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Unifying framework for neuronal assembly dynamics
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~Received 26 January 1998; revised manuscript received 18 June 1999!

Starting from single, spiking neurons, we derive a system of coupled differential equations for a description
of the dynamics of pools of extensively many equivalent neurons. Contrary to previous work, the derivation is
exact and takes into account microscopic properties of single neurons, such as axonal delays and refractory
behavior. Simulations show a good quantitative agreement with microscopically modeled pools of spiking
neurons. The agreement holds both in the quasistationary and nonstationary dynamical regimes, including fast
transients and oscillations. The model is compared with other pool models based on differential equations. It
turns out that models of the graded-response category can be understood as a first-order approximation of our
pool dynamics. Furthermore, the present formalism gives rise to a system of equations that can be reduced
straightforwardly so as to gain a description of the pool dynamics to any desired order of approximation.
Finally, we present a stability criterion that is suitable for handling pools of neurons. Due to its exact derivation
from single-neuron dynamics, the present model opens simulation possibilities for studies that rely upon
biologically realistic large-scale networks composed of assemblies of spiking neurons.

PACS number~s!: 87.10.1e, 87.18.Sn, 87.18.Bb, 05.45.2a
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I. INTRODUCTION

What kind of mathematical models should be chosen
study and simulate large, biologically realistic neural n
works? In the computational-neuroscience literature, one
find a growing number of models that describe neurons at
single-cell level@1,2# as well as many models that descri
the joint activity of groups of equivalent neurons@3–8#. Be-
tween the two modeling levels, only in a few cases@9,10,8#
has a connection been made. To bridge this gap betwee
microscopic and the assembly level, here we derive a mo
for the activity dynamics of a pool of equivalent neuro
starting from a single-cell model. Contrary to previous wo
on the subject, noa priori time averaging is necessary, ma
ing the derivation concise and systematic.

The model is motivated by the experimental observat
that cortical neurons of the same type that are near to e
other tend to receive similar inputs. In experiments one of
finds that neurons of the same type that are close to e
other are activated simultaneously, or in a correlated fash
In cortical networks, this may be due to reciprocal conn
tions and common convergent input. In modeling studie
therefore seems sensible to consider all neurons of the s
type in a small cortical volume as a computational unit o
neuronal network. We will call this computational unit
neuronal ‘‘pool’’ or ‘‘assembly.’’ All pool neurons have to
be equivalent in the sense that they have the same in
output connection characteristics and, additionally, the sa
dynamics parameters. This is explained in detail in Fig.
All neurons that constitute a ‘‘pool’’ feel a common synap
input field, but each neuron evolves according to its o
internal dynamics.

How should we build a model based on these neuro
assemblies? We can start at the microscopic level and
single spiking neurons to compose the pools of a netwo
For large-scale simulations, the single-cell model has to
numerically efficient and easy to implement. Single-neu
PRE 611063-651X/2000/61~2!/1855~20!/$15.00
o
-
an
e

the
el

n
ch
n
ch
n.
-
it
me

ut-
e
.

n

al
se
k.
e
n

models that fulfill these requirements normally neglect
spatial structure of the dendritic tree and focus on the sp
generation process. Examples are the spike-response m
~see, e.g., Ref.@1#! and the integrate-and-fire type mode
~see, e.g., Ref.@2#!, which constitute a special case of th
spike-response model. Typically, a neuron has an inte
state variable and a spike or action potential is released w
the state variable reaches some threshold from below. A
releasing the spike, the state variable or the threshold is t
porarily modified to account for refractory effects.

Alternatively, one could start at a macroscopic level a
use models that describe directly the behavior of some m
roscopic variables of a neuronal pool. The most promin
models of this category are of the assembly-averaged gra
response type. Models of this type normally describe dyna

FIG. 1. The notion of a ‘‘pool’’ or ‘‘assembly’’ of neurons is
often encountered when dealing with large-scale biological ne
networks. It was originally introduced by Hebb@15#. In this paper,
neurons belonging to the same pool or assembly are characte
by having the same input-output connectivity pattern. Furtherm
all neurons of the same pool have the same parameters.@A very
similar concept is that of a ‘‘pool’’~see Ref.@20#, Sec. 1.2.4!,
which arises in relation to associative networks. It contains the
to the pool idea in that a sublattice has been defined implicitly as
neurons being identical and having the same input.# In the figure,
different types of neurons and connections are characterized by
ferent textures~white neurons are of any type!. According to the
assembly definitions, only the two neurons in the oval belong to
same pool.
1855 ©2000 The American Physical Society
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1856 PRE 61J. EGGERT AND J. L. van HEMMEN
ics of the assembly activity through relatively simple diffe
ential equations.

In this paper we will follow a third approach. We sta
with single spiking neurons and take advantage of the ass
bly characteristics to derive a differential equation model
the dynamics of the pool activity. In this way, the mod
focuses on the macroscopic parameters of cell assemblie
retains the quantitative behavior and the microscopic par
eters of the neuronal model.

With the pool model presented in this paper, large-sc
simulations with networks that are composed of pools
equivalent neurons become possible. It also allows for
modeling of complex spatiotemporal activity dynamics th
is thought to rely upon the properties of spiking neuro
Coherent activity oscillations found in the visual cortex a
other areas of the brain@11–14,16# constitute a well-known
example. Another advantage of the presented model is
possibility to compare the microscopic parameters that
retained by the derivation from single-neuron dynamics w
data from neurophysiological measurements. In addition,
differential equation form of our model allows for a compa
son with other, more heuristically based pool models that
used throughout the neuroscience community.

In the next sections, we proceed as follows. First,
sketch the essentials of some of the commonly encount
assembly-averaged graded-response models used fo
simulation of pool dynamics. We then introduce the sing
neuron dynamics that constitutes the basis of our pool mo
In Secs. III, IV, and V, we present the derivation of th
differential equation pool model. Consequences for the
plication of the model follow in Sec. VI. In Sec. VII we
compare the model with graded-response models and p
modeled by using single spiking neurons of the spi
response and integrate-and-fire types. In Sec. VIII we sh
that the model has the same stability and locking charac
istics as pools of spiking neurons. In Sec. IX, we demo
strate how finite-size effects can be included into simulati
with our pool model. Finally, a summary gives a short ov
view of the model.

II. GRADED-RESPONSE MODELS

In this section we discuss some standard and enha
graded-response models that are used throughout the n
science community. We indicate some flaws that are inhe
to them. In later sections they will be compared with o
pool model.

A. Standard graded-response models

In the standard neural network literature, the simpl
neuronal models use gain functionsg to express the depen
dence of the ‘‘firing rate’’ or activityAi of some neurona
entity i, with 1< i<N, upon its synaptic input fieldhi ~see,
e.g., Ref.@3#!:

Ai5g@hi~$Aj%!#. ~1!

The synaptic input field depends on the set of present
past activities$Aj% of all other neuronal entitiesj, 1< j
<N, that contribute to the input ofi. @In the rest of this
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section, we will not specifyhi(t) any further.# A solution of
system~1! for all Ai ’s defines a stationary state of the ne
work.

In the assembly-averaged graded-response interpreta
the macroscopic variableAi(t) designates the pool-average
spike density at timet, that is,Ai(t)Dt is the total number of
spikes released by neurons of the pooli during the interval
(t,t1Dt#. We will use this interpretation throughout the re
of the paper.

Usually, a dynamics is introduced by choosing equatio
that have as fixpoints the same stationary solutions as sy
~1!. An easy way of achieving this is by adding an expone
tial relaxation term. In the time-discrete case this returns

Ai~ t1Dt !52Ai~ t !1g@hi~$Aj%!#, ~2!

whereDt is the discretization interval, and in the continuo
case one obtains

t
d

dt
Ai~ t !52Ai~ t !1g@hi~$Aj%!#, ~3!

with some suitably chosen relaxation time constantt.
A modified assembly-averaged graded-response m

was introduced by Wilson and Cowan@8#. They derived a
differential equation model for neurons with absolute refra
tory period of lengthgabs, using a ‘‘time-coarse-graining’’
averaging method. Their final result reads

t
d

dt
Ai~ t !52Ai~ t !1g@hi~$Aj%!#@12gabsAi~ t !#. ~4!

Compared with Eq.~3!, this equation has a slightly modifie
dynamics near to the saturating activity 1/gabs. Both Eqs.~3!
and ~4! will be encountered again in later sections when
discuss the connection of our pool model to graded-respo
models.

Equations~2! or ~3!, are, by construction, only suited t
describe activities near to astationary state of the whole
network. Similarly, in Eq. ~4!, time averaging generates
dynamics that neglects fast, transient, behavior. In m
cases, however, the above models are used to generate
latory pool activities. For example, it has been postula
that two reciprocally coupled pools, one composed of ex
tatory neurons and the other of inhibitory neurons, co
constitute a kind of processing unit capable of generat
oscillations. Using Eq.~3! and designating the activity of th
excitatory pool byEi(t) and that of the inhibitory pool by
I i(t), we obtain

t E
d

dt
Ei~ t !52Ei~ t !1gE@hi

E~$Ej%,$I j%!#,

~5!

t I
d

dt
I i~ t !52I i~ t !1gI@hi

I~$Ej%,$I j%!#.

It is plain that such a model can show oscillatory behavior
the time constantstE andt I and the input fieldshi

E andhi
I are

suitably chosen; for more details we refer, e.g., to Refs.@4,8#.
After the derivation of our exact pool dynamics, we w

return to the models presented in this section. We will co
pare the model of this paper with the assembly-avera
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PRE 61 1857UNIFYING FRAMEWORK FOR NEURONAL ASSEMBLY DYNAMICS
graded-response models. We will also show how grad
response models can be incorporated into a broader fra
work of pool activity dynamics which allows for a compar
son of the dynamics parameters with single-neu
parameters.

B. Graded-response models with refractory effects

The necessity of having at least two variables for the g
eration of oscillatory pool behavior has been exploited
another graded-response-like model that relies upon a m
realistic neuronal basis@17#. Instead of a second pool as
Eqs. ~5!, a subpopulation of refractory neurons~which are
refractory because of recent spiking! takes care of the inhibi-
tory effects.

Consider a pooli with pool neurons that can be in eithe
of three different states: active, refractory, and quiesc
They can be active, which means that they released a spi
a certain past time interval; they can be in a refractory s
~after firing!; or they can be quiescent, that is, they do n
fire and do not feel the refractory effects anymore.

Between the three states, transitions are allowed wit
certain probability. We defineai as the number of neurons o
pool i that fired recently,r i as the number of pool neuron
that are in the refractory state, andqi as the number of qui-
escent pool neurons. Neurons from theai subpopulation de-
cay toward the refractory state with a ratea; similarly, neu-
rons from ther i subpopulation decay toward the quiesce
state with a rateb. On the other hand, neurons from th
quiescent and refractory subpopulations can be activate
a synaptic input fieldhi with transition ratess1(hi) and
s2(hi), respectively, withs1(hi)<s2(hi). The three states
with their subpopulations and the allowed transitions are
lustrated in Fig. 2.

Assuming a first-order decay between the three subpo
lations, we find

d

dt
ai~ t !52aai~ t !1qi~ t !s1@hi~ t !#1r i~ t !s2@hi~ t !#,

~6!

FIG. 2. A graded-response model including refractory effec
according to Ref.@17#. In this model, the neurons of a single po
can be grouped into three subpopulations: neurons that fired
cently (a), neurons that are in a relative refractory state (r ), and
neurons that are quiescent (q). Neurons froma decay with a ratea
toward the stater, and neurons fromr decay with a rateb toward
the stateq. A synaptic fieldh induces field-dependent transition
from the refractory~r! or the quiescent~q! subpopulation toward the
firing ~a! subpopulation with ratess1(h) ands2(h), respectively.
With an appropriatea-dependent fieldh, a single recursively
coupled pool can generate sustained oscillations.
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dt
qi~ t !5br i~ t !2qi~ t !s1@hi~ t !#, ~7!

d

dt
r i~ t !5aai~ t !2r i~ t !s2@hi~ t !#2br i~ t !, ~8!

with a synaptic fieldhi that depends on the set of activitie
$aj% of all other poolsj. Because all neurons participate
the process, we haveqi(t)1ai(t)1r i(t)51, so that only
two quantities are independent:

d

dt
ai~ t !52aai~ t !1$12ai~ t !2r i~ t !%s1@hi~ t !#

1r i~ t !s2@hi~ t !#, ~9!

d

dt
r i~ t !5aai~ t !2r i~ t !$b1s2@hi~ t !#%. ~10!

Neurons that release a spike participate in theai(t) sub-
population for a short time period. Afterwards, they enter
refractory phase, during which the probability of a new sp
releases1(hi) due to the input fieldhi is low. After a longer
time period without spiking, the refractory effects disappe
and the neuron can release a new spike with a greater p
ability s2(hi)>s1(hi).

In this model, we have writtenai(t) instead ofAi(t),
because we are dealing with the total number of spikes
leased during a certain period of time, instead of the sp
density. This means thatai(t)'tAi(t), with some time con-
stantt. This creates a difficulty in the normalization cond
tion qi(t)1ai(t)1r i(t)51 and in the interpretation of the
outcome of simulations within this model. Similarly, it i
difficult to identify the parameters of the model with expe
mental data. Again, after the derivation of our pool dyna
ics, we will see that the pool model of this subsection can
understood as an approximation of a more general pool
namics.

III. MICROSCOPIC MODEL: SPIKING NEURONS

In this section we introduce the basic notions that defin
pool dynamics.

A. Single spiking neurons

Imagine a pool composed of extensively manyN@1 neu-
rons with the same neuronal dynamics parameters. Insp
by the three-state system description of Ref.@17# presented
in Sec. II B, we now introduce a three-stateneuron. A single
neuroni, 1< i<N, can be in one of three different states:
can beinactivated( i ), it can beactivated(a), or it can be
firing ( f ). A neuron can only fire, i.e., release an acti
potential~or spike!, if it is activated. If this is the case, th
neuron fires with some probabilityDt/t@hi(t)# during the
interval (t,t1Dt#, depending on its synaptic input fiel
hi(t). After the release of a spike, the neuron is to rem
inactivated for a certain time period of lengthgabs. During
this period it cannot spike, so that it is in an absolute refr
tory state. Following the absolute refractory period, the n
ron enters a relative refractory period during which the n

,

e-
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1858 PRE 61J. EGGERT AND J. L. van HEMMEN
ron has a certain probabilitypA.0 of being activated, and
thus a nonvanishing total probability for a spike release.
assume that only the time elapsed since the very last spik
a neuron att i* determines its refractoriness, so that we e
up with an activation probability 1.pA(t2t i* )>0 for t
>t i* . This is the ‘‘renewal hypothesis’’ for spiking neuron
see e.g., Ref.@2#.

Figure 3 shows the three possible internal states o
single neuron and the allowed transitions. We assume
transitions of a neuron’s state between the inactivated s
and the activated state to occur on a fast time scale as c
pared to the transition of a neuron from the activated stat
the firing state and the modification of the activation pro
ability with time. It is therefore sufficient to regard the me
occupationpA of the activated state of a neuron. From t
activated state, and depending on the synaptic input fi
hi(t), a neuron can be pushed into the firing state with a r
$t@hi(t)#%21. A neuron in the firing state releases a sing
spike, and drops immediately back into the inactivated st

In summary, the total firing probability of a neuroni dur-
ing an interval (t2Dt,t# is given by the joint probability tha
a neuron is in an activated state and that it is pushed into
firing state by the synaptic fieldhi(t) during that time inter-
val:

Prob$i Pa andi fires in ~ t,t1Dt# due to fieldhi%

5Prob$i fires in~ t,t1Dt# due to fieldhi u i Pa%

3Prob$i Pa%5
Dt

t@hi~ t !#
pA~ t2t i* !. ~11!

The refractory properties are governed by the time cou
of the activation probability function 1.pA(t2t i* )>0,
which in this paper will also be called in short the ‘‘activ

FIG. 3. Definition of the microscopic model of a spiking neuro
In our description, a neuron can be in either of three states: in
vated (i ), activated (a), or firing (f ). Transitions between the thre
states are allowed between thei and thea levels ~fast, with transi-
tion rates that depend on the last spike timet* ), from thea level to
the f level @slow, with a transition rate that depends on the synap
input field h(t)] and from thef level back to thei level ~fast!. The
mean occupation of thea level is given by theactivation probabil-
ity pA(t2t* ). Refractoriness means the neuron bounces back
forth between thei level and thea level, with 1.pA(t2t* )>0. A
neuron can only release a spike if it is activated (a). The firing
probability for activatedneurons in a time interval of lengthDt is
field dependent and equal toDt/t@h(t)#. After firing, t* is reset
and the neuron is inactivated.
e
of

d

a
he
te
m-
to
-

ld
te

e.

he

e

tion function.’’ It is divided into two parts. For a period o
length gabs, we have theabsolute refractory period, with
pA(s)50 ands5t2t i* the elapsed time since the last spik
After that period, the neuron enters therelative refractory
period, during whichpA(s) rises from some valuepA(gabs)
toward 1 for s→`, according to a differentiable function
PA(s). Between the two refractory periods, we allow a d
continuity of the functionpA(s) at gabs:

pA~s!5H 0 for 0<s,gabs

PA~s! for s>gabs.
~12!

B. Synaptic field

The synaptic field of a single neuron is calculated as f
lows. Each pool neuron releases a series of action poten
each of which, after a fixed delay period, reaches a syna
of another neuron. This causes a temporal variation of
membrane potential at the postsynaptic neuron. The t
variation of the postsynaptic membrane potential due to
coming action potentials is the synaptic fieldhi(t). Since we
assume passive conducting characteristics of the dend
tree, the synaptic field is calculated as a sum of the con
butions of single action potentials. If we neglect the form
a spike we can characterize action potentials uniquely
their firing times t i

f , with f >1. Here t i
15t i* is the most

recent action potential of a neuroni in a spike train ofd
functions,

Si~ t !5(
f

d~ t2t i
f !, ~13!

with t i
f<t. The synaptic field is then calculated by insertin

the coupling strengthJi j for connections from neuronj to
neuroni and fixing the temporal variation of the postsynap
membrane potentiala(s):

hi~ t !5(
j 51

N

Ji j E
0

`

dsa~s!Sj~ t2s!. ~14!

It may be well to realize that we have defined pool ne
rons to have the same input-output connectivity characte
tics. This means that all neuronsi of thesamepool x feel the
samesynaptic fieldh(x,t). If the coupling strength from a
connection conveying signals from a neuronj Py of pool y
to a neuroni Px of pool x is designated withJ(x,y), we get

h~x,t !5(
y

(
j Py

J~x,y!E
0

`

dsa~s!Sj~ t2s!

5(
y

J~x,y!E
0

`

dsa~s!A~y,t2s!, ~15!

with the pool activity

A~x,t !5(
j Px

Sj~ t !. ~16!

The pool activityA(x,t) has the dimension spikes to tim
and is extensive; if desired, it can be normalized. The in

ti-

c

nd
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PRE 61 1859UNIFYING FRAMEWORK FOR NEURONAL ASSEMBLY DYNAMICS
gration ofA(x,t) over a small time interval of lengthDt is
then the total number of released spikes of all pool neur
during that interval.

The time course of the membrane potential variation d
to the input of a single spike follows qualitatively the form
an a function: It rises to a maximum value and then deca
back toward zero. In our case, the kernela(s) will be chosen
to be a d function, a(s)5d(s2Dax), so that h(x,t)
5(yJ(x,y)A(x,t2Dax) or to have a Poisson-like tim
coursea(s)5a (k)(s) with

a (k)~s!5Q~s2Dax!
~s2Dax!k

ck
exp@2~s2Dax!/ta#.

~17!

Hereta is the rise time,s the time difference to the firing o
the presynaptic neuron,ck the normalization factor,Dax the
axonal delay time between two pools, andQ the Heaviside
step function@Q(x)51 for x>0, and 0 otherwise#. The
constantck can be used to normalize the alpha function by
maximum amplitude or its area. The maximum of thea
function is attained atsmax5Dax1kta , and is equal to
amax5(kta)ke2k. The area of the function givesFa

5ta
k11G(k11) with G(k11)5k! for kPN. The pool form

of the synaptic field, viz. the last of Eqs.~15!, will be used in
the following sections for the formulation of our pool dy
namics.

IV. POOLS OF SPIKING NEURONS

The present section is devoted to a derivation of the t
evolution of the key variableA(x,t), the activity. To this
end, we start with the survival function that tells us how lo
a neuron survives without spiking. This will allow us to o
tain an expression for calculatingA(x,t), viz. Eq. ~26!,
which constitutes the key to the ensuing analysis.

A. Survival function

In a pool of extensively many equivalent neurons, we ta
advantage of the property that all neurons of a poolx feel a
common synaptic field. We now group the pool neurons i
subgroups with the same last firing timest* ; for example,
n(x,t,t* )Dt* is the total number of pool neuronsi Px found
at time t with t i* P(t* 2Dt* ,t* #. For timest>t* , we can
then look at the time development of these subgroups.
Sh(x,t,t* ) be the fraction of a group of neurons that h
spiked at least once during (t* ,t# „the suffix h denotes a
functional dependence of the function upon the fieldh(t8)
during the past timet8P(t* ,t#…. Then this fraction change
in the interval (t2Dt,t# by

DSh~ t,t* !5
Dt

t@h~x,t !#
pA~ t2t* !@12Sh~x,t,t* !#.

~18!

Taking the limitDt→0, we obtain, for the time derivative o
the fraction of neurons that didnot spike again during (t* ,t#
@i.e., of Dh(x,t,t* )ª12Sh(x,t,t* )],
s

e

s

s

e

e

o

et

d

dt
Dh~x,t,t* !52

1

t@h~x,t !#
pA~x,t2t* !Dh~x,t,t* !.

~19!

Integration including the boundary conditionDh(x,t* ,t* )
51 yields the ‘‘survival function’’@1#

Dh~x,t,t* !5 expH 2E
t*

t

dt8
1

t@h~x,t8!#
pA~ t82t* !J ,

~20!

that is a measure of the fraction of neurons that have sp
last att* and did not spike again untilt.

B. Time evolution of the pool-averaged activity

Using the survival function, we can now calcula
n(x,t,t* )Dt* . It is equal to the number of neuron
A(x,t* )Dt* that actually spiked during the interval (t*
2Dt* ,t* #, multiplied by the fraction of surviving neurons a
time t:

n~x,t,t* !Dt* 5Dh~x,t,t* !A~x,t* !Dt* . ~21!

Taking the limit Dt* →0 and adding over all possible las
firing times t* ~that is, over all possible refractory states
the pool neurons!, we obtain the total number of pool neu
rons:

N~x!5E
2`

t

dt* Dh~x,t,t* !A~x,t* !

5E
0

`

dsDh~x,t,t2s!A~x,t2s!. ~22!

By exploiting the same kind of argument, we can calc
late another important macroscopic pool variable. The m
fraction of activated pool neurons that have spiked for
last time att* is given bypA(t2t* ). Therefore, the mean
number ofinactivatedneurons under the same conditions
12pA(t2t* ). The number of pool neurons that spiked la
during (t* 2Dt,t* # and that are inactivated at timet is then

nI~x,t,t* !Dt* 5@12pA~ t2t* !#Dh~x,t,t* !A~x,t* !Dt* .
~23!

From this we can calculate the total number of inactiva
neurons of the pool:

NI~x,t !5E
2`

t

dt* @12pA~ t2t* !#Dh~x,t,t* !A~x,t* !

5E
0

`

ds@12pA~s!#Dh~x,t,t2s!A~x,t2s!. ~24!

The number of pool neurons thatcancontribute to the activ-
ity A(t1Dt)Dt during the next time step (t,t1Dt# is given
by the total number ofactivatedneurons,N(x)2NI(x,t).
Because the activated neurons contribute to spiking wit
probability $t@h(x,t)#%21Dt, for the activity we obtain
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A~x,t1Dt !Dt5
Dt

t@h~x,t !#
@N~x!2NI~x,t !#. ~25!

This equation is valid as long asA(x,t1Dt)Dt!NI(x,t).
That is to say, as long asNI(x,t) can be considered as ap
proximately constant during a time interval of lengthDt. We
note that in this case the activationA(x,t1Dt) does not
depend on the length of the time intervalDt. For any small
enoughDt, the result will be the same. Hence we can ta
the limit Dt→0:

A~x,t !5
1

t@h~x,t !#
@N~x!2NI~x,t !#. ~26!

This is a nonlinear integral equation for the time evolution
the activity A(x,t); cf. Eq. ~25!. It is the central equation
from which we derive the pool dynamics. The nonlinear
of Eq. ~26! is hidden in the synaptic fieldh(x,t), which can
depend on the activities of all other pools that provide s
aptic input, including itself@according to the second line o
Eq. ~15! in Sec. III B#.

Starting from this equation, we will gain a differentia
equation system that describes the dynamics contained
plicitly in Eq. ~26! and that is better suited to analytical trea
ment and numerical simulations. This will provide us with
straightforward and natural description of the activity d
namics of neuronal assemblies. In addition, the differen
equation form will allow us to compare the system with t
models discussed in Sec. II.

V. DIFFERENTIAL EQUATION POOL DYNAMICS

In this section, we are going to reduce the integral eq
tions for the pool synaptic fieldh(x,t) and the pool activity
A(x,t) to a system of coupled differential equations. W
begin with the synaptic field because its derivation
straightforward. Then we derive the dynamics of the p
activity.

A. Synaptic field

The aim of this section is to express the synaptic fi
acting on the neurons of a specified pool through differen
equations. For a synaptic field calculated according to
second line of Eqs.~15!, with an a kernel of the typea(s)
5a (k)(s), kPN from Eq. ~17!, we define additional fields

h( l )~x,t !5(
y

J~x,y!E
0

`

dsa ( l )~s!A~y,t2s!, ~27!

with l PN, 0< l<k. With this definition, the field we are
looking for is h(k)(x,t), and it is straightforward to see tha
the field dynamics can be expressed by the differential eq
tion system

d

dt
h( l )~x,t !5 l

cl 21

cl
h( l 21)~x,t !2

1

ta
h( l )~x,t !,

~28!
d

dt
h(0)~x,t !5(

y
J~x,y!A~y,t2Dax!2

1

ta
h(0)~x,t !.
e

f

-

m-

l

-

l

d
l
e

a-

These equations have been calculated by differentiating
peatedly the fieldh(k)(x,t) and by extracting the terms of th
additional fieldsh( l )(x,t). The coupling with other pools en
ters the differential equation system only in the second
Eqs.~28!.

A similar procedure can be used if a sum of severaa
functions of the typea (k)(s), kPN, is used as synaptic ker
nel. In this case, separate differential equation systems o
form of Eqs.~28! have to be used to compute the differe
field contributions. The corresponding fieldsh(k)(x,t) have
then to be added. This also opens the possibility to appr
mate a functions with delay by weighted additions ofa
functions without delay, thus resulting in a differential equ
tion system without delay for the synaptic field. Fork¹N,
the integral equation@the second line of Eq.~15!# instead of
the differential equations~28! has to be used.

B. Activation probability functions

The behavior of a neuroni during its relative refractory
period ~see Sec. III A! is characterized by the differentiabl
function PA(s), with s5(t2t i* ). From now on, we will re-
strict ourselves to the exponential case~exp!, the case of a
sigmoidlike time evolution of the activation function afte
the absolute refractory period~sigm!, and the case of an in
verse decay~inv!:

PA~s!5H 12p0 exp@2~s2gabs!/t ref#, exp

12p0 /$11 exp@~s2s0!/t ref#%, sigm

12t ref /~s2s0!, inv.
~29!

The constantsp0 , t ref , and s0 are free parameters of th
activation function. It has to be verified that 0<PA(s)<1
for gabs<s<`; for example, for the inverse activation func
tion in Eq. ~29!, this means that we effectively setgabs

.t ref1S0.
The activation functions obey the differential equation

d

ds
PA~s!55

1

t ref
@12PA~s!#, exp

1

t ref
@12PA~s!#$12@12PA~s!#/p0%, sigm

1

t ref
@12PA~s!#2, inv.

~30!

These properties will be used in the subsequent sections
the derivation of the model. Figure 4 shows the differe
activation functions.

C. Time evolution of the number of inactivated neurons

Here and in Sec. V D, we will reduce the integral equati
for the pool activity@Eq. ~26!# to a differential equation sys
tem. To this end, we consider the time development of
total number of inactivated neuronsNI(x,t). We use thet*
form of Eq. ~24!, the property d/dtD(x,t,t* )
52$t@h(x,t)#%21pA(t2t* )D(x,t,t* ), and note that for a
function of the typeh(t,t* ) we have
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d

dtEf (t)

g(t)

dt* h~ t,t* !5F@ t, f ~ t !# f 8~ t !2F@ t,g~ t !#g8~ t !

1E
f (t)

g(t)

dt*
]

]t
h~ t,t* ! ,

so, as

FIG. 4. The different activation functionspA(t2t* ) used for the
derivation of the pool dynamics. Ats5gabs, the function may have
and here has, a discontinuity. Fort↘t* , the neuron is in an abso
lute refractory state because it has just spiked, andpA(t2t* )↘0.
For t→`, the refractory effects vanish, andpA(t2t* )→1. In case
of activation functions with a discontinuity,gabs is the length of the
absolute refractory period.
d

dt
NI~x,t !5A~x,t !2E

0

`

dsF d

ds
pA~s!GDh~x,t,t2s!

3A~x,t2s!2
1

t@h~x,t !#

3E
0

`

ds@12pA~s!#pA~s!Dh~x,t,t2s!

3A~x,t2s!. ~31!

Thus the number of inactivated neurons grows withA(x,t).
This makes sense, because neurons that spike are inacti
immediately afterwards. On the other hand, the number
inactivated neurons decreases with time as the refractory
fect on neurons decreases. Moreover, the termpA(s)@1
2pA(s)# selects a time window of the activity that contrib
utes to further changes ofNI(x,t).

Exploiting the properties@Eq. ~30!# of the chosen activa-
tion functions~29! of Sec. V B, and taking into account th
discontinuity ofpA(s) at s5gabs, we obtain
rite the
d

dt
NI~x,t !5A~x,t !2PA~gabs!A~x,t2gabs!2

1

t@h~x,t !#E0

`

dsPA~s!@12PA~s!#Dh~x,t,t2s!A~x,t2s!

25
1

t ref
E

gabs

`

ds@12PA~s!#Dh~x,t,t2s!A~x,t2s! exppA~s!

1

t ref
E

gabs

`

ds@12PA~s!#H 12
@12PA~s!#

p0
J Dh~x,t,t2s!A~x,t2s! sigmpA~s!

1

t ref
E

gabs

`

ds@12PA~s!#2Dh~x,t,t2s!A~x,t2s! inv pA~s!.

~32!

Instead ofPA(s), we want to express our dynamics using the original activation functionpA(s). For this purpose, we
introduce a quantity

M ~x,t !5E
0

gabs

dsDh~x,t,t2s!A~x,t2s!5E
0

gabs

dsA~x,t2s!, ~33!

which is interpreted as the number of inactivated neurons for a pool with absolute refractory period only, and rew
previous equation~32! in the form

d

dt
NI~x,t !5A~x,t !2pA~gabs!A~x,t2gabs!2

1

t@h~x,t !#E0

`

dspA~s!@12pA~s!#Dh~x,t,t2s!A~x,t2s!

25
1

t ref
E

0

`

ds@12pA~s!#Dh~x,t,t2s!A~x,t2s! exppA~s!

1

t ref
E

0

`

ds@12pA~s!#H 12
@12pA~s!#

p0
J Dh~x,t,t2s!A~x,t2s! sigmpA~s!

1

t ref
E

0

`

ds@12pA~s!#2Dh~x,t,t2s!A~x,t2s! inv pA~s!

1
1

t ref
M ~x,t !. ~34!
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What is the relevance of this equation? Since the dynam
of A(x,t) is determined by the dynamics ofh(x,t) and of
NI(x,t), it is of primary importance to understand the tim
development of the number of inactivated neurons. In
next section~V D!, we will see how this allows us to deriv
systematically a system of differential equations for the
namics ofA(x,t).

D. Pool dynamics

The numberNI(x,t) of inactivated neurons of a pool i
the assembly-averaged mean inactivation probability. For
calculation of the mean, we need the momentary den
r(x,t,t* )5Dh(x,t,t* )A(x,t* ) of neurons with a refractory
state defined by their last spike att* . With this density and
the definition

^•••&ªE
2`

t

dt* r~x,t,t* !•••, ~35!

we can write

NI~x,t !5^12pA~ t2t* !&. ~36!

The kernel 12pA(t2t* ) determines the influence of th
past activity on the quantityNI(x,t). Instead of using inte-
gral equations which incorporate the past activity by me
of equidistant time slices~imagine a Riemann sum approx
mation of the integral equations!, we could try to incorporate
the past using a set of kernels similar to 12pA(t2t* ). The
underlying problem is that of the reducibility of an integr
differential equation to a system of differential equations
has been treated by a number of authors, e.g., see, R
@18,19#. In principle, a reduction of Eqs.~31! or ~34! into a
chain of differential equations is possible for a suitab
choice of intermediary variables. The problem is that ther
no systematic derivation of these additional variables, so
we have to guess. As indicated above we will use the fu
tion 12pA(t2t* ) for this purpose.

To accomplish the reduction of Eq.~34!, the number of
inactivated neuronsNI(x,t) will be treated in a way equiva
lent toN(1)(x,t), the total number of pool neuronsN(x) will
be handled asN(0)(x), and the numberM (x,t) of inactivated
neurons for a pool with absolute refractory period only,
N(`)(x,t). Furthermore, we remark that definition~22! of
N(x)5N(0)(x), definition ~24! of NI(x,t)5N(1)(x,t), and
definition ~33! of M (x,t)5N(`)(x,t) are equivalent to

N(0)~x!5^@12pA~ t2t* !#0&,

N(1)~x,t !5^@12pA~ t2t* !#1&, ~37!

N(`)~x,t !5^@12pA~ t2t* !#`&.

Extending these definitions, we introduce additional tim
dependent inactivation quantities, or ‘‘recovery variables
cs
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N(m)~x,t !ª^@12pA~ t2t* !#m&, ~38!

so that, formPN,

N(m)~x,t !5E
2`

t

dt* $12pA~ t2t* !%mDh~x,t,t* !A~x,t* !

5E
0

`

ds$12pA~s!%mDh~x,t,t2s!A~x,t2s!.

~39!

N(m)(x,t) obeys the relationship

N(0)~x!>N(1)~x,t !>N(2)~x,t !>•••>N(`)~x,t !;t,
~40!

and has the property

E
0

`

ds$12pA~s!%mpA~s!Dh~x,t,t2s!A~x,t2s!

5N(m)~x,t !2N(m11)~x,t !. ~41!

Figure 5 shows an example of a sigmoidal activation fu
tion pA(s) with an absolute refractory period of lengthgabs

and the recovery kernels@12pA(s)#m.
For these recovery variables, we can calculate the t

derivative in the same way as forNI(x,t) in Eq. ~31!:

d

dt
N(m)~x,t !5A~x,t !2mE

0

`

ds@12pA~s!#m21

3F d

ds
pA~s!GDh~x,t,t2s!A~x,t2s!

2
1

t@h~x,t !#E0

`

ds@12pA~s!#mpA~s!

3Dh~x,t,t2s!A~x,t2s!. ~42!

Finally, with property~41!, we obtain a recursive set of dif
ferential equations:

FIG. 5. The activation functionpA(s) is shown with its recovery
kernels@12pA(s)#m. With growingm, the kernels include less an
less of the past times. The pool dynamics is expressed with the he
of a series of recovery variablesNm(x,t)ª^@12pA(t2t* )#m& cal-
culated by computing the pool average of the recovery kernel fu
tion.
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d

dt
N(m)~x,t !5A~x,t !2$12@12pA~gabs!#m%A~x,t2gabs!2

1

t@h~x,t !#
@N(m)~x,t !2N(m11)~x,t !#

25
m

t ref
@N(m)~x,t !2M ~x,t !# exppA~s!

m

t ref
$N(m)~x,t !2M ~x,t !2@N(m11)~x,t !2M ~x,t !#/p0% sigmpA~s!

m

t ref
@N(m11)~x,t !2M ~x,t !# inv pA~s!.

~43!
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The last recovery variableN(`)(x,t)5M (x,t) increases with
the number of spiking neurons, and decreases with the n
ber of neurons that are released from their absolute refrac
phase:

d

dt
M ~x,t !5A~x,t !2A~x,t2gabs!. ~44!

This completes our derivation of the pool dynamics. Syst
~43! looks linear but it is not since the fieldh(x,t) @Eqs.
~28!# contains the recovery variableN(1)(x,t) through the
activity A(x,t). The complete dynamics is defined by th
field dynamics given by Eqs.~28! of Sec. V A together with
the dynamics of the recovery variables given by Eqs.~43!
and~44!. The spike density acts only as an auxiliary variab
that is calculated from the first recovery variable using
main equation~26! of Sec. IV B

A~x,t !5
1

t@h~x,t !#
@N~x!2N(1)~x,t !#. ~45!

Other poolsy influence the dynamics of poolx through
A(y,t) in the last equation of the fieldh(x,t) in Eqs. ~28!.
Axonal delays appear in the second of Eqs.~28!, in the dy-
namics of the recovery variables~43! due to the discontinuity
of pA(s) at gabs, and in Eq.~44! also because of the absolu
refractory period.

To model pool dynamics using differential equatio
without delays, a differentiable activation functionpA(s)
without absolute refractory period has to be chosen. In
case, system~43! reduces to

d

dt
N(m)~x,t !

5A~x,t !2
1

t@hi~x,t !#
@N(m)~x,t !2N(m11)~x,t !#

25
m

t ref
N(m)~x,t ! exppA~s!

m

t ref
@N(m)~x,t !2N(m11)~x,t !/p0# sigmpA~s!

m

t ref
N(m11)~x,t ! inv pA~s!.

~46!
m-
ry

e

is

The remaining axonal delay in Eqs.~28! can be avoided
using the procedure for synaptic fields witha functions with
delay as explained in Sec. V A.

VI. CONSEQUENCES

In this section, we are going to analyze in detail the co
sequences that follow from using the system~43! for the
calculation of assembly dynamics. System~43! is exact for
assemblies composed of extensively many spiking neur
Nevertheless, for a numerical implementation of the dyna
ics, the infinite chain of differential equations has to be a
proximated by a finite differential equation system. Breaki
the chain earlier or later leads to a dynamics that follows
exact result in a smooth fashion or in every detail. One c
therefore approximate the pool dynamics with the desi
accuracy. Here we discuss systematic approximations to
differential equation system and show simulation results
the different approximation schemes.

A. Systematic approximations

Contrary to previous work on pool dynamics, the pres
procedure is exact for pools of extensively many neuro
since it does not rely upon time averaging for its derivatio
This allows us to quantitatively model pool activities we
beyond the quasistationary regime. But for numerical sim
lations, the infinite chain of differential equations has to
approximated by a finite system.

Because of property~40! of the recovery variables, we
can approximate the infinite chain of differential equatio
@system~43!# by breaking it at a desired recovery variab
N(n11)(x,t) and by introducing an appropriate dynamics f
this quantity. In this section, we will proceed to analyze d
ferent approximations of the differential equation system
our pool model.

There are two sensible ways of approximati
N(n11)(x,t), which differ according to the desired dynamic
simulation range. Assuming thatn is large enough, the influ-
ence of the relative refractory field on the (n11)th recovery
variable can be neglected, and we can approxim
N(n11)(x,t)'M (x,t); or N(n11)(x,t)'0 if we are dealing
with neurons without absolute refractory period.

~i! For fast, transient dynamicswith sharp activity steps,
N(n11)(x,t) is then calculated according to the dynamics
M (x,t):
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d

dt
N(n11)~x,t !'

d

dt
M ~x,t !5A~x,t !2A~x,t2gabs!,

~47!

or, for neurons without absolute refractory period, we u
Eq. ~46! for d/dtN(n)(x,t) and N(n11)(x,t)'0. In the case
of exponential or sigmoidalpA(s), this gives for thenth
recovery variable

d

dt
N(n)~x,t !'A~x,t !2F 1

t@h~x,t !#
1

n

t ref
GN(n)~x,t !.

~48!

~ii ! For slow dynamics, we can approximateN(n11)(x,t)
by its stationary value. For slow dynamics, the activ
A(x,t) and the fieldh(x,t) are approximately constant du
ing the time period of the kernel@12pA(s)#n11 of
N(n11)(x,t). This means that

N(n11)~x,t !'@gabs1kh
(n11)~x!#A~x,t !, ~49!

with kh
(n11)(x) being the time constant of the (n11)th ker-

nel due to relative refractory effects:

kh
(n11)~x!5E

gabs

`

ds@12pA~s!#n11Dh~x,t,t2s!. ~50!

Herekh
(n11)(x) has been evaluated for a quasistationary fi

h(x,t) ~i.e., the field is assumed to be constant for a per
during which the expression in the integral is large!, and,
thus, it is written without an explicit dependency ont. It
depends, however, on the fieldh. For neurons withabsolute
refractory period only, kh

(n11)(x)50, and we can use
N(n11)(x,t)'gabsA(x,t) as the stationary approximation
Similarly, in the case of pools with arelative refractory pe-
riod only, we useN(n11)(x,t)'kh

(n11)(x)A(x,t). The slow
approximation is exact when the activity approaches a
tionary value.

B. Zeroth-order approximation: stationary solution and gain
function

For constant input fieldh(x,t)[h(x) and stationary ac-
tivity A(x,t)[A(x), it is d/dtN(m)(x,t)50 ;m, so that
from the assembly dynamics~43! and ~45! only remains

A~x!5
1

t@h~x!#
@N~x!2N(1)~x!#. ~51!

Using this equation, and expression~49! for N(1)(x) in the
stationary case,

N(1)~x!5@gabs1kh
(1)~x!#A~x!, ~52!

we can calculate the normalized stationary spike density

G@x,h~x!#ª
A~x!

N~x!
5

1

gabs1t@h~x!#1kh
(1)~x!

. ~53!

If t@h# is a monotonously decreasing function ofh, we get a
gain function G@h# that saturates at largeh and has a
sigmoidal-like appearance.
e

d
d

a-

With the often used ansatzt@h#5t0 exp@22b(h2u)# with
spike rate at thresholdt0

21, noise parameterb, and threshold
u ~see, e.g., Ref.@1#!, we obtain

G@x,h~x!#

5
1

gabs

1

11 exp $22b@h~x!2u8#%1kh
(1)~x!/gabs

,

~54!

with the modified threshold

u85u11/~2b!ln~t0 /gabs! ~55!

and the relative refractory period time constantkh
(1)(x) as

defined in Eq.~50!.
Figure 6 shows the stationary spike densityA(x) as a

function of the synaptic fieldh(x). The pool spike rateA(x)
saturates atN(x)/gabs as it is bounded by the inverse leng
of the absolute refractory period. The time constantkh

(1)(x)
quantifies the influence of the relative refractory period
the stationary pool spike rate. It reduces the activity for
termediate fieldsh(x)'u. The noise factorb and the effec-
tive thresholdu8 determine the slope and the inflection poi
of the gain function. Increasing the length of the absol
refractory periodgabs or decreasing the firing rate at thres
old t0

21 shifts the effective threshold toward higher value
We see that the present model lets us understand the
function quantitatively in terms of themicroscopic neuronal
parametersgabs, kh

(1) , t0 , b, andu. This marks a difference
to standard gain functions as those used with other grad
response pool models.

C. First-order approximation: quasistationary dynamics
and graded response

The graded-response models presented in Secs. II A
II B have a serious disadvantage: they have free dynam
parameters which can be chosen at will. Of course we co
fit the model parameters with experimental data, but stil
would be difficult to interpret the data, because the free

FIG. 6. The stationary spike density for a pool of spiking ne
rons which receives a constant synaptic input fieldh can be ex-
pressed by a gain function that is similar to the logistic gain fu
tion. Here we show the gain function for a pool of neurons w
absolute refractory period only~thin solid line!, and for a pool with
absolute and relative refractory period~thick solid line!. The rela-
tive refractory period reduces the activity for fieldsh close to the
threshold~dashed line: difference between the gain function witho
and the gain function including relative refractory effects!.
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rameters stem from the dynamics derivation procedure~more
precisely, from temporal averaging!, and not from the micro-
scopic properties of the neurons.

Here we move in the opposite way. We start from o
main equations~43! and derive a closed expression for t
simplest possible assembly dynamics. This results in
graded-response-like relaxation dynamics that follo
smoothly and coarsely the real dynamics of the assem
Additionally, all its parameters can be interpreted in terms
the microscopic neuronal parameters.

Since we want to gain a relaxation dynamics without d
lays, we assume that there is no discontinuity in the act
tion function pA(s), i.e., the neurons have a relative refra
tory behavior but no absolute refractory period. We st
with a first-order approximation of our main equations~46!.
We use the slow-dynamics approximation~49!, and chop the
differential equation system atn51, so that

N(2)~x,t !'kh
(2)~x!A~x,t ! ~56!

with kh
(2)(x) calculated as specified in Eq.~50! @depending

on h(x,t)]. ~The slow dynamics approximation now involve
temporal averaging. The difference to standard grad
response models is that the averaging occurs over intri
neuronal time intervals, and nota priori over some arbitrary
interval of lengthT. Therefore, it does not introduce add
tional dynamical parameters. Moreover, since we look
slow, or even quasistationary, dynamics in this case, the t
poral averaging is justified. We also remind that we c
avoid temporal averaging if we use the fast dynamics
proximation, resulting in a first-order approximation that h
the form of a differential equation with delay.! This means
that we only have two state variables, namely, the activ
A(x,t) and the first recovery variableN(1)(x,t)5NI(x,t),
which is the number of neurons in the inactivated state. T
number of inactivated neurons is obtained fromA(x,t)
5t@h(x,t)#21@N(x)2NI(x,t)#, so as to give

NI~x,t !5N2t@h~x,t !#A~x,t !. ~57!

We now turn to the activityA(x,t). We assume that, fo
quasistationary activity, the fields evolve more slowly th
the activity, and neglect the changes ofh(x,t). @Without loss
of generality, we can include a term that considers the va
tion of A(x,t) due to changes ofh(x,t), so that this assump
tion is not really necessary for the calculation of first-ord
dynamics. It is omitted only to gain an equation that can
compared to other graded-response models.# This leaves us
with d/dtA(x,t)'2t@h(x,t)#21d/dtNI(x,t), and inserting
Eqs.~56! and~57! into the dynamics equation~46! for NI(t)
with exponentialpA(s) @the same steps can be applied to t
other functionspA(s)], we arrive at

tg@h~x,t !#
d

dt
A~x,t !

52A~x,t !1
1

t@h~x,t !# H N~x!2tg@h~x,t !#

3F12
kh

(2)~x!

t@h~x,t !#GA~x,t !J , ~58!
r
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1

tg@h~x,t !#
5

1

t@h~x,t !#
1

1

t ref
. ~59!

Not only has this graded-response-type equation the mi
scopically correct stationary solutions but it also provides
with the relaxation time constanttg@h(x,t)#. This means
that if we are interested in a realistic quasistationary p
behavior, graded-response equations with fixed relaxa
time constants as those of Secs. II A and II B are not su
cient.

Equation~58! is the correct way to introduce a systema
cally derived graded-response-type dynamics for pools
spiking neurons using the chain of differential equations. T
effect of Eq.~58! is a dynamics that follows the real activit
dynamics by smoothing out sharp activity peaks. Nevert
less, it will do so following the envelope curve of the acti
ity, and it will still approach the correct stationary solution
for a constant fieldh(x).

D. Higher-order approximations: Realistic assembly dynamics

Higher-order approximations serve to model in a quan
tatively accurate way the dynamics of assemblies of spik
neurons. Using the fast dynamics approximation~47!, the
model is capable of reproducing the time-course of the
tivity of a pool composed of extensively many neurons,
cluding fast transients and sharp activity peaks like th
occurring when the activity approaches oscillatory solutio

The different recovery variables serve as memory buff
for the past activity. Higher~with larger n) recovery vari-
ables are responsible for the more recent past, and influe
the response of the pool to fast transients. Taking only on
two recovery variables results in activities that follow th
real activity in a smooth, approximated way. If we includ
more recovery variables, the assembly dynamics also follo
the smaller details of the real activity.

Figures 7 and 8 show simulations of transient and os
latory pool dynamics calculated using Eqs.~43!. The activity
is compared with results gained from simulations using
semblies of explicitly modeled spiking neurons.

VII. CONNECTION WITH OTHER MODELS

In this section, we compare the model with other neuro
models. Specifically, we show that standard gain functio
and graded-response models can be understood in term
our pool dynamics, and that this allows us to interpret
parameters of those functions in terms of the microsco
parameters of our underlying neuronal model. Furthermo
we show that our model is equivalent to a pool of spik
response or integrate-and-fire neurons.

A. Gain function

In Sec. VI B, we have shown that the stationary soluti
of the pool dynamics is the sigmoidal gain function~54!. In
case we have an absolute refractory period only,kh

(1)(x) van-
ishes, and we obtain an equation of the same form as
standard logistic gain function:
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FIG. 7. Simulation of the activityA(t) of a single pool of neu-
rons without couplings, using spike-response neurons~solid line! or
Eqs.~43! ~dashed line!. From 50 to 150 ms, a constant external fie
is applied~black bar!. The sudden onset of the external field evok
a sharp activity peak which decays in a damped oscillation towa
the new stationary state. We have used the fast dynamics app
mation with n54 recovery variables and fast approximatio
N(4)(t)'N(`)(t), meaning d/dtN(4)(t)5A(t)2A(t2gabs), and
fifth-order Runge-Kutta integration with adaptive stepsize. T
simulations show a good quantitative agreement.

FIG. 8. Simulation of the activityA(t) of a single pool of re-
ciprocally coupled neurons, using spike-response neurons~solid
line! or Eqs. ~43! ~dashed line!. From 50 to 250 ms, a constan
external field is applied~black bar!. The parameters of the poo
neurons fulfill the locking theorem. The onset of the external fi
evokes a small activity peak, which grows and generates a
sustained oscillation. As in the previous simulation, we have u
the fast dynamics approximation withn54. The simulations show
a good quantitative agreement, except in the tips of the acti
peaks~finite-size effects!.
G@h~x!#5
1

gabs

1

11 exp $22b@h~x!2u8#%

5
1

gabs

1

2
~11tanh$b@h~x!2u8#%!. ~60!

Since Amaxª1/gabs is the maximal spiking activity of the
neurons, and normalizing the activityA→A/N, we obtain

A~x!5Amax
1
2 „11tanh$b@h~x!2u8#%…. ~61!

This means that for pools of spiking neurons we can use
standard logistic gain function to obtain realistic stationa
results, and we know how each parameter of the gain fu
tion can be interpreted in terms of the microscopic para
eters of the underlying neuronal model.

B. Standard graded-response models

The standard graded-response models of Sec. II A ca
motivated as follows from our pool dynamics. We look at t
normalized form (A→A/N) of Eq. ~45!. In a quasistationary
regime we define a dynamics by an exponential relaxa
towards the stationary solution of Eqs.~43! and ~45!, given
by A(x)5t@h(x)#21$12@gabs1kh

(1)(x)#A(x)%:

t
d

dt
A~x,t !52A~x,t !1

1

t@h~x,t !#

3$12@gabs1kh
(1)~x!#A~x,t !%. ~62!

This equation, and its simpler variant~for small @gabs

1kh
(1)(x)#A(x,t)!1)

t
d

dt
A~x,t !52A~x,t !1

1

t@h~x,t !#
, ~63!

are of the same form as the assembly-averaged gra
response models presented in Sec. II A. Equation~62! will
relax toward thecorrect microscopic solutions~i.e., solutions
that are in accordance with those obtained from simulati
with single spiking neurons!, incorporating absolute and
relative refractory effects. There is no necessity of ‘‘tim
coarse graining’’ or other temporal averaging procedures
arrive at Eq. ~62! for quasistationary activity. Graded
response models as in Eqs.~62! and~63! may thus present a
valid approach, if the assembly dynamics are always clos
the stationary state calculated from the microscopic par
eters. For fast, transient, dynamics, the full differential eq
tion system~43! is to be used instead. Again, as in Sec. V
it is now possible to understand how each parameter of
graded-response model can be interpreted in terms of
microscopic parameters of the underlying neuronal mod
The only exception is the arbitrary relaxation time const
t. For a calculation of the relaxation time constant usi
intrinsic neuronal parameters refer back to Sec. VI C.

C. Graded-response models with refractory effects

We can enhance the standard graded response mode~62!
by incorporating an additional term for the dynamics of t
first recovery variable. Together with an exponential rela
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ation dynamics ofA(x,t), using approximation~48! for the
number of inactivated neurons, and assuming neurons
relative refractory period only, we find

t
d

dt
A~x,t !52A~x,t !1

1

t@h~x,t !#
@12NI~x,t !#,

~64!
d

dt
NI~x,t !5A~x,t !2F 1

t@h~x,t !#
1

1

t ref
GNI~x,t !.

This system is similar to that of Sec. II B, Eqs.~9! and~10!.
Neurons can be firing, inactivated~quiescent!, and activated
~refractory!. Between the three states transitions are allow
some with a field-dependent rate and others with a fixed r
Integrating the spike density over a small fixed intervaT
during whichA(x,t) can be regarded as constant, we obt
the absolute number of neurons that released a spike
cently, a(x,t)'TA(x,t). We further definer (x)ªNI(x,t),
bª1/t ref , s1@h(x,t)#ª„1/t@h(x,t)#…(T/t), s2@h(x,t)#
ª1/t@h(x,t)#, aa51/t, anda r51/T, and rewrite Eqs.~64!
as

d

dt
a~x,t !52aaa~x,t !1$12r ~x,t !%s1@h~x,t !#,

~65!
d

dt
r ~x,t !5a ra~x,t !2r ~ t !$b1s2@h~x,t !#%.

The result is a system that is very similar to the model
Sec. II B. Again, we can interpret the parameters of
model in terms of their microscopic parameters. The sys
now depends, as in Sec. II B, on an arbitrary integration ti
constantT and a relaxation time constantt. For quantitative
modeling it is therefore better to use the assembly mo
presented in this paper, which is based exclusively on mic
scopic parameters.

D. Connection with models of spiking neurons

In this subsection we compare one of the most gen
types of model of single-neuron threshold dynamics,
‘‘spike-response model’’~SRM!, with the presented poo
model. We show how the parameters of our pool models
be mapped to parameters of the SRM. It turns out that
pool model is exact for pools of spike-response neurons w
special refractory functions. In other cases, our model can
used as an approximation.

In the SRM, the response of a neuron, sayi, is determined
by a total field that has two contributions: one from the sy
aptic inputs from other neurons and another that accounts
the neuron’s refractory behavior due to the release of ac
potentials,

hi
total~ t !5hi~ t !1hi

ref~ t !. ~66!

The neuron fires deterministically or with a certain probab
ity, if the total field reaches a fixed threshold from below

The synaptic input field hi(t) is usually defined using an
a function as in Eq.~14! of Sec. III B. Therefractory field
hi

ref(t) is defined by arefractory functionh i(s). For spike
trains of a neuroni, Si(t)5( fd(t2t i

f), we have
ith

d,
e.

n
re-

f
e
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e

el
o-

al
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th
e

-
or
n

-

hi~ t !5(
j

Ji j (
f

a i j ~ t2t j
f !5(

j
Ji j E

0

`

dsa i j ~s!Sj~ t2s!,

~67!

hi
ref~ t !5(

f
h i~ t2t i

f !5E
0

`

dsh i~s!Si~ t2s!.

In this paper, we consider neurons with renewal. This me
that only the last spike att i* accounts for refractory effects
and thus contributes tohi

ref(t):

hi
ref~ t !5h i~ t2t i* !. ~68!

Thea(s) andh(s) functions of the spike-response mod
can be used to model a broad range of types of neuro
models~for the sake of simplicity, we will drop the neuro
indices i and j of the a andh functions from here on!. For
example, it is possible to express the so-called ‘‘integra
and-fire’’ ~I&F ! type models in terms of special function
a(s) andh(s).

Using the total field of the SRM, we introduce an exp
nential total spike probability density 1/tSRM for neurons
with renewal@1#,

tSRM@hi~ t !,hi
ref~ t !#5t0 exp $22b@hi~ t !1hi

ref~ t !2u#%

5t0 exp $22b@hi~ t !1h~ t2t i* !2u!#%.

~69!

Then we can identify the spike probability density for ac
vated neurons and the activation probability for refracto
neurons from Sec. III A with

$t@hi~ t !#%21
ªt0

21 exp $2b@hi~ t !2u#% ~70!

and

pA~ t2t i* !ª exp $2bh~ t2t i* !%. ~71!

This means that the differential equation system for
pool dynamics~43! is exact in the limit of pools composed o
extensively many spike-response neurons with renewal
refractory functionsh(s) of the form

h~s!5
1

2b
ln@pA~s!#, ~72!

with pA(s) being one of the activation functions presented
Sec. V B. Figure 9 shows an example of the exponen
pA(s) and the corresponding refractory function calculat
through Eq.~72!.

Alternatively, we can start from frequently used refracto
functionsh(s) and search for systematic approximations
these function through the correspondingpA(s). This is for
example the case for I&F neurons, which use an exponen
h(s). Two of the most frequently used refractory functio
are

hexp~s!5H 0 for s,0

2` for 0<s,gabs

2h0 expF2
s2gabs

th
G for s>gabs

~73!
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and

h inv~s!55
0 for s,0

2` for 0<s,gabs

2
th

s2gabs
for s>gabs.

~74!

For smallh(s), i.e., in the case that the synaptic field
small enough so that neurons do not spike again until t
refractory field has already decreased considerably, we
approximate the activation functionpA(s) in Eq. ~72! corre-
sponding to the refractory function~73! by

pA~ t2t* !5 exp@2bh~ t2t* !#'112bh~ t2t* !

5122bh0 expF2
s2gabs

th
G . ~75!

Comparing this with the exponential activation function
the sigmoidal activation function in Eq.~29!, we obtain

p052bh0 , t ref5th and s05gabs. ~76!

Similarly, in the case of the inverse refractory function~74!,
we can approximate

pA~ t2t* !5 exp $2bh~ t2t* !%'112bh~ t2t* !

5122b
th

s2gabs
, ~77!

and compare this with the inverse activation function@the
last of Eqs.~29!# so as to obtain

t ref52bth and s05gabs. ~78!

Figure 10 shows an exponential refractory function
used for I&F neurons, and its approximation in terms
pA(s). We see that, for larges, the curves coincide. This
means that, especially in undercritical synaptic driving co
ditions, during which the synaptic input is much smaller th
the highest amplitude of the refractory field, the presen

FIG. 9. Correspondence between the activation functionpA(s)
~solid line! and the negative refractory function2h(s) of the SRM
~dotted line!. In this case, we used an exponentialpA(s) with an
absolute refractory period ofgabs51. At s5gabs, the refractory
function h(s) diverges to2`.
ir
an

s
f

-
n
d

approximation scheme should allow for a precise quant
tive description of the activity of pools composed of stoch
tic SRM or I&F neurons.

Of course any other approximation scheme can be use
well. This allows us to simulate pools of neurons with d
ferent refractory fields by means of the model presented
this paper.

VIII. STABILITY AND OSCILLATIONS

In this section, we analyze the stability problem conce
ing assembly dynamics, and present a stability criterion t
is well suited to handle pools of neurons.

A. Nonstationary activity

The exact correspondence between the dynamics ge
ated by a chain of differential equations and that of pools
spike-response-type neurons~although restricted to specia
refractory functions! allows for a simple derivation of som
known analytical results. Two points are of special intere
First, the stability of a pools’ state of stationary activity
relevant to the capability of a pool to develop coherent
cillations. A stability analysis for spike-response neuro
was worked out by Gerstner and van Hemmen@1#. Simula-
tions with the differential equation system confirm the stab
ity conditions calculated analytically for the SRM. In passi
we remind the reader that integrate-and-fire neurons con
tute a special case of the SRM.

Second, the conditions for the existence of stable cohe
oscillations have been stated in the so-called ‘‘locking th
rem’’ for the noise-free case@21#. In the noise-free case,
neuron i spikes exactly when its total field reaches a fix
thresholdu from below, i.e., when

hi~ t !1hi
ref~ t !2u50. ~79!

The locking theorem states that the activity of a pool of SR
neurons with renewal has a stable oscillatory solution, if

FIG. 10. The exponential refractory field function2h(s)
~dashed thick line! is plotted together with its corresponding ac
vation probability functionpA(s) ~solid thick line!. The other four
functions are approximations of the desired refractory funct
~dashed thin line! and the desired activation function~solid thin
line! using a sigmoidal~better fit of the thin curves! and an expo-
nentialpA(s). This approximation is particularly suitable for unde
critical stimulation conditions since the curves coincide for larges,
i.e., when neurons spike again after their refractory field has alre
decreased noticeably.-
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neurons fire according to their threshold condition~79! while
their synaptic field is increasing in time. This is illustrated
Fig. 11.

The differential equation pool model presented in this
per uses stochastic neurons, and thus does not apply in
noise-free limit. Nevertheless, we can approximate the no
free case to any accuracy. We therefore expect that the
bility conditions stated in the locking theorem are applica
to our pool model as well. We will see in Sec. VIII B, how
ever, that if we stick to the integral equation~26! instead of
using the differential equation system~43!, we can perform
the noise-free limit and prove the locking theorem for o
dynamics. To what extent the locking theorem can be
plied to the noisy case and to the case of an approxim
dynamics~43! ~with a limited number of recovery variables!
is a question that still remains open.

In Fig. 8, we show a simulation of a single pool accordi
to our differential equation model and compare it with t
pool activity calculated using explicitly modeled SRM ne
rons. The pool is coupled reciprocally with itself~i.e., the
coupling strengthJi j between any two pool neuronsi andj is
the same! and the parameters of the synaptic and the refr
tory fields fulfill the conditions of the locking theorem. Th
simulation shows that a small perturbation grows until
pool activity shows a marked oscillation. It also demo
strates the good quantitative and qualitative agreement
tween our macroscopic pool model and microscopica
modeled pools.

B. Conditions for locking and oscillatory activity

To understand what happens with the pool dynamics
the low-noise limit, we will return to the original integra
equation~26! for the activity A(x,t). Because of Eq.~22!,
we see that the number of inactivated neuronsNI(x,t) @Eq.
~24!# can also be expressed by

FIG. 11. Locking theorem for pools of deterministic~i.e., noise-
free!, equivalent spike-response neurons withu50. Two cases,
corresponding to pools with different refractory functionsh(s), are
illustrated. Let us assume that all neurons fire exactly at the s
moment t50. Then the refractory fieldhref(t) of all neurons
evolves according to their refractory functionh(t) @solid thin line
for one pool and dotted thin line for the other pool;2h(t) is
shown#. The locking theorem states that if the threshold condit
h(t)1h(t)2u50 is fulfilled at arising synaptic fieldh, an oscil-
latory solution for the pool activity is stable; otherwise it is u
stable. Therefore, in the figure, the pool with the refractory fi
indicated by the solid thin line has a stable oscillatory soluti
whereas the oscillatory activity of the pool with the dotted thin li
will decay (u50 in this figure!.-
-
the
e-
ta-
e

r
-

ed

c-

e
-
e-
y

n

NI~x,t !5N~x!2E
2`

t

dt* pA~ t2t* !Dh~x,t,t* !A~x,t* !

5N~x!2E
0

`

dspA~s!Dh~x,t,t2s!A~x,t2s!.

~80!

Using this in Eq.~26!, we immediately obtain

A~x,t !5E
2`

t

dt* Fh~x,t,t* !A~x,t* !

5E
0

`

dsFh~x,t,t2s!A~x,t2s! ~81!

with the firing probability at timet:

Fh~x,t,t* !52
d

dt
Dh~x,t,t* !

5
1

t@h~x,t !#
pA~ t2t* !Dh~x,t,t* !. ~82!

This is the integral-equation form for the activity of a pool
spiking neurons as presented in Ref.@1#. Equation~81! is
equivalent to Eq.~26! for any finiteb. We will use Eq.~81!
here to explain the low-noise limit of our pool dynamics.

With the same equations as in Sec. VII D fort@h(x,t)#
@Eq. ~70!# and pA(t2t* ) @Eq. ~71!#, taking the low-noise
limit for spike-response neurons meansb→`. Near to this
limit, the great majority of the neurons will spike when the
total field htotal(t) @Eq. ~66!# draws close to the thresholdu.
For a continuous synaptic fieldh(x,t) and neurons with re-
newal, this is equivalent to saying that the times elapsed
since their last firing will be close to the ‘‘ideal’’ time
s* (x,t) defined implicitly by the noise-free threshold cond
tion

h~x,t !1href~ t !2u5h~x,t !1h~s* !2u50. ~83!

Because of the spiking of the neurons, the survival fu
tion Dh(x,t,t2s) @Eq. ~20!# will present a sharp drop from 1
to 0 for s.s* (x,t). At the same time, we have
$t@h(x,t)#%21pA(s)'0 for s,s* (x,t). Therefore, the spik-
ing probabilityFh(x,t,t2s) is nearly zero everywhere with
the exception of the region wheres's* (x,t). In the low-
noise limit, the maximum ofFh(x,t,t2s) diverges to1`,
and the location of the maximum converges towards
5s* (t). In addition, we see from Eq.~82! that Fh(x,t,t
2s) is normalized overt, since

E
2`

`

dtFh~x,t,t* !5E
t*

`

dtFh~x,t,t* !

52E
t*

`

dtF d

dt
Dh~x,t,t* !G51. ~84!

Taking advantage of these properties ofFh(x,t,t* ), we
choose in the limitb→` the following firing probability
function:
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F~x,t,t2s!5 f 0d @s2s* ~x,t !#. ~85!

Using the normalization property of the firing probabili
function, we know that

E
t*

`

dt8F~x,t8,t* !5 f 0E
t*

`

dt8d@ t82t* 2s* ~x,t !#51.

~86!

From this equation we obtain

f 05U12
d

dt8
s* ~x,t8!u t82t* 5s* (x,t8)U ~87!

and thus, together with Eq.~81! for the activity dynamics,

A~x,t !5U12
d

dt
s* ~x,t !UA@x,t2s* ~x,t !#, ~88!

with the implicitly defineds* (x,t). This expression is valid
for the activity of a pool of equivalent neurons with renew
in the noise-free case.

We will elaborate conclusion~88! a bit further. A linear-
ization of s* (x,t) in a small interval of lengthDt
around t0, during which the synaptic field can b
regarded as constant,h(x,t)'h(x,t0), and during which
we can invert the refractory field function so thats* (x,t)
5h21$2@h(x,t)2u#%, directly gives s* (x,t01Dt)
5s* (x,t0)2h8(x,t0)/h8(x,t0)Dt ~the primes denote time
derivatives! „h8@h21(x)#(h21)8(x)51⇒(h21)8(x)
5$h8@h21(x)#%21

…, so that for the activity we find

A~x,t01Dt !5U11
h8~x,t0!

h8@s* ~x,t0!#
UAS x,t02s* ~x,t0!

1F11
h8~x,t0!

h8@s* ~x,t0!#
GDt D . ~89!

Let us now consider a pool that is only coupled to itse
Starting with a constant activity, a small perturbation at tim
t215t02s* (t0) causes a further increase or decrease of
perturbation at the next spike time att0 if the factor 1
1h8(t0)/h8@s* (x,t0)# is greater or smaller than 1. Since fo
monotonoush(s) it is h8@s* (x,t0)#.0, this requirement is
fulfilled, if the synaptic fieldh(x,t) caused by the perturba
tion has apositiveslope at timet0. Thus an increasing syn
aptic field at the time of spiking caused by the perturbation
a sufficient condition for the instability of the state of co
stant activity.

Similarly, a pool that has already developed an oscillat
activity, say, with narrow activity peaks at time
t21 ,t0 , . . . , will present a contraction of its activity pea
and at the same time an increase of the activity maximum
the synaptic field has a positive slope at the activity pe
times. This can be seen by rewriting Eq.~89! as

A~x,t01Dt0!5c~ t0!A~x,t211Dt21!, ~90!

with the compression factor
l

.
e
e

s

y

if
k

c~ t0!ªU11
h8~x,t0!

h8@s* ~x,t0!#
U , ~91!

the past spiking time

t21ªt02s* ~x,t0!, ~92!

and the difference to the last spiking time,

Dt21ªc~ t0!Dt0 . ~93!

The neurons that contributed to the activity att211Dt21
now contribute to the activity att01Dt0. For c(t0).1,
however, the activity att01Dt0 is larger than the activity a
t211Dt21. This growth goes hand in hand with a contra
tion of the activity peak, because forc(t0).1 we obtain

Dt0,Dt21 . ~94!

This means that neurons that where delayed byDt21 with
respect to the oscillatory peak att21 present a smaller dela
Dt0 at the new peak att0. They are therefore ‘‘pulled’’ back
into the oscillatory peak, i.e., they lock. Otherwise, the tim
difference to the oscillatory peak becomes larger and
neurons fire more asynchronously, i.e., the oscillatory p
broadens and the coherence decreases.

The conditionc(t0).1 is identical to the condition state
by the locking theorem@21#. It is a sufficient condition to
determine if a pool of noise-free neurons has a stable s
tion in form of an oscillatory activity. Equation~88! is a
more general form of the locking theorem, and can be u
directly to calculate the time course of the activity of a po

IX. FINITE-SIZE POOLS AND THE CENTRAL-LIMIT
THEOREM

The dynamics represented by Eqs.~26! and ~43! is valid
under the assumption that there exist extensively many p
neurons for each interval (t* 2Dt* ,t* #. Forfinite pool sizes,
Eqs. ~26! and ~43! are valid for themeanvalues of the ac-
tivity and the recovery variables. It should be asked, th
how noise influences the pool dynamics since the strong
of large numbers does not suffice any more and, becaus
finite-size effects, noise has to be taken into account by
central limit theorem and variations thereof@22#. This is nec-
essary for understanding stability criteria of a pool’s activi
for the estimation of the number of neurons that compos
pool, or for comparison of the presented pool dynamics w
microscopically modeled pools. In this section, we presen
‘‘cooking recipe’’ for calculating the variance of the poo
activity. This variance can be used afterwards for a reali
simulation of finite-size pools.

Consider a single poolx. At time t, there aren̄(x,t,t* )
5n(x,t,t* )Dt* neurons that have spiked for the last tim
during the interval (t* 2Dt* ,t* #. Since all these neuron
feel the same refractory field, the present firing probabi
during (t2Dt,t# is the same, and equals

Prob$i fires in @ t,t1Dt ! due to fieldhi%

5
Dt

t@h~x,t !#
pA~ t2t* !. ~95!
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The probability thatns(x,t,t* ) of thesen̄(x,t,t* ) neurons
emit a spike during the interval (t* 2Dt* ,t* # is then given
by the binomial distribution~the stochastic variablext* is the
number of spiking neurons!

Prob$xt* 5ns~x,t,t* !%

5S n̄~x,t,t* !

ns~x,t,t* !
D pns(x,t,t* )qn̄(x,t,t* )2ns(x,t,t* ),

~96!

with p5Dtt@h(x,t)#21pA(t2t i* ) andq512p.
The mean number of firing neurons of the subgroup

n̄(x,t,t* ) neurons during the interval@ t2Dt,t) can then be
calculated as

^xt* &~x,t,t !5n̄~x,t,t* !p

5
Dt

t@h~x,t !#
pA~ t2t* !n~x,t,t* !Dt, ~97!

and for the variance of the number of firing neurons
obtain

s2~x,t,t* !5n̄~x,t,t* !pq

5^xt* &~x,t,t* !F12
Dt

t@h~x,t !#
pA~ t2t* !G .

~98!

To calculate the number of spiking neurons of the en
pool, we have to consider the sum of the stochastic varia
from the subgroups characterized by their last firing tim
t* :

X5(
t*

xt* . ~99!

According to the central limit theorem, the probability dist
bution function of the stochastic variableX has a mean tha
can be calculated as the sum of the means of the si
stochastic variablesxt* :

^X&~x,t !5(
t*

^xt* &~x,t,t* !. ~100!

This gives

^X&~x,t !5(
t*

Dt

t@h~x,t !#
pA~ t2t* !n~x,t,t* !Dt*

5A~x,t !Dt. ~101!

Therefore, for a pool of finite size, our calculation of th
activity A(x,t) @using Eqs.~26! or ~43!# is equivalent to a
calculation of the mean number~or theexpectation value! of
neurons that emit a spike at timet.

Similarly, the central limit theorem states that the va
ance of the probability distribution function of the stochas
variableX is equal to the sum of the variances of the sin
stochastic variablesxt* :
f

e
es
s

le

-

s2~x,t !5(
t*

s2~x,t,t* !. ~102!

Together withpA
25(12pA)222(12pA)11 this leads to the

result

s2~x,t !5(
t*

^xt* &~x,t,t* !F12
Dt

t@h~x,t !#
pA~ t2t* !G

5A~x,t !Dt2(
t*

Dt2

t@h~x,t !#2
pA~ t2t* !2

5A~x,t !DtF12
Dt

t@h~x,t !#G2
Dt2

t@h~x,t !#2

3@N(1)~x,t !2N(2)~x,t !#, ~103!

whereN(1)(x,t)5NI(x,t) andN(2)(x,t) have been defined in
Sec. V D.

We see that, for small discretization time intervals
lengthDt @and neglecting the terms of the order (Dt)2], we
have a relative width of the probability distribution functio

s~x,t !

^X&~x,t !
5

1

AA~x,t !Dt
. ~104!

In other words, the signal-to-noise ratio increases for hig
activity. This is important for oscillatory pool activity with
high activity peaks. In this case the effect of the noise
duced by finite-size pool effects during the high activ
peaks is reduced considerably.

For simulations of pools with afinite number of neurons,
we can now calculate the mean activity and the recov
variables as before, and then assume for the activity a Ga
ian probability distribution function~central limit theorem!
with a variance calculated according to the last lines of E
~103!.

X. DISCUSSION

The differential equation model~43! presents many ad
vantages over pools of explicitly modeled spiking neuro
First of all, for large pools the numerical cost is reduce
That is, the simulations of Fig. 8 were calculated using
same sampling stepsize of 0.5 ms~the differential equation
system additionally used an adaptive-stepsize integra
method in these 0.5-ms intervals!. The simulation times of
the pool of spiking neurons and the differential equation p
model were 1451.5 and 15.5 s, respectively. In our imp
mentation, the numerical cost of both types of simulatio
gets comparable for pools with less than 70 neurons. It
also be seen from Fig. 5 that the recovery kernels decay v
fast, so that usually only a few recovery variables are nee
to describe a pool’s activity quantitatively well.

A second advantage results from the fact that, for simu
tions, the differential equation system with delay requires
past activity of the system to be remembered only up t
point in the past specified by the longest delay present in
system. Typical values for the axonal delayDax during the
synaptic transmission are 1–5 ms, and the length of the
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solute refractory periodgabsis usually,10 ms. Furthermore
there is also the possibility to reduce the pool dynamics t
differential equation system without delays, which has be
discussed in Secs. V A and V D and which completely elim
nates the system’s functional dependence upon the pas
tivity.

In summary, starting from a stochastic single-neur
threshold model with renewal, we have derived a system
differential equations with or without delays that describe
activity dynamics of a pool or assembly ofequivalentneu-
rons. Contrary to previous derivations of differential equ
tion pool dynamics from microscopic models, the derivati
is exact for any dynamical range. This means that the mo
can operate equally well in the near-stationary condition
when fast, transient, dynamics is required. For numer
simulations, the real behavior of the pool is approximated
breaking the chain of differential equations at the desi
level. The chain of differential equations allows to mo
gradually from a crude approximation of the real pool d
namics ~corresponding to a graded-response approach! to-
ward a biologically realistic dynamics of a pool of spikin
neurons.

The model serves as a basis for understanding the m
heuristic graded-response-type models in terms of mic
scopic~i.e., neuronal!, dynamics parameters. Furthermore
a
n
-
ac-

n
of
e

-

el
d

al
y
d

-

re
-

t

is exact in the case of pools composed of extensively m
spiking neurons of spike-response or integrate-and-fire ty
Simulations show good quantitative agreements of the res
ing pool activity with the activity of pools modeled usin
spiking neurons. It is also shown that analytical results fr
the microscopic models are applicable to the presen
model. Pools modeled by our dynamics show the capab
of developing oscillatory behavior in the parameter regim
predicted by the locking theorem of spike-response neuro
This is shown both in simulations and by presenting a pr
of the locking theorem for our pool dynamics. Finally, it
explained how the model can account for finite-size effec

The key advantage of the model presented in this pape
that it relies upon macroscopic~i.e., pool-averaged! param-
eters but retains many biologically relevant neuronal para
eters that are subject to experimental observation. In s
mary, it closes an existing gap between the microscopic
the macroscopic neuronal modeling levels.
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APPENDIX A: MAIN NOTATIONAL DEFINITIONS
Notation Definition

Si(t)5( fd(t2t i
f) Spike train, with spikesf released by neuroni

A(x,t)5( j PxSj (t) Activity ~spike density! of pool x with neuronsj

Dax Synaptic axonal delay

a~s!5Q~s2Dax!
~s2Dax!k

ck
expF2 ~s2Dax!

ta
G Synaptic alpha function~normalization constck)

hi(t)5( j 51
N Ji j *0

`dsa(s)Sj (t2s) Synaptic field on neuroni, coupling weightsJi j

h(x,t)5(yJ(x,y)*0
`dsa(s)A(y,t2s) Synaptic field on any neuron of poolx, pool-to-pool coupling weightsJ(x,y)

Dh(x,t,t* ) Probability that a poolx neuron that spiked last at timet* did not spike again
until t

r(x,t,t* )5Dh(x,t,t* )A(x,t* ) Momentary density of poolx neurons that spiked last at timet*

^ f &(x,t)5*2`
t dt* r(x,t,t* ) f (x,t,t* ) Functionf averaged over all of poolx

@t(h)#21 Firing probability density for neurons that are in the activated state

gabs Length of the absolute refractory period

pA(s) Activation function, probability that a neuron that spiked last att2s is in the
activated state

t ref , p0 ands0 Time constant and parameters ofpA(s)

N(0)(x)5^@12pA(t2t* )#0& Recovery variables
N(1)(x,t)5^@12pA(t2t* )#1&
N(`)(x,t)5^@12pA(t2t* )#`&

N(x)5N(0)(x) Total number of pool neurons

NI(x,t)5N(1)(x,t) Number of inactivated pool neurons

M (x,t)5N(`)(x,t) Last recovery variable
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APPENDIX B: ASSEMBLY DYNAMICS—MAIN RESULTS

1. Dynamics of the synaptic field

Assume thatkPN in a(s) andh(x,t)5h(k)(x,t). The dynamics forl PN, 0< l<k are

d

dt
h( l )~x,t !5 l

cl 21

cl
h( l 21)~x,t !2

1

ta
h( l )~x,t !,

d

dt
h(0)~x,t !5(

y
J~x,y!A~y,t2Dax!2

1

ta
h(0)~x,t !.

2. Dynamics of the activity and recovery variables

Assume thatpA(s) is monotonous and differentiable except ats5gabs. Without absolute refractory period, the terms wi
M (x,t) andpA(gabs) vanish. The dynamics form<1,` are

A~x,t !5
1

t@h~x,t !#
@N~x!2N(1)~x,t !#,

d

dt
N(m)~x,t !5A~x,t !2$12@12pA~gabs!#m%A~x,t2gabs!2

1

t@h~x,t !#
@N(m)~x,t !2N(m11)~x,t !#

25
m

t ref
@N(m)~x,t !2M ~x,t !# exppA~s!

m

t ref
$N(m)~x,t !2M ~x,t !2@N(m11)~x,t !2M ~x,t !#/p0% sigmpA~s!

m

t ref
@N(m11)~x,t !2M ~x,t !# inv pA~s!,

d

dt
M ~x,t !5A~x,t !2A~x,t2gabs!.

3. Approximation schemes

Implementation of the dynamics by breaking the chain and approximation ofN(n11):

Approximation Dynamical regime and assumptions

d

dt
N(n11)(x,t)'A(x,t)2A(x,t2gabs)

For fast, transient dynamics. Without absolute refractory period i
d/dtN(n11)(x,t)[0.

N(n11)(x,t)'@gabs1kh
(n11)(x)#A(x,t) For slow dynamics.A(x,t) must be approximately constant during th

past time (t2s,t# during which@12pA(s)#n11 is large. Without an ab-
solute and relative refractory period it isgabs50 andkh

(n11)(x)50, re-
spectively.
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