by the firing of neurons with their
respective probabilities, taking lim At — 0 we get the dynamics

%p(x, tt*) = =AMx, t, t%) p(x, t, t¥). (3.1)
The minus sign indicates that the neuronal density at a fixed t* can only
decrease in time when neurons from that subpopulation fire.

Equation 3.1 is valid only for t* < t. For a step forward in time, we
simply assume (yet unknown) boundary conditions p(x, t*, t*) = po(x, t*).
Integration over ¢, including the respective boundary conditions, yields the
analytic expression

t
p(x, t, t*) = polx, t*) exp {— dr Ax, t, t*)} . (3.2)
t*

This is basically all that we need to know to calculate the pool dynamics.
We see from equation 3.2 that p(x, , +*) decreases steadily in time starting
at its maximum value po(x, +*). Therefore, the quantity pg(x, +*) is the max-
imum number of neurons ever with last spiking times at t*. This number is
equivalent to the number of neurons with last spiking times at * available
at time t*, just before the subpopulation of neurons with last spiking times
t* begins to get decimated because of the firing of single neurons. But this is
just the number of neurons that spiked at t*, because these are the neurons
that contributed to p(x, t*, t*). Therefore, we have that

A(x, ) = p(x, t*, t*) = po(x, t*). (3.3)

Putting all this together, the explicit dynamics for A(x, ) is gained in a
straightforward way. We assume that pg(x, +*) is known for t* € [—o0, t—At],
because we stored the past activities A(+*) in memory. The expectation value
for the activity (i.e., the pool spike density) at time t is then gained by
averaging the spiking probability density A(x, ¢, t*) over all pool neurons,
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using the density at the preceding time step p(x, t —At, t*) from equation 3.2
so that we get

Alx, ) = (Mx, t, 1)), . (34)

Using lim At — 0, we get the time-continuous form of the dynamics.

The calculation of the activity A(x, t) can also be understood by arguing
that all neurons that spike at ¢ [and thus modify p(x, t, t*)] contribute to
increase p(x, t,#) = A(x, t). This is indicated by the arc-shaped arrows in
Figure 3b. It follows that A(x, ) can be gained by adding —d/dt p(x, ¢, t*)
for all * < t. Using equation 3.1, this results again in equation 3.4.

The two derivations (averaging the spiking probability over all poolneu-
rons vs.adding —0/0t p(x, t, t*)) are equivalent because the density p(x, ¢, *)
is normalized to the number of pool neurons (see also equation 2.11):

Mg:/tm%mtm. (3.5)

Differentiating in time,

d t 0
SN = 0=plx 1) + / dr Zp(x. 1, 1), (3.6)
dt N— e’ —0 ot
=A(x,t)
we get for the activity
t 0

mxﬂ=—/ dt* —p(x, t, t¥). (3.7)

NS ot

Together with equation 3.1, this equation is again equivalent to equation 3.4.
From it, it can also be seen that the time-continuous calculation of the activity
(taking lim At — 0 in equation 3.4) is valid, because equation 3.7 leads to
the same expressions as equation 3.4 but has been calculated using the
actual density p(x, t, t*) instead of the density at the preceding time step
p(x, t — At, t).

Now we have all necessary ingredients for the calculation of a pool’s
activity. From equation 3.1, dp(x, ¢, t*) /0t is known, while p(x, t, t*) is known
from equation 3.2 together with equation 3.3. The full, closed form of the
dynamics as a function of the past activity is gained by taking equation 3.4
and calculating the assembly average using equation 3.2 with 3.3, to get

A(x, t) = /f d#* rx, t, t*) A(x, t¥) exp {— tdt/ Alx, t, t*)} . (3.8)

£

Summarizing, we have gained an integral equation that can be used
to calculate A(x,t) as a function of the past activities A(x, #') and the past
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spike-release probability density A(x, t', t*), ' < t.* Equations 3.4, 3.7, and
3.8 are equivalent representations of the general equation for the calculation
of macroscopic assembly dynamics for pools of extensively many spiking
neurons with renewal. Equation 3.8 has appeared previously (most notably
in Gerstner & van Hemmen, 1994) in similar forms, which will be analyzed
in section 4.1; in this article, we have presented a very short and intuitive
derivation of the dynamics and will concentrate on explaining how a large
number of seemingly different models for assembly dynamics can be un-
derstood starting from equations 3.4, 3.7, or 3.8.

3.2 Survival Function Form. The density p(x, ¢, t*) can be normalized
by the number of neurons that are originally found in the subgroup with
fixed t*,

p(x, t, t*)
Dy(x, t, t*) 1= ——— 39
(X, £ ) ST (39)

We thus gain an expression that tells us something about the probability®
that a neuron that was in a state with last firing time ¢* at time t* is still in the
same state at time ¢. This can be true only if the neuron did not spike again
during (¢, t]. It is therefore called the survival probability function or, in
short, the survival function. It is the probability that a neuron that spiked
last at t* remained silent up to ¢, that is, that it “survived.”

Normalization of the negative partial time derivative of p(x, t, t*) gives

d 1 d
2 pbE) 3 . (3.10)

Siu(x, t, t*) = —
et E) ot p(x, t*, t*) ot

This is the probability that a neuron that was in a state with the last firing
time * at time +* jumped out of this state at time ¢. This can be true only
if the neuron remained silent during (#*, t) and spiked at ¢. It is therefore
called the first spiking probability function of a neuron that spiked last at +*.

Using equations 3.3 and 3.10, the activity A(x, #*) can be extracted from
the dynamics equation 3.7:

t 9 plx, t,t*)
Alx, 1) = — drf —=——2— p(x, t, t*). 3.11
. /m sty LX) (G.11)
—_— AxP)
=-S5 (x,t,t*)

4 The function is causal since dp(x, t, t*)/dt — 0 for #* — ¢, so that A(x, t) does not
appear on the right side of equation 3.7.

5 The suffix A indicates that the corresponding functions depend on the past spike
release probability density function A(x, t', t*), t' < t.

¢ To be precise, we should speak of the probability density, but we will use both terms
interchangeably.
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The result is the often frequented expression (Gerstner, 1995) for assembly
dynamics:

Alx. t) = /f dF S (x. . 1) Alx, ). (3.12)

This equation is easy to understand, since A(x, t*) is the number of neurons
that spiked last at +*, and Sy (x, ¢, t*) is the probability that a single neuron
that spiked last at +* contributes to spiking at ¢, so that S, (x, t, +*) A(x, )
is the probability that any neuron of the assembly x that spiked last at t*
contributes to spiking at ¢.

In its full form, the survival function D, (x, t, #*) and its corresponding
first spiking probability function Sy(x, ¢, *) can be calculated according to
equations 3.9, 3.10, 3.3, 3.2, and 3.1. We then get

t
Di(x, t, t*) = exp {— dt Ax, t, t*)}
"

Salx, t, %) = A(x, t, £*) Da(x, t, ). (3.13)

The survival function D;(x, ¢, ) has a monotonously decaying form from
1 to 0, with a faster (or slower) decay for larger (or smaller) spike-release
probabilities A. The first spiking probability function Sy (x, ¢, +*) is its nega-
tive derivative with respect to time (see equation 3.10).

4 Consequences
4.1 Special Forms of the Assembly Dynamics.

4.1.1 Microscopic Neuronal Dynamics: Spiking Neurons as Threshold Firing
Devices. Simplified models of single neurons that do not take into consid-
eration the spatial organization of the dendritic tree and the axon usually
rely on the assumption that the neuron works as a threshold device that
releases a spike (an action potential) at those moments ¢/ in time t when a
single scalar variable (the membrane potential v(#)) crosses a fixed threshold
& from below. Examples of models that fall into this category are the SRM
(Gerstner 1990, 1995; Gerstner & van Hemmen 1992, 1994) and the IF type
models (see, e.g., Tuckwell, 1988). These latter constitute a subcategory of
the SRM, since they can be described entirely within the SRM framework. In
addition, it can be shown that biologically more detailed models such as the
Hodgkin and Huxley (HH) model can be mapped quantitatively onto the
SRM model, so that HH neurons can also be regarded as threshold devices
(Kistler, Gerstner, & van Hemmen, 1997).

In threshold models, the membrane potential usually has two compon-
ents—one that describes the refractory influences (the refractory field v*)
and another one that takes into account the synaptic input arriving at a cell
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through synaptic transmission, the synaptic field h(t). In the simplest case,
the membrane potential v(#) is a linear summation of both terms,

o(t) = v(t) + h(t). 4.1)

In short, v™(¢#) is the contribution to the membrane potential generated by
the neuron’s response properties (such as its refractarity), whereas h(t) is
the contribution to the membrane potential from synaptic inputs (which
can include synaptic connections from a neuron back to itself).

In the case of renewal, v*(t) depends on the time s = t — +* elapsed
since the last firing time #*, so that it is v™(¢) = n(t — #*) with the refractory
function 7(s). The linearly composed membrane potential (see equation 4.1)
then reads:

o(t) = n(t —t*) + h(t). (42)

In the following, we write v(t, t*) instead of v(t) in equation 4.2 to indicate
explicitly the dependency of the membrane potential from the last spiking
time t*.

4.1.2 Threshold Noise. Noise can be added to threshold models of spik-
ing neurons in a variety of ways. Here, we will restrict ourselves to a single
type of noise, threshold noise. This type of noise is quite general in that it
can be used to approximate other types of noise and the results still match
quantitatively well (Gerstner, 1998).

In section 2.2.3, we introduced a spike-release probability A. Here we
move a step forward and express A in terms of the membrane potential for
neurons with renewal as presented in equation 4.2. This means that we have
a ) that depends on the distance of a cell’s actual membrane potential v to its
firing threshold 9. The closer v is to the threshold, the more likely it is that
a fluctuation will allow the neuron to reach threshold and trigger a spike.
We define this escape rate as a general function A of the following form,

ME ) = (™Mo, £) ]} (4.3)

(written using a reciprocal so that 7 indicates units of time). For an infinites-
imally small time interval of length At, the spiking probability is then equal
to At[r5™M(p)] L.

As a special realization of [5™(0)] 7!, the exponential ansatz (Gerstner,
1995) for the escape rate,

Mt 1) o= (= [ot, )]} = 75 expl2Blo(t, ) — 91}, (44)

will be called in the following escape noise. The constant 8 is the noise
level, which is something like an inverse temperature: The larger the beta,

the noisier (hotter) the system behaves. The constant 7, s the escape rate
at the threshold 9.
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4.1.3 Escape Noise and the Activation Function. The escape noise as it is
defined by equation 4.4 has a nice property. Using a membrane potential for
neurons with renewal v(t, t*) = n(t—t*) +h(t) asinequation 4.2, the contribu-
tions of the refractory and the synaptic components to a cell’snoisy behavior
factorize, allowing an easy interpretation of the neuronal dynamics.

For this purpose, we introduce a three-state neuron, which can be in one
of three different states: inactivated (i), activated (a), or firing (f). A neuron
can fire (i.e., release a spike) only if it is activated. If this is the case, the
neuron fires with some probability At/z(h) during the interval (¢, t + At],
depending on its synaptic input field /. After the release of a spike, the
neuron remains inactivated for a certain time period of length y ***. During
this period, it is not allowed to spike, so that it is in an absolute refractory
state. Following the absolute refractory period, the neuron enters a relative
refractory period during which the neuron has a certain probability p, > 0
of getting activated, and thus a nonvanishing total probability for a spike
release. We assume that only the time elapsed since the very last spike
of a neuron at t* determines its refractoriness, so that we end up with an
activation probability function 1 > p,(t —t*) > 0 for ¢t > #* (this is the
renewal hypothesis for spiking neurons introduced in section 2.2.2).

Figure 4 shows the three possible internal states of a single neuron and
the allowed transitions. We assume the transitions between the inactivated
and the activated state occur at a fast timescale as compared to the transition
from the activated to the firing state and the modification of the activation
probability p, with time. It is therefore sufficient to regard the mean occu-
pation p, of the activated state of a neuron. From the activated state and
depending on the synaptic input field 4, a neuron can be pushed into the
firing state with a rate [z()]~!. A neuron in the firing state releases a single
spike and drops immediately back into the inactivated state.

In summary, the total firing probability during an interval (t — A¢, t] of a
neuron { is given by the joint probability that the neuron is in an activated
state and that it is pushed into the firing state by its synaptic field & during
that time interval,

Prob{i € aand i fires in (¢, t + At] due to field h}
= Prob{i fires in (¢, t + At] due to field 1 | i € a} Prob{i € a}
= Atle(W ] palt — %) . (4.5)

The refractory properties are governed by the time course of the activa-
tion probability function 1 > p,(t — t*) > 0, which we refer to here as the
activation function. It is divided into two parts. For a period of length y **,
we have the absolute refractory period, with p,(s) = 0 and s = ¢t — t* the
time elapsed since the last spike. After that period, the neuron enters the
relative refractory period, during which p,(s) rises from some value p, (y ***)
toward 1 for s — oo, according to a differentiable function P,(s). Between
the two refractory periods, we allow a discontinuity of the function p,(s) at
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Figure 4: Definition of the microscopic model of a stochastically spiking neuron.
In the escape noise case, a neuron can be interpreted as being in one of three
states: inactivated (i), activated (a), or firing (f). Transitions between the three
states are allowed between the i and the a levels (fast, with transition rates
that depend on the last spike time #*), from the a to the f level (slow, with a
transition rate that depends on the synaptic input field h(t)), and from the f back
to the i level (fast). The mean occupation of the a level is given by the activation
probability p,(t — #*). Refractoriness means p,(f —t*) < 1. A neuron can release
a spike only if it is activated (a). The firing probability for activated neurons in
a time interval of length At is field dependent and equal to At{z[h(t)]} 1. After
firing, t* is reset, and the neuron is inactivated [p,(t — #*) = 0].

bs
yaa,

abs
pa(s) = {O for0<s<y (4.6)

P.(s) fors >y,
Comparing equations 4.4 and 4.5 and using (¢, t*) = n(t —*) + h(t) (see
equation 4.2), we can express the spike probability density for activated

neurons and the activation probability for refractory neurons as a function
of the synaptic field h and the refractory field n(s) as follows:

[c(W]" = 75 " expl2B(h — 9)] (47)
and

palt — %) := exp[2pn(t — )], (4.8)
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so that for escape noise, it is
M ) = {e=Tolt, F)N 7 = (2[h(D]) 7 palt — 1), (4.9)

In the following, we will use both implementations of noise (see equa-
tions 4.3 and 4.9) in the formulation of our assembly dynamics, since they
lead to different forms of equations. Nevertheless, for the case of nonvan-
ishing noise  and exponential escape rate (see equation 4.4), both imple-
mentations of noise are equivalent.

4.1.4 Different Forms of Integral Equation Assembly Dynamics. The dif-
ferent noise models—threshold noise using z%*"(v) (see equation 4.3) and
escape noise that uses =¢(v) (in the form of equation 4.9)—have slightly
different representational and dynamical consequences, which will be ex-
tended in the following sections. Whereas the more general threshold noise
(see equation 4.3) allows for a description of assembly dynamics even for
the no-noise, deterministic limit, it exhibits a normalization problem when
implemented numerically in simulations (see appendix A.2). On the other
hand, the escape noise form of assembly dynamics (see equation 4.9) does
not allow a description of deterministic but only of noisy dynamics, with the
advantages that it does not have normalization problems, delivers a more
intuitive interpretation of the dynamics, and can be converted into a differ-
ential equation system. Therefore, in this section, we supply the assembly
dynamics for both noise models explicitly. We start with the general formu-
lation for assembly activity dynamics using equation 3.4 and the respective
spike-release probability functions 4.3 or 4.9, which results in

1
Alx, ) = <T5RM[h(x, ) +n(t — f*)]>r« (410

for the general threshold noise case, or, alternatively, for the escape noise
case, in

1 *
Alx, t) = <m palt —t )>ﬁ . (4.11)

The survival function form (see equation 3.12) (Gerstner, 1995, repeated
here for completeness) of the integral equation dynamics’

t
Alx. f) = / A8 S (x. £ 1) Alx, ) 412)

7 Now the suffix /& indicates that the corresponding functions depend on the past
synaptic field h(x, t'), t' < t.
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is also often encountered with either of the noise models—equation 4.3 or
4.9. The explicit analytical expressions for the different microscopic noise
models then yields

t 1
*) = — | at
Dilx £, £) eXP{ /t tTSRM[h(x,t/)Jrn(t/—t*)]}

* 1 *
Sux, t, t%) = D) (= )] Du(x, t, t¥), (4.13)

or, for the escape noise case,

t
Dy(x, t,t*) = exp {—/t dt/mpA(t/ — t*)}

Sulx £, %) = m pa(t— ) Dyl £ £9). (4.14)

These two forms of the integral assembly dynamics can be used equiva-
lently, depending on the type of noise model and on whether we choose to
represent the refractory properties of a neuron by its refractory function n(s)
(leading to the assembly dynamics 4.12 and 4.13) or its activation probability
function p,(s) (leading to the assembly dynamics 4.12 and 4.14).

4.1.5 Escape Noise Assembly Dynamics. Equations 3.7 and 3.12 are fairly
general in a sense that they can be used to model assembly dynamics of
pools of any type of SRM neurons with renewal. In the case of escape noise,
we can derive a different, equivalent expression for pool dynamics that
has an intuitive interpretation and is sometimes preferably used instead of
equation 3.12. In addition, the new expression allows deriving pool dynam-
ics in the form of a differential equation system, which is explained in the
next section.

We start with the noise model from section 4.1.3. Important here is the
notion of the mean inactivation level, or total number of inactivated neurons
Ni(x, t) of a pool. This quantity tells us something about the responsiveness
of a pool to incoming synaptic input. If N,(x, t) is large, many neurons will
be inactivated, and little response to a stimulation will occur. If it is small,
only a few neurons are inactivated, and many neurons are ready to respond
to stimulation, yielding a fast reaction to input. The mean inactivation level
thus quantifies the “inertia” of a pool to incoming stimulation. For the cal-
culation of N(x, ), we use p,(s) from section 4.1.3, which is the probability
of a neuron’ being activated. Then we get

Ni(x, ) = (1 = pu(t = £)),.. (4.15)

Since N,(t) determines how fast the response of a pool’s activity will be, it
is of central importance for the description of pool dynamics. With

p(x, t, t*) = Dy(x, t, *) A(x, t¥) (4.16)
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(see equation 3.9) equation 4.15 can be written using the past activity as
t
Ni(x, ) = / A 11— palt = #)] Dyl £ £ Alx, £). 4.17)
—00

The number of pool neurons that can contribute to the activity A(t+At) At
during the next time step (¢, t + At], is given by the total number of activated
neurons, N(x) —N;(x, #). Because the activated neurons contribute to spiking
with a probability {z[h(x, t) 1} "' At (see section 4.1.3), we get for the activity

At

Alx, t + At At = m

[N(x) = Ni(x, )]. (4.18)

This equation is valid as long as A(x, t + At)At < Ni(x, t), that is, as long as
Ni(x, t) can be considered as approximately constant during a time interval
of length At. We note that in this case, the activation A(x, t + At) does not
depend on the length of the time interval At. For any small enough At, the
result will be the same. Hence we can take the limit At — 0, resulting in

1
A(X, t) = m [N(X) — NI(X, t)] (419)

Upon substitution of equation 4.17, this becomes an integral equation for
the time evolution of the activity A(x, t) for spike-response neurons with
escape noise. As in equation 4.12, the influence of other assemblies ishidden
in the synaptic field h(x, t), which can depend on the activities of all other
pools that provide synaptic input, including itself (see the second line of
equation 4.22 in section 4.2.1).

For escape noise, equations 4.12 and 4.19 are mathematically equivalent.
This can be seen directly by transforming equation 4.11 into

1 1 .
Abe ) = <r[h(x, T )1>H
1_ k
= e We —{Lopalt = 0),). (4.20)
=N{x) =Ni(x,t)

Although equivalent, equation 4.19 has some analytical and numerical ad-
vantages over equation 4.12. We have derived and introduced equation 4.19
because the interpretation of (1 —palt — t*)> .+ as the number of inactivated
neurons allows an easier understanding of assembly dynamics and because
it allows us to establish a link between integral and differential equation
models of assembly dynamics.
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4.2 Networks of Interacting Assemblies.

4.2.1 Synaptic Field. In threshold models of spiking neurons (SRM and
the SRM equivalent of IF models), the synaptic field of a single neuron is
calculated as follows. The presynaptic neurons j release a series of action

potentials at times t]f , each of which, after a fixed delay period, reaches a
postsynaptic neuron i. This causes a temporal variation of the form Jj; o;(t —

t]f ) of the membrane potential at the postsynaptic neuron (the constant J;; is
the coupling strength for a synaptic connection from a presynaptic neuron
j to a postsynaptic neuron i; the subindices i, j indicate that the constants of
the a-function [see equation 4.21] may vary for different connections).

The total variation of the postsynaptic membrane potential due to the
incoming action potentials is the synaptic field #;(t) from equations 4.21 or
4.22. Since we assume passive conducting characteristics of the dendritic
tree, the synaptic field is calculated as a sum of the contributions of single
action potentials. This means that

t
hi(x, t) = E ]7»]»/ dt’ a;i(t —t') S(t). (4.21)
j —00

The coupling strength from a connection between pools x, y conveying
signals from a neuron j € y to a neuron i € x is designated with J;(x, y).
Since the neuron indices do not matter if all neurons of a pool have the same
connectivity characteristics, we can omit them and simply write J(x, y). The
same occurs with any other connectivity function or parameter, for example,

with ot — t]f ). Therefore, we will omit as well the neuronal i, j indices for

the a function.
Using the pool definition, we can then write

t
h(x, t) = Z Z](x, y) / dt' alx,y, t =) Si(t)
y —00

jey
t
=Y Jlxy) / dt alx, y, t —t) Aly, t). (4.22)
y —0Q0

Therefore, interactions between pools occur exclusively mediated by the
pool activities A(y, #). In addition, all neurons i of a pool x feel the same
synaptic field h(x, t).

4.2.2 Reduction to a Network of Interacting Neuronal Assemblies. The con-
sequences that can be drawn from equation 4.22 are significant. From the
assembly dynamics derived throughout section 3, we know that the activ-
ity of an assembly x can be described entirely by means of its past activity
A(x, t) and its past synaptic input field h(x, '), ' < t. This means that for
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Network of interacting neurons Grouping into assemblies ~ Network of interacting assemblies

Figure 5: Reduction of a network of interacting spiking neurons to a network
of interacting assemblies. (Left) Network of interconnected spiking neurons.
All a target neuron i needs for computing its synaptic contribution that arrives
from a given source neuron j is the incoming spike train S;(t'), ' < t. (Middle)
Grouping of the spiking neurons into nonoverlapping assemblies according to
the assembly definition and the connectivity architecture of the network. Here,
the description moves from target and source neurons i, j, and neuronal con-
nections J; to target and source assemblies X, y and interassembly connections
J(x, y). (Right) The corresponding network of interconnected assemblies of spik-
ing neurons. The synaptic contribution to a target pool x from a source pool y
is calculated using the past activity A(y, t'), t' < t.

a given synaptic input, it suffices to remember the past activities and that
everything relevant about the pool dynamics is known or can be calculated.
On the other hand, we have just seen that the synaptic input fields can be
calculated by knowing the past activities of A(y, t) of all assemblies y (in-
cluding itself) that, by virtue of the network connections J(x, y) fromy to x,
provide a source of input signals to the pool x.

This means that under the architectural constraint of the assembly def-
inition of section 2.1, a network of interacting spiking neurons, which are
threshold firing devices with renewal, as explained in section 4.1.1, can be
fully reduced to anetwork of interacting neuronal assemblies, in which each
assembly is described by the macroscopic dynamics derived in this article
and with internal dynamics and interassembly interactions that can be cal-
culated from the past activities A(x, '), #' < t. Figure 5 explains this concept
graphically.

Figure 6 shows simulations of an assembly of IF neurons, modeled us-
ing either n = 5 * 10* single IF neurons or the corresponding macroscopic
assembly dynamics (in this simulation, we used the SRM assembly equa-
tions 4.12 and 4.14). The IF neuron model had an absolute refractory period
of 4 ms and an RC membrane decay time constant of 6 ms. This means that
every time a spike was elicited, there was a 4 ms dead period, after which
a value of 5 was substracted from the membrane potential and normal RC
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Figure 6: Simulations of the activity dynamics of an assembly of 5 10* IF neu-
rons and the corresponding macroscopic assembly dynamics. In c, the variation
of the external input is shown, included in the model as an additional contri-
bution to the membrane potential. In the assembly without interactions of g,
the simulations show repetitive relaxation processes to new equilibria when the
external input changes. In b the same assembly is shown, but with reciprocal
synaptic connections. The parameters are chosen so that there is a resonance
between the internal relaxation processes and the synaptic feedback. The simu-
lations show that the quantitative correspondence is excellent.

relaxation continued. The used noise model was escape noise, given by
equation 4.4, with 79 = 1 ms, the inverse temperature § = 1/T = 1/0.35,
and threshold at 3 = 0.75. The external input (in form of an additional
contribution to the membrane potential) was varied in a series of random
steps to induce different responses of the assembly (see Figure 6¢). Figure 6a
shows the activity dynamics of an assembly without neuronal connections.
Here, the approach of the activity to the new equilibria after a change of the
piecewise constant external input to the membrane potential can be seen.
In this case, the relaxation of the assembly dynamics to the microscopically
correct stationary activities occurs approximately in a time period of about
20 ms, approximately determined by the length of the absolute refractory
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period and the RC relaxation time constant. Figure 6b shows the activity dy-
namics of the same assembly with synaptic interaction, with all neurons of
the extensive assembly being coupled reciprocally with a weight J; = 1/n,
and, in the assembly case, a coupling of the assembly to itself of J(x, x) = 1.
The synaptic a function (see section 4.2.1) was in both cases the same (for
the IF neurons, the corresponding variation function of the input current
was used) and was chosen with delay and time constants that a resonance
between the RC relaxation and the synaptic feedback occurs. This resonance
can be seen in the more pronounced oscillations of the activity in Figure 6b
as compared to Figure 6a. The simulation shows that even under the adverse
conditions of substantial feedback (which potentiates accumulated errors)
and dynamics with sharp transients, there is good quantitative agreement
even for time periods surpassing 100 ms.

5 Differential Equation Assembly Dynamics

In section 3.1, we derived expressions for calculating the macroscopic as-
sembly activity dynamics of spiking neurons with renewal. This was ac-
complished by introducing a neuronal density that is a function of the state
of the neurons defined by their only remaining state variable t*, their last
spiking time. In sections 4.1.4 and 4.1.5, specific expressions for the assem-
bly dynamics of SRM neurons in form of integral equations were presented.
In this section, we take advantage of the escape noise assembly dynamics
of section 4.1.5 to derive an equivalent differential equation system for de-
scribing assembly dynamics, which can then be used for further calculations
and for comparison with existing differential equation models.

5.1 Special Activation Probability Functions. It can be asked how the
integral equations models for describing neuronal assembly dynamics re-
late to the widely used differential equation models of the graded-response
type. An exact reduction of the nonlinear integral equation, 4.19 (or, equiva-
lently, equation 4.12) is possible for specific activation probability functions
pals) (Eggert & van Hemmen, 2000) and, accordingly, for specific functions
P,(s) (see equation 4.6) for the relative refractory period. We will restrict
ourselves to the exponential case (exp), the case of a sigmoid-like time evo-
lution of the activation function after the absolute refractory period (sigm),
and the case of an inverse decay (inv):

1 —poexp[—(s —y ™)/ 7] exp
Pu(s) = {1 —po/{1 + expl(s — s0)/z]} sigm (5.1)
1—1./(s —sgp) inv.

The constants po, 7., and sg are free parameters of the activation function.
It has to be verified that 0 < P,(s) < 1fory ™ <s < oo; for example, for the
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Figure 7: Different activation functions p,(t — t*) used for the derivation of
the pool dynamics. At s = y®*, the function may have a discontinuity. For
t \( t*, the neuron is in an absolute refractory state because it just spiked and
palt — ) \( 0. For t — oo, the refractory effects vanish, and p,(t — t*) — 1.
In the case of activation functions with a discontinuity, y ** is the length of the
absolute refractory period.

inverse activation function in equation 5.1, this means that we effectively
sety ™ > 7, + sp, so that P,(s) is evaluated only fors > 7, + so.

Figure 7 shows the different activation functions. It is p,(s) = 0 during
the absolute refractory period; afterward, p,(s) tends toward 1.

5.2 Recovery Variables. The number N;(x, t) (see equation 4.15) of in-
activated neurons of a pool is the assembly-averaged mean inactivation
probability and can thus be written as Ni(x, ) = (1 —p,(t — t*))t*. The ker-
nel 1 — p,(t — t*) determines the influence of the past activity on the quan-
tity N,(x, t). Instead of using integral equations for the pool dynamics as
in equations 4.12 and 4.19, which incorporate the past activity by means
of equidistant time slices (imagine a Riemann sum approximation of the
integral equations), we could try to incorporate the past using a set of tem-
poral kernels similar to 1 — p,(t — *). The underlying problem is that of
the reducibility of an integro-differential equation to a system of differen-
tial equations. It has been treated by a number of authors (e.g., see Fargue,
1973, 1974). In principle, a reduction of equations 4.12 and 4.19 into a chain
of differential equations is possible for a suitable choice of intermediary
variables. The problem is that there is no systematic derivation of these ad-
ditional variables, so that we have to guess. The derivation of Eggert and
van Hemmen (2000) makes use of the function 1 —p, (t —*) for this purpose.
(In equation 4.19, the difficult part of the assembly dynamics is hidden in
the term Ni(x, t).)

To accomplish the reduction of equation 4.19 to a system of differen-
tial equations, we first have to introduce a further interesting assembly-
averaged quantity: the number of pool neurons that are in their absolute
refractory period because of recent spiking. This quantity can be calculated
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as
M(x, 1) = (1 =O[(t —t*) —y™]),.. (5.2)

Then we redefine the number of inactivated neurons N;(x, t) to NV (x, t),
the total number of pool neurons, N(x), to N'9(x), and the number M(x, t)
of inactivated neurons for a pool with absolute refractory period only, to
N{®)(x_ ). Furthermore, we remark that the definitions (see equation 2.11)
of N(x) = N9(x), (see equation 4.15) of Ny(x, t) = ND(x, t) and (see equa-
tion 5.2) of M(x, t) = N®(x, t) are equivalent to

N0 = ([1=patt =090
NV t) = (L= palt=£07')
N (x, 1) = ([1 = palt — £)]%),.. (5.3)

Extending these definitions, in addition to Ni(x, t) = N (1) (x, t) we get a series
of time-dependent inactivation quantities, or recovery variables:

N (x, 1) = {[1 = py (£ = )17, (54)
so that form € N,
N (x, f) = /t dF 11— palt — )17 plx, £ ). (5.5)
—o0
The N™ (x, #) obey the relationship
NP(x) = NV(x, 1) = NP (x, 1) = - = N (x. 1) Vt. (5.6)

Figure 8 shows an example of a sigmoidal activation function p,(s) with an
absolute refractory period of length y *** and the recovery kernels [1—p,(s)]™.

5.3 Differential Equation System. Using the properties of the recovery
variables, a recursive set of differential equations can be obtained (for the
exact derivation, see Eggert & van Hemmen, 2000):

d
d_tN(m)(x’ B) = Alx, 1) — {1 —[1 = paly ™) IMA(x, £ —y ™)
1

- nm) _ aglm+1)
r[h(x,t)][N (x,t) =N (x, )]

8 @ is the Heaviside step function, with ®(x) = 1 for x > 0 and 0 otherwise.
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Figure 8: The activation function p,(s) is shown (left) with its recovery kernels
[1—pa(s)]™ (right). With growing m, the kernels include less and less of the past
time s. The pool dynamics is expressed with the help of a series of recovery vari-
ables N"(x, t) = ([1 — pa(t — t*)]'”}t* calculated by computing the pool average
of the corresponding recovery kernel function.

%[N(m)(x’ f) — M(x, )] exp. pal(s)

_ % {N(m)(x, t) _ M(x, t) _ [N(m+l)(xpi;)7M(x 1] ] Sigm. PA(S)
T”—’[N("’“)(x, f) — M(x, )] inv. p,(s).
el (57)

The last recovery variable N () (x, ) = M(x, t) increases with the number of
spiking neurons and decreases with the number of neurons released from
their absolute refractory phase,

ditM(x, 1) = Alx, t) — Alx, t —y ™). (5.8)
This completes the pool dynamics. For reciprocally connected pools, the
system 5.7 contains the recovery variable N D(x, t') also through the activ-
ity A(x, t') in the synaptic field h(x, t). The complete dynamics is therefore
defined by the field dynamics, together with the dynamics of the recovery
variables given by equations 5.7 and 5.8. The spike density acts only as an
auxiliary variable that is calculated from the first recovery variable using
the main equation, 4.19.

o1 (D)
A(x, t) = e t)][N(x) NY(x, t)]. (5.9)

Other poolsy influence the dynamics of pool x through the activities A(y, ')
in equation 4.22.

Using a differentiable activation function p,(s) without absolute refrac-
tory period, the system 5.7 reduces to

d 1
SN (x, 1) = Alx, ) - IN" (x, £) = N (x, £)]

dt tlhi(x, )]
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”’fN’”)(x t) exp. pa(s)
- = [N( (x, 1) — N (x, 1) /o] sigm. pa(s) (5.10)
SN+ (x f) inv. p,(s).

Tref

6 Connection with Other Models

In this section, we compare our model (integral forms 4.12 or 4.19, differen-
tial equation forms 5.7 resp. 5.10) with other neuronal models. Specifically,
we show that standard gain functions and graded-response models can be
understood in terms of our pool dynamics and that this allows us to in-
terpret the parameters of gain functions and graded-response models in
terms of the microscopic parameters of the underlying neuronal model. In
addition, we show how other integral equation models can be understood
as special cases of our dynamics and how they can be used to understand
single-neuron spike statistics.

6.1 Gain Function. It can be shown that the stationary solution of the
pool dynamics 4.12, 4.19, 5.7, or 5.10 is a sigmoidal gain function (for the
detailed calculation, see appendix B.2). In case of neurons with escape noise
and absolute refractory period only, we get an equation of the same form as
the standard logistic gain function known from computational neuroscience
literature,

1 1
Glr(x)1 = 7 1+ exp{—2B[h(x) — 9]}
- yL % (1 + tanh{B[h(x) — ¥'1}). (6.1)

with the modified threshold (4, B, and o from eq. 4.7)
9 =3+ 1/(2B) In(zp/y ™). (6.2)

Since A,,, := 1/y ** is the maximal spiking activity of the neurons, and
normalizing the activity A(x, t) — A(x, t)/N(x), we get

A(X) = Ap = (1 + tanh{B[h(x) — F1}). (6.3)

NlH

This means that for spiking neurons, we can use the standard logistic gain
function to get realistic stationary results, and we know how each parameter
of the gain function can be interpreted in terms of the microscopic param-
eters of the underlying neuronal model from section 4.1. For neurons with
absolute and relative refractory period, a similar assembly-averaged gain
function can be calculated (see equation B.8).
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6.2 Wilson and Cowan Integral Equation Model. With absolute refrac-
tory period only, it is p,(s) = 0fors < y * and p,(s) = 1 for s > y . In this
case, and for normalized activity [A(x, ) — A(x, t)/N(x)], equation 4.19 can
be written as

—1 t * abs * *
Alxf) = t[h(x, t)] {1 _/wodt Ofy ™ — (t —t")]A(x, t )}
1 t . .
- tlh(x, t)] {1 - /f;yabs de* A(x, t )} . (6.4)

This equation is formally identical to the W+C integral equation model pos-
tulated by Wilson and Cowan (1972) for the description of the activity of a
population of spiking neurons. But in the Wilson and Cowan model, instead
of [z(h)]7!, a sigmoid function S(h) is used, which is motivated by a vari-
ation of neuronal parameters among the neuronal population. This would
introduce additional correlations (which, notably, are explicitly neglected in
the Wilson and Cowan model). Furthermore, we do not need to postulate a
sigmoid form for [ (/)] ~! a priori; a sigmoidal shape of the assembly activity
gain function (i.e., A(x) as a function of a constant synaptic field &) is rather
a consequence of the refractory characteristics of the single neuron. The Wil-
son and Cowan equation is thus a special case of equation 4.19, with the
difference that this equation incorporates relative refractory behavior and
that all parameters in it are given by microscopic (i.e., neuronal) parameters.

6.3 Synfire-Chain Pulse Propagation. The factor Ni(x, t) from equa-
tion 4.19 is computed according to equation 4.17, using the past activity
A(x, t*) convolved with two functions: one minus the activation function
¢(t—1t*) := 1 —p,(t —t*) and the survival function Dj(x, £, t*). In some cases,
the survival function is close to 1 for quite a long time period ¢t — #* into
the past, so that the function ¢(¢ — t*) dominates the dynamics. In particu-
lar, this can be the case for low noise § — oco. In this case, we can neglect
the effect of the survival function and write for the normalized activity
[Ax, t) — A(x, t)/N(x)],

Alx.f) = T[hxt{ /dtg Alx, )}, 65)

instead of equation 4.19 (note the similarity with the first line of equa-
tion 6.4). This equation is formally identical to the integral equation pos-
tulated by Aertsen and Gewaltig for the description of the propagation
of pulse packets through the stages of a synfire chain (pulse-propagation
model; M. O. Gewaltig, pers. comm., and Gewaltig, 1999). Therefore, equa-
tion 6.5 is an approximation of the exact equation, 4.19.

6.4 Activity-Folding Models. One of the disadvantages of the exact
equations 4.12 and 4.19 is the double integral evaluation (the integral over
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past spiking times t*, but also the integral hidden in the survival function
Dy(x, t, t*); see equation 4.13 or 4.14). There have been a few attempts to
introduce approximations that avoid this double evaluation and reduce
the assembly dynamics basically to a single integral equation that folds
the past activity. Equation 6.5, which is gained from equation 4.19 with
Dy(x, t, t*) = 1,is such an approximation, but it seriously underweights the
activity of the more recent past, thus producing qualitatively wrong results
on the long run.

Instead, a viable alternative turns out to be to start from the low-noise
limit of equation 4.12. It can be shown that in this case, the evaluation of an
integral equation can be completely avoided. In the noise-free case, a neuron
with renewal and last spiking time t* spikes at t* + s* when its membrane
potential (see equation 4.2) reaches the firing threshold ¢ from below, that
is, when

o(t) =n(s*) + h(t) = & (6.6)

Equation 6.6 implicitly’ defines the backward interval s*(x, t), meaning that
at time ¢, all those neurons contribute to spiking that had last spiking times
t—s*(x, t), and these neurons are given just by the neuronal density p[x, t, t —
s*(x, t)], which in its turn is proportional to the past activity A[x, t —s*(x, t)]
because the system is deterministic. But we have to take care of distortions
of the neuronal density due to the remapping of t* to s*, which results in
plx, t, t —s*(x, 1)] = [1 — d/dts*(x, t)| Alx, t —s*(x, t)], so that we finally get
for the activity dynamics (Eggert & van Hemmen, 2000)

A(x, t) = Il — dits*(x, t)l Alx, t —s*(x, t)]. (6.7)

For monotonous n(s), we can calculate the explicit results s*(x, t) = n~Y—[h
(x,t) — 91} and d/dts*(x,t) = I'(x, t)/n'[s*(x, 1)],'° and get the simplified
expression (Eggert & van Hemmen, 2000)

H(x, t)

S ll =Ty

l Alx, t —s*(x, 1)]. (6.8)

This equation can be used for simulations and is exact for deterministic
spike-response neurons with renewal. All it requires is to solve for s*(x, t)
and to calculate n'[s*(x, #)] (analytically) and /'(x, t) (using the ongoing sim-
ulation data) at every time step. Equation 6.8 is causal because it is always
s*(x,t) > 0. Equation 6.7 is called the noise-free activity-folding model (al-
though no folding takes place in this particular case).

° For monotonous 71(s), s* (x, t) can be calculated explicitly to s*(x, t) = n~{~[h(x, t) —
91y.

10 Primes denote derivatives.
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Now we can look at low but finite noise approximations of equation 4.12.
We see from a comparison of equations 4.12 and 6.7 that in the noise-free
case, the spiking probability function is Sj(x, t, t*) o 8[(t — t*) — s*(x, t)],
that is, its function is to filter out the valid contributions from the past ac-
tivity A(x, t*), according to the threshold condition, equation 6.6. For small
but increasing noise level, Sp(x, , +*) broadens to a gaussian-shaped func-
tion of t* centered around t — s*(x, t). In this case, we approximate the real
spiking probability function by S(x, t, t*) « (1/v27c?) exp{—[(t — t*) —
s*(x, 1)]2/(252)}.

Taking into account the normalization properties of S(x, ¢, t*) and as-
suming that o remains small so that S;(x, ¢, t*) still resembles a & distri-
bution, we can then calculate an expression for the noisy activity so as to

get
d -
Alx, t) = .1 — d—ts*(x, t). Alx, t —s*(x, )], (6.9)

or, in case of monotonous 1(s),

H(x,t)

Alx, t) = ll + —n/[s*(x, 0

l Alx, t —s*(x, 1], (6.10)

with A(x, t') being the past activity folded with a gaussian function around
time ¢/,

t r_ k)2
Alx, t) = /700 dr* \/erjexp [—%} Alx, t7). (6.11)

Equation 6.9 is called the noisy activity-folding model.

From equation 6.9 (resp. 6.10), we gain a new understanding of the ac-
tivity dynamics. In the presence of noise, basically two processes compete
with each other. On one hand, noise broadens the spiking probability func-
tion, causing a smearing out of the activity during the convolution when
calculating A(x, t') in equation 6.11. On the other hand, the normalization
factor contracts or expands the activity as in the noise-free case, equation 6.7
(resp. 6.8).

The unknown width & inequation 6.11 has to be calculated at every simu-
lation time step according to some approximation of the spiking probability
function, since we do not know the exact Sj,(x, ¢, +*). A proposal of how this
can be accomplished is presented in appendix A.4.

Equation 6.9 (resp. 6.10) is formally equivalent to an integral equation
derived using a gaussian noise at the reset after spiking (Gerstner, 1998),
instead of threshold noise as introduced in section 4.1.2. Because of the par-
ticular type of noise used, in Gerstner (1998), equation 6.9 is exact with a
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fixed o. Although not widely spread in the neuroscience community, equa-
tion 6.9 (resp. 6.10) allows for quantitative and qualitative modeling with
much less numerical cost as compared to the main equations, 4.12 or 4.19.

An interesting property of equation 6.7 (resp. 6.8) is that a linearization of
s*(x, t) around a time t° directly yields a dynamics that develops according
to the locking theorem (Gerstner, van Hemmen, & Cowan, 1996) for SRM
neurons (see Eggert & van Hemmen, 2000). This means that the dynamics
will also be able to develop coherent oscillations as predicted by the locking
theorem. The same linearization can also be done for equation 6.9 (resp.
6.10), resulting in a locking theorem for noisy SRM neurons.

6.5 Standard Graded-Response Models, Wilson and Cowan Differ-
ential Equation Model. The commonly used assembly-averaged graded-
response models, including the Wilson and Cowan W+C graded-response
model (Wilson & Cowan, 1972), can be motivated as follows from our pool
dynamics. We look again at the normalized form [A(x, t) — A(x, t)/N(x)] of
equation 4.19. In a quasistationary regime, we define a dynamics by an ex-
ponential relaxation toward the stationary solution of equation 4.19, which
for neurons with absolute refractory period can be calculated solving only
for A(x,t) in 0 = —A(x) + {z[h(x)]} 71 —y *A(x)]:

d 1 bs
TE{‘A(X’ t) = —A(X, t) + m[l -y A(X, t)] (612)

This equation, and its simpler variant (for low activity y *A(x, ) « 1, stan-
dard graded-response model),

d 1
TEtA(X’ 1) = —Alx, t) + Tl

(6.13)
are of the same form as the widespread assembly-averaged graded-response
models. Equation 6.12 is formally identical to the Wilsonand Cowan graded-
response model.

In addition, using the stationary solutions of equation 4.19 for neurons
including absolute and relative refractory period (see appendix B.2 for a
detailed calculation), by the same procedure we get

d 1 ‘
Al ) = —Al D+ 1= =iV (x, DA, D) (6.14)

with termsy ®* and K‘]il) (x, t) that account for absolute and relative refractory
effects, respectively. Equation 6.14 will relax toward the correct microscopic
solutions (i.e., solutions that are in accordance with those obtained from
simulations with single spiking neurons), incorporating absolute and rel-
ative refractory effects. There is no necessity of “time-coarse-graining” or
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other temporal averaging procedures to arrive at equations 6.12, 6.13, or 6.14
for quasistationary activity. Graded-response models as in equations 6.12,
6.13, and 6.14 may thus present a valid approach if the assembly dynam-
ics are always close to the stationary state calculated from the microscopic
parameters.

Again, as the preceding sections, it is now possible to understand how
the parameters of the derived models (here, graded-response models) can
be interpreted in terms of the microscopic parameters of the underlying
neuronal model from section 4.1. The only exception is the arbitrary relax-
ation time constant 7. For a derivation of a first-order differential equation
model without arbitrary time constants, we have to make use of the differen-
tial equation 5.7 or 5.10 in combination with appropriate approximations.
This is done in appendix B.3. Such a model will be better suited for the
description of dynamics away from the case of stationary activity.

6.6 Graded-Response Models with Refractory Effects. We can enhance
the standard graded-response model 6.12, 6.13, or 6.14 by incorporating an
additional term for the dynamics of the first recovery variable. Together with
an exponential relaxation dynamics of A(x, t), using a single differential
equation from equation 5.10 for the dynamics of the number of inactivated
neurons N;(x, t) (here we break the chain of differential equations accord-
ing to equation B.2; see appendix B.1 for systematic approximations), and
assuming neurons with relative refractory period only, we find a graded-
response model with refractory effects,

r LA ) = —Ax B + ——[1 — Ny(x. D],

dt t[h(x, t)]
d 1 1
ENI(X’ t) = Alx, t) — [m + Z] Ni(x, 1). (6.15)

Integrating the spike density over a small, fixed interval T during which
A(x, t) can be regarded as constant, we get the absolute number of neurons
that released a spike recently, f(x, t) =~ TA(x, t). We define further r(x) :=
Ni(x, 1), B := 1/t oilh(x, t)] := 1/z[h(x, )1 T/z, ou[h(x, t)] := 1/<[h(x, t)],
a; = 1/7 and o, = 1/T and rewrite the equations 6.15 as

%<xﬂ=—%ﬂxﬂ+u—ﬂxmmmm0L

%ﬂxﬂ=mﬂxﬂ—ﬂMﬂ+qMMﬂh (6.16)

The result is a system that is very similar to the neural network master
equation (NNME) proposed by Cowan (1991). Again, we can interpret the
parameters of the model in terms of their microscopic parameters. The sys-
tem 6.16 now depends as before in section 6.6 on nonintrinsic time constants,
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namely, an arbitrary integration time constant T and an arbitrary relaxation
time constant 7. For quantitative modeling away from the stationary state,
itis therefore better to use the full assembly models presented in this article,
which are based exclusively on microscopic parameters.

6.7 Connection with Continuous Neural Field Models. The motiva-
tion for choosing pools as the basic units of biologically realistic neuronal
networks was based on the experimental observation that under identi-
cal stimulus conditions, groups of neurons often tend to behave similarly.
However, a pool is not necessarily defined by spatial proximity, but by
the input-output connection characteristics of its constituting neurons. One
could imagine cases in which neurons have learned the same connectiv-
ity pattern and thus are members of the same neuronal pool in spite of a
considerable interneuronal distance.

In case of the input-output connection characteristics building a topol-
ogy in real space, pools could be defined by neuronal types and spatial
proximity. Then x does not designate a pool index but a point in space.
If in a network volume (or surface, etc.) the coupling strengths vary only
slowly as compared to the distance between neurons (that is, if the num-
ber of neurons is high in a volume in which the coupling strengths do not
vary noticeably), we can take a continuum limit. Continuous “neural field”
models are based on this type of description. Of course, the continuum limit
can also be applied to the assembly models described in this article. Let us
consider a volume composed of a single type of neurons. We introduce a
spatial neuronal density,

pH(x) = Y 8(x —x), (6.17)
j

with the neuronal position vectors x;. To each pool index x we assign a
neighborhood Q(x) that comprises all neurons of the pool. That is, a neuron
i belongs to a pool x if its position is x; € Q(x). The number of neurons in
the neighborhood is then

Nalx) = /Q LAy, (6.18)

A spatial activity density A’(x,t) is introduced by counting all spikes that
occur in a small neighborhood Q(x) at time t divided by the number of
neurons in Q(x),

Yjealx) Si(t) _Alx b
Yieawl — Nax)’

Allx, 1) = (6.19)

or, equivalently,

Alx, t) = /Q( )dypﬁdd(y) Ally, t). (6.20)



Modeling Neuronal Assemblies 1955

All other extensive variables of the dynamics and pool-averaged quantities
have to be calculated accordingly, since now we are dealing with spatial
densities. Instead of the densities p, we now use p’ = p“p to get

Jow Ay [l dt p'ly, £ ) ...

Noo) (6.21)

(oo (x 1) =

Of course, the considerations of this section are valid not only for as-
sembly dynamics calculated using integral equations in combination with
densities p, but also for all other, derived models. Spatially continuous field
equations often appear in relation with graded-response-like assembly av-
eraged models, such as the Wilson and Cowan differential equation model
of section 6.5. They have been used in a number of cases for the analysis of
spatially homogeneous networks (see Ermentrout & Cowan, 1979a, 1979b,
1980; Feldman & Cowan, 1975; Wilson & Cowan, 1973). Special interest has
been evoked by the capabilities of such networks to produce spatiotempo-
ral activity patterns. Spatially homogeneous networks of spiking neurons
have also been studied recently in Kistler, Seitz, and van Hemmen (1998).
So far, spatially homogeneous networks of assemblies of spiking neurons
modeled at the macroscopical level such as presented in this work have not
been studied, although they would allow modeling a much larger biological
network.

6.8 Connection with Models of Spiking Neurons. Equations 4.12 and
4.19 have been derived directly using neuronal properties and assembly
averaging, so that an extensive [N(x) > 1] pool of singly modeled SRM
neurons behaves in a way equivalent to the integral equations. (The case of
finite-size poolsis handled in section 6.10.) The differential equation system
5.7 or 5.10 is also exact for pools of extensively many SRM neurons with re-
newal. However, it has been derived for special functions p,(s) (resp. P,(s))
(see equation 5.1). In other cases (i.e., for finite pool sizes or arbitrary refrac-
tory functions), the differential equation form of the assembly dynamics can
be used as an approximation. In this section, we show how the parameters
of the differential equation pool dynamics can be mapped to single-neuron
parameters of the SRM and vice versa.

From equations 4.7 and 4.8, we know the connection between the spike
probability density for activated neurons [z(h)] ! and the activation prob-
ability p,(s) with the SRM escape rate {r*™[v()]} ! (see equation 4.4). For
completeness, we repeat here equation 4.8 for p,(s),

pals) == exp[2Bn(s)], (6.22)
which can be solved for n(s) to get

n(s) = % In[pa(s)]. 6.23)
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Figure 9: Correspondence between the activation function p, (s) (solid line) and
the negative refractory function —7(s) of the SRM (dotted line). In this case, we
used an exponential p,(s) with an absolute refractory period of y ™ = 1. At
s =y, the refractory function n(s) diverges to —oo.

Figure 9 shows an example of an exponential p,(s) and the corresponding
SRM refractory function calculated through equation 6.23. We see that when
pals) = 0 (which is the case for very recent spiking so that s < y *, i.e., the
neuron is in its absolute refractory phase), the negative refractory contri-
bution to the membrane potential is infinitely high, so that the neuron is
unable to release any spikes until (s) decreases in magnitude.
Alternatively, we can start from frequently used refractory functions n(s)
and search for systematic approximations of these functions through the
corresponding p,(s) from equation 5.1. This is, for example, the case for IF
neurons, which have an exponential 7(s) = 1, (s). This refractory function
and another one that is frequently used for the SRM are indicated below:

0 fors < 0
Nepls) = § = N forO<s<y™ 624
—mpexpl L] fors =y
and
0 fors < 0
M (8) = § —00 forO<s <y o
_:;‘m fors > y s,

For small n(s) (i.e., in case the synaptic field is small enough so that neu-
rons do not spike again until their refractory field has already decreased con-
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siderably), we can approximate the activation function p,(s) corresponding
to the refractory function 6.24 by using equation 4.8:

palt — 1) = expl[2pn(s)]

_ abs
~ 1+ 2pn(s) = 1 — 2Bnoexp [—S TV ] . (6.26)
n

Comparing this with the exponential activation function or the sigmoidal
activation function in equation 5.1, we get

po = 2Pn0, T = 7y, and sp =y **. (6.27)

Similarly, in the case of the inverse refractory function, equation 6.25, we
can approximate

palt —t*) = exp[2Bn(s)]

~ 1+ 2Bn(s) = 1 - 28—2— (6.28)
S_yab

and compare this with the inverse activation function (last part of equa-
tion 5.1) so as to get

T = 2Py, and so =y ™. (6.29)

Figure 10 shows an exponential refractory function as used for IF neurons
and its approximation in terms of p,(s). We see that for large s, the curves
coincide. This means that especially in undercritical synaptic driving con-
ditions, during which the synaptic input is much smaller than the highest
amplitude of the refractory field, the presented approximation scheme al-
lows for a precise quantitative description of the activity of pools composed
of stochastic SRM or IF neurons.

Of course, any other approximation scheme can be used as well. This en-
ables simulating pools of neurons with different refractory fields by means
of the differential equation model, 5.7.

Finally, here is the recipe to put the whole theory together for simulations
of networks of pools of spiking neurons. First, choose one of the two noise
models for a stochastically spiking neuron as described in section 4.1.2—
either the general threshold noise (see equation 4.3) or escape noise (see
equation 4.9). Then select the desired refractory function 7n(s) or the cor-
responding activation function p,(s) to describe the refractory properties
of a neuron. After that, choose initial past activities A(x, t*), and use them
to calculate the normalized state density p(x,  — At, t*) of the assembly at
time t — At. The activity A(x, t) at time ¢ is then calculated using either equa-
tion4.10 or 4.11 (according to the chosen noise model). The newly calculated
activity A(x, t) modifies the density, so that now we are able to calculate the
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Figure 10: The exponential refractory field function —n(s) (dashed thick line)
is plotted together with its corresponding activation probability function p, (s)
(solid thick line). The other four functions are approximations of the desired
refractory function (dashed thin line) and the desired activation function (solid
thin line) using a sigmoidal (better fit of the thin curves) and an exponential
pa(s). This approximation is particularly suited for undercritical stimulation
conditions, since the curves coincide for large s, i.e., when neurons spike again
when their refractory field has already decreased noticeably.

new normalized state density p(x, t, +*), and, accordingly, A(x, t+At),and so
on. (For hints concerning the normalization of the density, see appendix A.)
At the same time, keep track of the pool-to-pool interactions by calculating
the synaptic fields according to equation 4.22.

Accordingly, we can use the differential equation assembly dynamics
from section 5 for the calculation of the very same assembly dynamics, or
any other of the approximation schemes presented in section 6. For exam-
ple, from the microscopic parameters of the noise model and the refractory
function 7(s) or the corresponding activation function p,(s), we can cal-
culate the gain function of the pool—its steady firing versus steady input
relation (its stationary activity for constant input). How this is achieved is
explained in section 6.1 for neurons with absolute refractory period only,
and in appendix B.2 for neurons with absolute and relative refractory period
(see also Figure 12).

6.9 Connection with Single Neuron Spike Statistics. Poisson spike
trains have an interspike interval (ISI) distribution that is exponential with
a probability density (here, t is the interspike interval and f is the mean
interspike interval)

1
plt) = H exp (——.) . (6.30)
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Such spike trains are generated by a stochastic Poisson process that assumes
a complete independence between the time of occurrence of neighboring
spikes.

In a neuronal assembly, we do not average over different stochastic real-
izations of a single neuron, as would be the case for gaining the probability
density, equation 6.30, but over all neurons that belong to the same pool. But
since all pool neurons are equivalent, for the special case that all neurons
fire together at some arbitrary moment in time, the assembly average and
the realization average are also equivalent, which lets us calculate the ISIs
of spiking neurons using the pool equations, 4.12 or 4.19.

Without loss of generalization (wo.l.o.g.), we assume that all neurons
spike together at t = 0, so that A(+*) = &(+*), and use this in equation 4.12 or
4.19. Weget A(x, t) = t5[h(x, t) + n(D] 7" Dy(x, t, 0) or A(x, t) = [h(x, )]
palt) Dy(x, t, 0), which in the expanded form (using equation 4.13 or 4.14)
means

1 L 1
A = it 0 7 o1 P {_/0 ST ) + 0]

} (6.31)

or

1 t ’ 1 ’
Alx, t) = mpA(f) exp {—/0 dt mpA(t)}. (6.32)

Equations 6.31 and 6.32 correspond to an inhomogeneous Poisson process
with time-varyingmeanISIsf = t5™[h(x, t)+n(t)]and f = z[h(x, t) [{p. ()} .
In case of constant synaptic field h(x, t) = h(x), equation 6.32 is modified to

1

t
A(X, t) = WPAU’) exp {—m FA(t)} s (633)

which describes a Poisson process with mean ISI t = ¢[h(x)] and a modi-
fication of the ISI by refractory properties (Poisson process with refractory
properties). These are taken into account by the functions p, () and I',(¢),
with I, (#) calculated according to

_ Jodt pa(t)

LL(8)
' Sart

e [0,1]. (6.34)

For a neuron with constant synaptic field and absolute refractory prop-
erties only, we get that I',(#) = p,(t) and arrive at the Poisson ISI with offset
(Poisson process with offset),

Alx, t) = Ot —y ™)

exp {—; } , (6.35)

1
t[h(x)] t[h(x)]
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which, in case of zero y **, finally reduces to the pure Poisson ISI of equa-
tion 6.30.

We conclude that the pool equations can be used to derive properties
of the ISI statistics from single neuron models. They reduce to the known
Poisson forms, equations 6.30 or 6.35, for neurons without relative refractory
properties. Furthermore, by fitting experimentally gained ISIs with equa-
tion 6.33 using the constant t[h(x)] and the functions p,(t) and I',(¢), it may
be possible to analyze refractory properties of single neurons, described by
PA(t — ).

6.10 Finite-Size Assembly Dynamics. Equations 4.12, 4.19, or 5.7 are
valid for pools with extensively many neurons. For finite-size pools, they
will describe an assembly activity only to a certain approximation. How-
ever, they remain valid for the mean over different stochastic realizations.
Using the central limit theorem (Lamperti, 1966), it can be calculated that
the expected number of spiking neurons, (X(x, £)), in a time interval of
length At around ¢ is (Eggert & van Hemmen, 2000)

(X(x, 1) = A(x, t) At, (6.36)

with A(x, t) calculated as before in equations 4.12, 4.19, or 5.7,, so that our
equations can still be used for calculating assembly dynamics. It should be
noted, however, that it is also important to know the deviation o of the
results of the finite-size case from the extensively calculated activity A(x, t).
For the deviation it can be shown that, using equation 4.19), it is (Eggert &
van Hemmen, 2000)

o*x. ) = ((X(x. 1) — (X(x. 1)))?) (6.37)
At Af?
= Alx At [l " Thix, t)]] ~ TThix, OP
x INV(x, ) =N (x, 1)1,

with therecovery variables N M (x, t) and N'? (x, ) as defined in equation 5.4.

We see that for small discretization time intervals of length At (and ne-
glecting the terms of the order (At)?), we have a relative width of the prob-
ability distribution function of X that is equal to

o(x, t) 3 1 638)
(X)(x,t) VAKX DAL :

1 Now the brackets mean averaging over different stochastic realizations, not assem-
bly population averaging.
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For higher activity, the relative width decreases, so that the effect of noise
induced by finite-size effects is reduced. If all neurons spike together at ¢,
we get the minimal relative width of \/1/N(x).

Concluding, we can use the assembly dynamics 4.12, 4.19, or 5.7 for a cal-
culation of the expected activity (X(x, t)) in simulations. For more realistic
dynamics of finite-size assemblies, stochastic effects can then be included
by assuming that the real number of spiking neurons X(x, t) has a gaus-
sian distribution around its mean A(x, t) At with a width of(x, t) given by
equation 6.37. This is a rather crude approximation but turns out to yield
results that are in very good correspondence with the results gained from
simulations using pools of singly modeled spiking neurons.

7 Discussion and Summary

We have presented a theoretical framework that describes in a quantita-
tively exact manner the dynamics of assemblies of spiking neurons of the
spike-response or IF type with renewal. The equations and their numerical
implementation enable the efficient simulation of large, biologically realistic
networks. The derivations are based on the notion of a static neuronal as-
sembly, which takes the role of the basic computational unit of the network.
Together with the assembly definition, we can move the descriptional level
one level upward from the single neuron, since the entire network can be
described in terms of assemblies interacting by means of their macroscopic
activities A(x, t).

Since the derivations of the assembly dynamics do not rely on tempo-
ral averaging, they serve to describe the dynamics of networks of spiking
neurons with high temporal resolution. Assemblies react arbitrarily fast to
rapid onsets of the input and are able to generate self-sustained coherent os-
cillations of activity. This has been confirmed in extensive simulations and
theoretical work and can be read elsewhere (see Eggert & van Hemmen,
2000; Gerstner, 1998). The main message is that if a network of spiking neu-
rons can be split into assemblies according to the definition of section 2.1,
then simulations using assembly dynamics will be in quantitative accor-
dance with the same network simulated with explicitly modeled neurons.

Figure 11 shows a diagram containing the most common models for spik-
ing neurons and assembly dynamics used in the neuroscience community,
embedded in a common framework with the models derived in this arti-
cle. The lower left corner indicates models of single spiking neurons. The
upper left corner indicates models gained by assembly averaging, and the
lower right corner shows models of single neurons gained by temporal av-
eraging. The upper right corner shows models gained by both temporal
and assembly averaging. These comprise the so-called assembly-averaged
graded-response models and their variations.

The exact derivations and their conditions are indicated in Figure 11 by
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Figure 11: Overview of the different types of models and their derivations. The
x- and y-axes indicate temporal averaging and assembly averaging. Equation
numbers are in parentheses. Derivations are indicated by arrows. Solid arrows
indicate exact derivations under the condition added by a +; dashed arrows
indicate derivations of dynamics by an exponential relaxation with arbitrary
time constants, and dotted arrows indicate that the target model is motivated
rather than derived by the source model. Four blocks of models can be devised
(indicated by gray rectangles). In the lower left corner, we see models of single
spiking neurons with high temporal resolution. From the HH model, the SRM
formalism can be derived. From there, we can perform temporal or assembly
population averaging. Population averaging results in the integral and differ-
ential equations for assembly dynamics (large blockin the upper left). Standard
assembly-averaged graded-response models are located in the upper right block
(first- and second-order differential-equation models are indicated separatedly
by two dashed subblocks). The differential equation model can be used to ap-
proximate assembly dynamics with low or high temporal precision, indicated
by the elongated dark rectangle.

solid arrows. Whereas standard assembly-averaged graded-response mod-
els cannot be “derived” exactly under any conditions, with the presented
theory itis possible to establish a link between the upper left and the upper
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right sides of the diagram. This is accomplished by the differential equation
form of the integral equation assembly dynamics. The numerical implemen-
tation of the differential equation form is indicated by an elongated dark
rectangle that fully extends from left to right, indicating that a wide range
of temporal averaging can be covered by this model. It is important to note
here, however, that the temporal averaging is not performed during the
derivation of the model, but instead a posteriori, when the numerical im-
plementation takes place. This marks an important difference over previous
models and derivations.

Finally, we see that a large number of known models and network ef-
fects can be understood within the presented theoretical framework. This
understanding starts with assembly dynamics (e.g., the propagation of fast
transients of activity, the propagation of pulse packets along a synfire chain
of assemblies, the generation of oscillatory activity in a group of neurons
according to the locking theorem) and extends to the point that it enables
us to investigate properties of single neurons (e.g., by calculation of exact
gain functions including refractory effects or by looking at deviations from
Poisson ISI spiking statistics), since the assembly dynamics incorporate the
microscopical parameters of the underlying neuronal model. The models,
functions and analytical results that can be understood within our frame-
work are the logistic gain function, assembly-averaged gain functions in-
cluding absolute and refractory effects, the Wilson and Cowan W+C integral
equation model, the synfire-chain pulse-propagation model, the noise-free
activity-folding model and the noisy activity-folding model, the assembly-
averaged graded-response models including the Wilson and Cowan W+C
graded-response model and the standard graded-response model, graded-
response models with refractory effects including the neural network mas-
ter equation (NNME), the inhomogeneous Poisson process including the
Poisson process with refractory properties and the standard Poisson pro-
cess with offset, and the influence of finite-size effects on assembly dynam-
ics.

The appendixes show details of the numerical implementation of the
integral equation assembly dynamics, 4.12 or 4.19, and of the differential
equation assembly dynamics, 5.7 or 5.10. They are intended for the interested
assembly modeler for a straightforward implementation of the dynamics
for simulations.

Appendix A: Numerical Implementation of the Integral Equation Pool
Dynamics

The integral equations, 4.12 or 4.19, suffice to describe the dynamics of an
extensive pool of spiking neurons with renewal. They can be implemented
to simulate the pool-averaged activity in a quantitatively exact way. Here
we discuss some numerical issues of the implementation of the equations
for simulations. In particular, we discuss the errors that are introduced into
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simulations because of limited storage resources, meaning a limited mem-
ory of the past history of the system.

A.1 Limited-Memory Error Effects. In principle, for both equations 4.12
and 4.19, the complete density p(x, ¢, +*) for all possible past spike times
t* < tis needed. In a simulation, the entire density function for all * has to
be kept in memory, so we have to restrict ourselves to some past interval
of length s,,,, with t —s,,, < t* < t. This means that systematic errors
will be introduced into the calculation of pool-averaged variables at every
simulation step. We denominate with hats all variables that are calculated
with a truncated past interval [t — s,,,, t]. For example, instead of a fixed

max

number of pool neurons N(x), we get a time-varying quantity N (x, t) with
a normalization error €(x, t), defined by

t
Nix. ) 1= NOI[1 — e, ] = / d* p(x. £ 1), (A1)
t—Smax

Analogously, in simulations we are dealing with the numerical equiva-
lents Nl(x, #) and A(x, t) of the number of inactivated neurons N;(x, t) and
the activity A(x, t).

With these definitions and linearizing for small interval lengths At, we
can calculate from equation A.1

N(x, t + At) = AtA(x, t + At) — Atp(x, t + At t+ At —s,,.)

+ /f d* p(x, £, #)[1 — AHT™[K(x, 1) + n(t — )]} (A2)
t

—Smax

for the SRM case (equations 4.10 or 4.12) and

N(x, t + At) = AtA(x, t + At) — Atp(x, t + At t+ At —s,,.)

t
; / A p(x, £, )1 — Atelilx O pa(x, =] (A3)
t—Smax
for the escape-noise case (equations 4.11 or 4.19). We get three terms. The
first two account for neurons that enter and fall out of the limited time
window, respectively.

In addition to the error due to limited memory, an error is introduced by
the numerical integration of the dynamics. This error will not be considered
further here because it depends on the implementation details.

A.2 Normalization Error. For the escape noise assembly dynamics from
section 4.1.5, the main equation 4.19, reads in its memory-limited, dis-
cretized form:

A 1

A(x, t + At) = m[N(X) — Ni(x, 1)]. (A.4)
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Notice that here we have written N(x) instead of its truncated numerical
equivalent, N(x, t), since the pool size is known and does not need to be
calculated over and over at every time step. This has important numerical
implications, as will be seen when we analyze the implementation of the
SRM assembly integral equation (4.10 or 4.12).

Using equation A.4 in A.3, we can calculate that

A

N(x,t + At) = N(x)[1 —€e(t + At)] = —Ato(x, t + At, t + At —s,..)
+ N(){1 —e(O)[1 — At{z[h(x, H]} 1)
+O(AP). (A5)

Linearizing for small time intervals of length At and taking lim At — 0,
this yields for the new normalization error:

d 1 1
Ete(t) = " Thix t)]e(t) + N(x)p(x, £yt — S - (A6)

The numerical implementation of the dynamics thus produces two er-
ror terms. The second one comes from the limited past time window and
quantifies the neurons p(x, t, t —s,,,) that slide out of our time window and
have been “forgotten” in the current time step. This contribution causes
a permanent increase of €(t). But there is another term that decreases the
normalization error. This happens exponentially fast with a time constant
t[h(x, #)], meaning that for increasing synaptic fields h(x, t), we will get
N (x,t) = N(x). Therefore, the error becomes small for time periods of high
synaptic input, which normally are the important time periods in simula-
tions. The numerical implementation of the pool dynamics, equation A .4,
thus performs an error correction through automatic normalization.

Repeating the same procedure for the memory-limited implementation
of equation 4.10 (or the corresponding 4.12),

N t 1
Alx, t+ At) = dr Lt 1), A7
e an = [ e (A7)
we get for the number of pool neurons at time ¢ + At
N(x, t + At) = N(x, t) = p(x, £, t — 5,) At + O(AF). (A.8)

Here we have a problem, because there is no error correction through au-
tomatic normalization. Instead, the error accumulates and grows infinitely;
that is, the activity “drifts” away from any reasonable bounds. This is plain
to understand, since equation A.7 is invariant to uniform shifts of the ac-
tivity. But there is a solution to this problem. We calculate the new activity
according to

A N(x)

Alx, t + At) = = Agax, t+ A ~ Ay(x, t+ AD[1 + ()] (A9)
N(x, t)
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for small normalization errorse(t) < 1 (A, is the activity as calculated with
equation A.7).
Using equations A.7 and A.9, we can now calculate that

A

N(x,t + At) = N(x)[1 —€(t + At)] = —Ato(x, t + At, t + At —s,...)
+ N1 —e()[1 = AtA,(x, D]} + O(AF).  (A.10)

As before, linearizing for small time intervals of length At and taking
lim At — 0 yields for the new normalization error,

d

d—te(t) = —A,(x, elt) + p(x, tt —s,..). (A.11)

1
N(x)
This means that now a similar error correction and normalization as with

equation A.4 occurs. For clarity, we write the numerical implementation of
equation A9 in its full extension,

A

A(x, t + At)
fiodr (™M h(x, 1) + 0t — )] T p(x, 8, 1)
— N Lo t - - , (A.12)
Sl dfplx,t 1)
with the density

1
tMA(x, ¢) + n(t —t%)]

p(x, t, ) = A(x, t*) exp {—/tdt/ } . (A13)
p

We see that the synaptic field always appears as h(x, t), so that the nu-
merical implementation is causally consistent. Using the past presynaptic
activities of poolsy, A(y, t*), for t* < t, we get the field h(x, t), and this in
turn is used together with the stored own past activities A(x, ) (t* <t)and

fields h(x, t') (' € [+*, t]) to calculate the new activity Alx, t + Ab).

A3 Activity Error. Now that we know how to implement the integral
equation pool dynamics 4.12 and 4.19 numerically, we can address the
systematic error introduced into the activity by the truncation of the past
memory. The calculation is straightforward. For escape noise, we use equa-
tion A.4 and get

JA(x, t + A — A(x, t + At)|

< max [1—pa(t—1] N(x)le(t)], (A.14)

T tre[—00,t—Smax]

_r
tlh(x 1)]

so that the activity error is bound by the normalization error €(t).
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Using equations A.7 and A.9, the same calculation for the SRM yields for
escape noise

A

|A(x, t + At) — A(x, t + At)|

< min [1—p,(t—1t)] N(x)|e(t)], (A.15)

1
T elt—smat] t[h(x, 1)]
which is again bound by €(t). For monotonous p,(s), both expressions for
the activity error are equivalent, namely,

JA(x, t + At) — A(x, t + A
1

mN(XHE(tH (A.16)

<1 — pa(Sma)]

A.4 Numerical Implementation of Activity-Folding Models. How can
equation 6.9 (resp. 6.10) be used for simulations? A further approximation
is necessary to accomplish this. We still do not know o. For simulations, we
approximate the past synaptic field k(x, #') needed by the survival function
and the spiking probability function by a constant .12 In this case and for
escape noise, we can calculate the survival function as

Dy(x, t,t*) = exp [—MFA(t — t*)] , (A.17)
7(h)
with
T,(s) := Jodtpalt) [0, 11. (A.18)

Jodt1

A good choice is to select the constant synaptic field to be that of the max-
imum of the real spiking probability function, which is approximately lo-
cated at t — s*(x, t). This finally results in

1 *
ey LG
(t —19)
t{hlx, t —s*(x, )]}

Su(x, t, t¥) =

x exp[— r.(t—t9]. (A.19)

Since we now have an analytic expression for the spiking probability, from
equation A.19, we can calculate the momentary o. The procedure is then as
follows. At any moment ¢, calculate s*(x, t) using the actual synaptic field

12 The procedure described here can be applied using linear or higher-order approxi-
mations of .
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h(x, t). Then calculate o as a function of the past synaptic field h[x, t—s*(x, #)],
using equation A.19. Finally, calculate the folded pastactivity Alx, t—s*(x, 1]
using the calculated o and Sj(x, t, t*). After that, proceed with the calcula-
tion as in the noise-free case using equation 6.10.

For a numerical implementation, the procedure can be simplified even
further by setting up a table of the o’s as a function of the past fields h[x, t —
s*(x, t)]. This reduces the calculation of the assembly dynamics to a single
integral evaluation when calculating the folded past activity Alx, t—s*(x, B].

Appendix B: Numerical Implementation of the Differential Equation
Pool Dynamics

In this section, we look in detail at the consequences that follow from using
the system 5.7 for the calculation of assembly dynamics. Equations 5.7 are
exact for assemblies composed of many spiking neurons. Nevertheless, fora
numerical implementation of the dynamics, the infinite chain of differential
equations has to be approximated by a finite differential equation system.
Breaking the chain earlier or later leads to dynamics that follow the exact
results ina smooth fashion or in every detail. One can therefore approximate
the pool dynamics with the desired accuracy. Here we discuss systematic
approximations to the differential equation system.

B.1 Systematic Approximations. Contrary to previous work on pool
dynamics, the differential equation system 5.7 is exact for pools of many
neurons, since it does not rely on time averaging for its derivation. This al-
lows quantitatively modeling pool activities well beyond the quasistation-
ary regime. But for numerical simulations, the infinite chain of differential
equations has to be approximated by a finite system.

Because of property 5.6 of the recovery variables, we can approximate
the infinite chain of differential equations 5.7 by breaking it at a desired
recovery variable N+ (x, t) and by introducing an appropriate dynamics
for this quantity. In this section, we will analyze different approximations
of the differential equation system, 5.7.

There are two sensible ways of approximating N'"*1)(x, t), which differ
according to the desired dynamical simulation range. Assuming that 7 is
large enough, the influence of the relative refractory field on the (n + 1)th
recovery variable can be neglected, and we can approximate N+ (x, t) ~
M(x, t) or N (n+1) (x, t) =~ 0 if we are dealing with neurons without absolute
refractory period.

For fast, transient dynamics with sharp activity steps, N (1) (x, #) is cal-
culated according to the dynamics of M(x, t),

dn (D dMm w
ar (x,1) ~ d_t(x’ ) =Alx, t) —Alx, t —y ™), (B.1)
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or, for neurons without absolute refractory period, we use equation 5.10 for
dN(”)(x, t)/dt and N(”“)(x, t) =~ 0. In the case of exponential or sigmoidal
p +(8), this gives for the nth recovery variable

dN(n)
dt

1 n

bot) Al = [W o

] N (x, t). (B.2)

For slow dynamics, we can approximate N'"*)(x, t) by its stationary
value. For slow dynamics, the activity A(x,t) and the field h(x, t) are ap-
proximately constant during the time period of the kernel [1 — pA(s)]’l+1 of
N+ (x, ). This means that

N(n+1)(x, Bl K,i”*l)(x)]A(x, t) (B.3)

with K]i'ﬁl) (x) being the time constant of the (1 + 1)th kernel due to relative
refractory effects,

4“%v=£mmn—mMVHDM¢ﬂﬂ» (B4)

abs

Here K]i"“) (x) has been evaluated for a quasistationary field h(x, t) (i.e., the

field is assumed to be constant for a period during which the expression in
the integral is large), and thus itis written without an explicit dependency on
t. It depends, however, on the field /. For neurons with absolute refractory
period only, K]i'”l)(x) = 0, and we can use N U(x, t) ~ y = A(x, t) as the
stationary approximation. Similarly, in case of pools with relative refractory
period only, we use N+t (x t) ~ K,(;Hl) (x)A(x, t).

The slow approximation is exact when the activity approaches a station-
ary value.

B.2 Zeroth-Order Approximation: Stationary Solution and Gain Func-
tion. For constant input field h(x, #) = h(x) and stationary activity A(x, t) =
A(x), we can start directly with equation 4.19,

1
A = —[N(x) — N . B5
(x) r[h(x)][ (x) = N,(x)] (B.5)
Using this equation and expression B.3 for Ny(x) = N 1 (x) in the stationary
case,

Ni(x) = ™ + iV (1A, (B.6)

we can calculate the normalized stationary spike density (the exact assem-
bly-averaged gain function) to
Alx) 1

- ) ' B.7
[x, h(x)] N(X) yabSJrT[h(x)]JrK,il)(X) >
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If 7(h) is a monotonously decreasing function of i, we get a gain function
G(h) that saturates at large i and has a sigmoidal-like appearance.

Using our escape noise Ansatz from equation 4.7, t(h) = t9exp[—28(h —
3], with spike rate at threshold 7, 1 noise parameter $, and threshold &,
we get

1 1
GIx, h(x)] = — B.8
beb) = 755 7 + exp(—2B[h(x) — ¥1} + k" (x) [y »» ©8
with the modified threshold
9 =3+ 1/(2B) In(zp/y ™) (B.9)

and the relative refractory period time constant K]il) (x) as defined in equa-

tion B 4.

Figure 12 shows the stationary spike density A(x) as a function of the
synaptic field h(x). The pool spike rate A(x) saturates at N(x)/y * as it is
bounded by the inverse length of the absolute refractory period. The time
constant K]il) (x) quantifies the influence of the relative refractory period on
the stationary pool spike rate. It reduces the activity for intermediate fields
h(x) ~ 9. The noise factor B and the effective threshold ¢ determine the
slope and the inflection point of the gain function. Increasing the length of
the absolute refractory period y *** or decreasing the firing rate at threshold
Ty ! shifts the effective threshold toward higher values. We see that our
assembly dynamics let us understand the gain function quantitatively in
terms of the microscopic neuronal parameters y *, K‘]il), 79, B, and 9. This
marks a difference from standard gain functions as those commonly used
in graded-response pool models.

B.3 First-Order Approximation: Quasistationary Dynamics and
Graded Response. The graded-response models presented in section 6.5
have a serious disadvantage: they have free dynamical parameters that can
be chosen at will, such as the time constant 7 in equations 6.12, 6.13, or 6.14.
Of course, the free parameters could be fitted, but still it would be difficult
to interpret the data, because the free parameters stem from the exponen-
tial relaxation dynamics or from temporal averaging over arbitrary time
intervals, and not from the microscopic properties of the neurons.

Here we move in the opposite way. We start from our main equations 5.7
and derive a closed expression for the simplest possible assembly dynamics.
This results in a graded-response-like relaxation dynamics (i.e., a first-order
differential equation for A(x, t)) that follows smoothly and coarsely the real
dynamics of the assembly. Additionally, all of its parameters can be inter-
preted in terms of the microscopic neuronal parameters.

Since we want to gain a relaxation dynamics without delays, we assume
that there is no discontinuity in the activation function p, (s), that is, the neu-
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Figure 12: The stationary spike density for a pool of spiking neurons that re-
ceives a constant synaptic input field & can be expressed by a gain function that
is similar to the logistic gain function. Here we show the gain function for a pool
of neurons with absolute refractory period only (thin solid line) and for a pool
with absolute and relative refractory period (thick solid line). The relative refrac-
tory period reduces the activity for fields & close to the threshold (dashed line,
difference between the gain function without and the gain function including
relative refractory effects).

rons have a relative refractory behavior but no absolute refractory period.
We start with a first-order approximation of our main equations 5.10. We use
the slow dynamics approximation, equation B.3,!3 and chop the differential
equation system at n = 1, so that

NP (x, 1) ~ &7 (x) Alx, £), (B.10)

with K]iz)(x) calculated as specified in equation B.4 (depending on h(x, t)).
This means that we have only two state variables: the activity A(x, t) and the

13 The slow dynamics approximation now involves temporal averaging. The differ-
ence from standard graded-response models is that the averaging occurs over intrinsic
neuronal time intervals, and not a priori over some arbitrary interval of length T. There-
fore, it does not introduce additional dynamical parameters. Moreover, since here we are
looking at slow or even quasistationary dynamics, the temporal averaging is justified. We
also note that we can avoid temporal averaging completely if we use the fast dynamics
approximation, resulting in a first-order approximation that has the form of a differential
equation with delay.
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first recovery variable N M (x, t) = N,(x, t), which is the number of neurons
in the inactivated state.

The number of inactivated neurons is obtained from A(x, t) = {r[h(x,
H1I} N — Ni(x, t)] so as to give

Ni(x,t) = N(x) — t[h(x, t)]A(x, t). (B.11)

We now turn to the activity A(x, t). We assume that for quasistationary ac-
tivity, the fields evolve more slowly than the activity, and neglect the changes
of h(x, t).1* This leaves us with dA(x, t)/dt ~ —{z[h(x, )]}~ dN,(x, t)/dt,
and inserting equations B.10 and B.11 into the dynamics equation, 5.10, for
m = 1 and exponential p,(s) (the same steps can be applied to the other
functions p,(s)), we can solve for A(x, t) and arrive at

,[h(x, )] ditA(x, t) = —A(x, t)
— LN - el 011 500 Alx. 1) B.12
e oy |V T e N = ey (A B2
with

SN SR §
rlh(x, )] tlh(x, )] 7

(B.13)

Not only has this graded-response-type equation the microscopically cor-
rect stationary solutions, but it also provides us with the relaxation time
constant 7[h(x, t)]. This means that if we are interested in a realistic quasis-
tationary pool behavior, graded-response equations with fixed relaxation
time constants as those of sections 6.5 and 6.6 are insufficient.

Equation B.12 is the correct way to introduce a systematically derived
graded-response-type dynamics for pools of spiking neurons using the
chain of differential equations. The effect of equation B.12 is a dynamics
that follows the real activity dynamics by smoothing out sharp activity
peaks. Nevertheless, it will do so following the envelope curve of the activ-

ity, and it will still approach the correct stationary solutions for a constant
field h(x).

B.4 Higher-Order Approximations: Realistic Assembly Dynamics.
Higher-order approximations serve to model in a quantitatively accurate

14 Wo.l.o.g., we can include a term that considers the variation of A(x, t) due to changes
of h(x, t), so that this assumption is not really necessary for the calculation of the dynamics.
It is omitted only to gain an equation that can be compared to other graded-response
models.



Modeling Neuronal Assemblies 1973

way the dynamics of assemblies of spiking neurons. Using the fast dynam-
ics approximation, equation B.1, the differential equation model is capable
of reproducing the time course of the activity of a pool composed of exten-
sively many neurons, including fast transients and sharp activity peaks as
those occurring when the activity approaches oscillatory solutions.

The different recovery variables serve as memory buffers for the past
activity. Higher (with larger n) recovery variables are responsible for the
more recent past and influence the response of the pool to fast transients.
Taking only one or two recovery variables results in activities that follow
the real activity in a smooth, approximated way. If we include more re-
covery variables, the assembly dynamics also follows the finer details of
the real activity. It is therefore possible to control the temporal accuracy of
simulations, as well as the numerical cost.

Acknowledgments

We gratefully thank Bruce W. Knight for valuable comments and sugges-
tions on this article.

References

Cowan, J. D. (1991). Stochastic neurodynamics. In D. Touretzky & R. Lippmann
(Eds.), Advances in neural information processing systems, 3 (pp. 62-69). San
Mateo, CA: Morgan Kaufmann.

Eggert, J., & van Hemmen, J. L. (2000). Unifying framework for neuronal assem-
bly dynamics. Phys. Rev. E, 61(2), 1855-1874.

Ermentrout, G. B., & Cowan, J. D. (1979a). A mathematical theory of visual
hallucination patterns. Biol. Cybern., 34, 137-150.

Ermentrout, G. B., & Cowan, J. D. (1979b). Temporal oscillations in neuronal
nets. J. Math. Biol., 7, 265-280.

Ermentrout, G. B., & Cowan, J. D. (1980). Large scale spatially organized activity
in neural nets. SIAM |. Appl. Math., 38, 1-21.

Fargue, D. (1973). Réductibilité des systemes héréditaires & des systemes dy-
namiques. Compt. Rend. Acad. Sci., B277, 471-473.

Fargue, D. (1974). Réductibilité des systemes héréditaires. Int. |. Non-Linear Me-
chanics, 9, 331-338.

Feldman, J. L., & Cowan, J. D. (1975). Large-scale activity in neural nets I: Theory
with application to motoneuron pool responses. Biol. Cybern., 17, 29-38.

Gerstner, W. (1990). Associative memory in a network of “biological” neurons.
In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural
information processing systems, 3 (pp. 84-90). San Mateo, CA: Morgan Kauf-
mann.

Gerstner, W. (1995). Time structure of the activity in neural network models.
Phys. Rev. E, 51, 738-758.

Gerstner, W. (1998). Populations of spiking neurons. In W. Maass & C. M. Bishop
(Eds.), Pulsed neural nets (pp. 261-296). Cambridge, MA: MIT Press.


http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-651X^28^2961:2L.1855[aid=1326574]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0340-1200^28^2934L.137[aid=214611]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0303-6812^28^297L.265[aid=860797]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7462^28^299L.331[aid=1326577]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0340-1200^28^2917L.29[aid=214552]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-651X^28^2951L.738[aid=214981]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7462^28^299L.331[aid=1326577]

1974 J. Eggert and J. L. van Hemmen

Gerstner, W., & van Hemmen, J. L. (1992). Associative memory in a network of
“spiking” neurons. Network, 3, 139-164.

Gerstner, W., & van Hemmen, J. L. (1994). Coding and information processing
in neural networks. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds.),
Models of neural networks II (pp. 1-93). Berlin: Springer-Verlag.

Gerstner, W.,van Hemmen, J. L., & Cowan, J. D. (1996). What matters in neuronal
locking? Neural Comput., 8(8), 1653-1676.

Gewaltig, M.-O. (1999). Evolution of synchronous spike volleys in cortical networks—
Network simulations and continuous probabilistic models. Unpublished doctoral
dissertation, Ruhr-Universitdt Bochum, Germany.

Kistler, W. M., Gerstner, W., & van Hemmen, J. L. (1997). Reduction of the
Hodgkin-Huxley equations to a single-variable threshold model. Neural Com-
put., 9, 1015-1045.

Kistler, W. M., Seitz, R., & van Hemmen, J. L. (1998). Modelling collective exci-
tations in cortical tissue. Physica D, 114, 273-295.

Knight, B. W. (2000). Dynamics of encoding in neuron populations: Some general
mathematical features. Neural Comput., 12, 473-518.

Knight, B. W., Omurtag, A., & Sirovich, L. (2000). The approach of a neuron
population firing rate to a new equilibrium: An exact theoretical result. Neural
Computation, 12, 1045-1055.

Lamperti, J. (1966). Probability. New York: Benjamin.

Mainen, Z. E, & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical
neurons. Science, 268, 1503-1505.

Nykamp, D. Q., & Tranchina, D. (2000). A population density approach that
facilitates large-scale modeling of neural networks: Analysis and an ap-
plication to orientation tuning. Journal of Computational Neuroscience, 2, 19—
50.

Omurtag, A., Knight, B. W., & Sirovich, L. (2000). On the simulation of large
populations of neurons. |. Comput. Neurosci., 8, 51-63.

Sirovich, L., Knight, B. W., & Omurtag, A. (2000). Dynamics of neuronal popu-
lations: The equilibrium solution. SIAM . Applied Math, 60, 2009-2028.

Tuckwell, H. C. (1988). Introduction to theoretical neurobiology. Cambridge: Cam-
bridge University Press.

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys. ., 12, 1-24.

Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue. Kybernetik, 13, 55-80.

Received March 9, 2000; accepted October 10, 2000.


http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0929-5313^28^292L.19[aid=1266878]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^298:8L.1653[aid=217716]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299L.1015[aid=214566]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-2789^28^29114L.273[aid=214623]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2912L.473[aid=961627]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2912L.1045[aid=1326578]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29268L.1503[aid=214626]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0929-5313^28^292L.19[aid=1266878]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0929-5313^28^298L.51[aid=215412]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-3495^28^2912L.1[aid=214589]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299L.1015[aid=214566]
http://elvira.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2912L.1045[aid=1326578]

