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Abstract In the struggle for survival in a complex and
dynamic environment, nature has developed a multitude of
sophisticated sensory systems. In order to exploit the infor-
mation provided by these sensory systems, higher vertebrates
reconstruct the spatio-temporal environment from each of the
sensory systems they have at their disposal. That is, for each
modality the animal computes a neuronal representation of
the outside world, a monosensory neuronal map. Here we
present a universal framework that allows to calculate the
specific layout of the involved neuronal network by means of
a general mathematical principle, viz., stochastic optimality.
In order to illustrate the use of this theoretical framework, we
provide a step-by-step tutorial of how to apply our model. In
so doing, we present a spatial and a temporal example of opti-
mal stimulus reconstruction which underline the advantages
of our approach. That is, given a known physical signal trans-
mission and rudimental knowledge of the detection process,
our approach allows to estimate the possible performance and
to predict neuronal properties of biological sensory systems.
Finally, information from different sensory modalities has to
be integrated so as to gain a unified perception of reality for
further processing, e.g., for distinct motor commands. We
briefly discuss concepts of multimodal interaction and how a
multimodal space can evolve by alignment of monosensory
maps.
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1 Introduction

A mouse hears a rustling in the grass, sees some leaves
moving and escapes from the predator. Thus, the perception
of the outside world by sensory systems and the consequent
translation of their response into a reliable neuronal represen-
tation that allows, for instance, directional motor commands
is an essential concept for surviving. A neuronal representa-
tion of the external world is what we call a map. Depending
on the map processing information from one or many sensory
systems, the map is called uni- or multimodal. The advanta-
geous concept of a neuronal map will be discussed in detail
in the next section.

The processing of sensory information, from its gen-
eration to multimodal map formation, can in general be
subdivided into three steps: physical mapping, optimal map
formation, and multimodal integration; see Fig. 1. Before
focusing on the aspects of optimality we analyze the “golden
three” of sensory processing in turn.

1.1 Physical mapping

An object in the outside world reveals its presence by gen-
erating different signals that are transmitted along distinct
physical pathways. A running animal may for instance gen-
erate sound and a changing visual image as it moves, as well
as vibrations and an infrared profile. In concrete terms, given
any signal that varies as a function of spatial position and
time, it is possible to calculate the time-dependent response
of the receptor neurons. That is, the physical mapping of the
signal onto the neuronal detector response can be described
by a set of transfer functions, indicated by the upper arrows
in Fig. 1. The responses of the sensory systems then represent
particular physical quantities such as sound, light intensity,
volatile molecules, or heat originating from the object.
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Fig. 1 The three steps leading to the formation of a unified multi-
sensory map. An object in the outside world generates physical input
signals, which can be detected by several different sensory systems. To
form a map, the physical mapping must be “inverted” in some suitable
way. After monosensory map formation, the distinct maps are combined
into a unified multisensory map

1.2 Optimal map formation

From the sensory responses an observer needs to reconstruct
a map that represents the spatio-temporal stimulus. For some
sensory systems a pre-stage map may already exist inher-
ently, e.g., on the retina in the visual system. For other sys-
tems, such as the auditory system (Carr and Konishi 1988,
1990; Kempter et al. 2001; Brand et al. 2002; Leibold and
van Hemmen 2005), the lateral-line system (Franosch et al.
2003, 2005b; Goulet et al. 2008), or infrared vision (Sichert
et al. 2006), spatial information is not readily available and a
neuronal map must be constructed more explicitly. In either
case, we want the map to represent the environment as accu-
rately as possible. That is, we want an optimal map. So the
task of the brain is now to obtain an optimal reconstruc-
tion of the signal (middle arrows in Fig. 1). The key to suc-
cess is the choice of the right neuronal connections between
the sensory systems and the corresponding maps. That is,
the synaptic connections have to be chosen in such a way
that the network “inverts” the physical mapping of the signal
to the sensory and, thus, neuronal response (Oǧuztöreli and
Caelli 1985; Takeda and Goodman 1986; Zhou et al. 1988).
The firing activity of the map neurons will then accurately
represent the spatio-temporal signal.

1.3 Multimodal integration

In a final step of sensory processing, the monosensory maps
must be merged into a single unambigous multisensory map.
Here two difficulties arise. First, proper map alignment is
required for the successful fusion of unimodal maps. A
collection of aligned maps is realized, for example, in the

superior colliculus (SC)1 (Stein and Meredith 1993; King
1999; Calvert et al. 2004); see Sect. 2. Second, the mono-
sensory maps should be combined optimally (Gu et al. 2008;
Morgan et al. 2008) to increase the quality of the integrated
map in comparison to that of the contributing maps. The
integrated multimodal map then allows for a new concept in
multimodal processing, the so-called “pooling” of informa-
tion, an efficient way to identify and characterize objects.

The first processing step, physical mapping, is a purely
physical description of the signal generation and detection
process. In this prospect, we focus on optimal map forma-
tion and touch multimodal integration superficially. We begin
with reviewing the concept of a neuronal map in Sect. 2. We
then proceed in Sect. 3 by discussing a general framework
that describes how a neuronal map can be built from a given
sensory input in a stochastically optimal way (Mosegaard
and Tarantola 2002). After the model has been derived we
consider concrete examples of model predictions in Sect. 4.
It turns out that the model can successfully describe several
properties of monosensory map formation. Furthermore, we
show that many known experimental findings and theoretical
derivations can be explained within this unified framework.
After having discussed carefully how the presented frame-
work can describe monosensory maps, we move on to the
integration of monosensory into multisensory maps in the
final Sect. 5. We thereby review the current literature from
the perspective of maps. To discuss how monosensory maps
can form a single unambigous representation, we present
basic concepts such as “integration” and “pooling” of infor-
mation. We conclude the final section with remarks on how
a common sensory space can develop at all.

2 What’s in a map?

A major role in sensory processing is reserved for maps2

(Knudsen et al. 1987; van Hemmen 2002). A neuronal map

1 The SC is called optic tectum in non-mammals. In this review, we
will simply use “SC” to refer to either the optic tectum or the superior
colliculus, depending on the context.
2 Although it has only relatively recently become possible to explic-
itly demonstrate the existence of neuronal maps, the idea that a map-
like architecture underlies certain aspects of sensory processing is
much older. Already in 1879, Helmholtz (1879) remarked “Dass dur-
ch das Entlangführen des tastenden Fingers an den Objecten die Re-
ihenfolge kennen gelernt wird, in der sich ihre Eindrücke darbieten,
dass diese Reihenfolge sich als unabhängig davon erweist, ob man mit
diesem oder jenem Finger tastet, dass sie ferner nicht eine einläufig
bestimmte Reihe ist, deren Elementen man immer wieder vor- oder
rückwärts in derselben Ordnung durchlaufen muss, um von einem
zum anderen zu kommen, also keine linienförmige Reihe, sondern ein
flächenhaftes Nebeneinander, oder nach Riemann’s Terminologie, eine
Mannigfaltigkeit zweiter Ordnung, das alles ist leicht einzusehen.” That
is, Helmholtz already recognized that a neuronal representation of a
two-dimensional surface constitutes a two-dimensional manifold in the
brain.
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Fig. 2 The firing profile of a map encodes the likelihood of finding an
object at a certain position in sensory space. Focusing on the firing rate
of only a single neuron such as neuron xi and ignoring its neighbors
prevents a faithful perception of reality. A faithful perception can only
be achieved if the activity of the whole neuronal map (just compare the
‘neighborhood’ of xi with the rest) is taken into account. Consequently,
even though the nominal value of the firing rate of neuron xi is identical
in case A and B, the represented physical reality differs significantly in
both cases

is a neuronal representation of the external world quite often
realized by an array of neurons in which neighboring neurons
respond to similar sensory stimuli.

As an example, visual input in the mammalian brain is
processed through multiple cortical layers that are organized
according to the topography of the retinal input cells (“reti-
notopic organization”) (Wandell 1995; Kandel et al. 2000).
In this way, neighboring neurons respond to visual input
from neighboring points in space and thus form a spatial
map. Spatial maps have been discovered in various sensory
systems in many groups of vertebrates (Dräger and Hubel
1975; Hubel and Wiesel 1977; Hartline et al. 1978; Stein
and Gaither 1981; Carr et al. 1982; Knudsen 1982; King
and Palmer 1983; Middlebrooks and Knudsen 1984; Sullivan
and Konishi 1986; King and Hutchings 1987; Zittlau et al.
1988; Bartels et al. 1990) and even in some non-vertebrates
(Järvilehto 1985).

Neuronal maps are not limited to spatial representations as
several examples show, for instance, in the auditory system.
There, maps representing frequency, interaural time differ-
ence, interaural amplitude difference, and even amplitude
modulation frequencies exist (Takahashi and Konishi 1986;
Manley et al. 1988; Pickles 1988; Schreiner and Langner
1988; Olsen et al. 1989; Geisler 1990). Closely related to
the concept of a neuronal map is that of receptive fields. A
receptive field of a sensory neuron is defined as the region of
space in which the presence of a stimulus alters the activity
of the neuron. As we will see in Sects. 3.5, 4.2, and 4.3, our
model can predict such receptive fields.

One might argue that neuronal maps exist simply because
their neuronal architecture follows the sensory surface of
their input modality. From this point of view, for instance
the visual layers are retinotopically organized because they
receive their input from the retina. Similarly, a frequency map
just reflects the tonotopic organization of the cochlea.

Interestingly, this argument does not hold for every
sensory map as it already becomes apparent in the existence
of auditory maps for interaural time and amplitude differ-
ences. Regarding examples in the spatial domain, let us
consider the sensory units of the frog lateral line system
(Zittlau et al. 1988) or the snake infrared system (Hartline
et al. 1978). These sensory units receive a complex super-
position of input from several different spatial locations. It
is certainly not straightforward to build a map from such a
complex input (Franosch et al. 2003, 2005b; Goulet et al.
2008; Sichert et al. 2006).

A key question (van Hemmen 2002) is therefore: What
is the function of a neuronal map? That is, why choose a
map structure for neuronal processing? One argument is that,
in contrast to arbitrary population coding, neuronal maps
ensure a topographic neuronal organization. This organiza-
tion then underlies the neuronal processing and allows the
efficient representation of a continuously varying input sig-
nal. For instance, it allows the interpretation of a firing pattern
on a spatial map as the likelihood to find a sensory object at a
certain position (van Hemmen 2002; Pouget 2003; Jazayeri
and Movshon 2006; Seung and Sompolinsky 1993; Denève
et al. 2001). As illustrated by Fig. 2, in the map perspective
one needs to consider the activity of the complete map in
order to retrieve meaningful information from the firing rate
of a single neuron.

There is an even more convincing argument supporting
the importance of maps in the brain. The real computational
power of neuronal maps can be appreciated only when the
interplay of several maps is considered. A beautiful example
of the connection between different maps is the well-studied
SC (Stein and Meredith 1993; Calvert et al. 2004) to which
all sensory systems project that provide information in a
map-like form (Stein and Meredith 1993). Within the SC,
multisensory as well as predominantly monosensory layers
are found and are shown to process spatial information. All
neuronal maps are mutually aligned to gain a unified multi-
sensory representation of sensory space (Stein and Meredith
1993; King 1999; Calvert et al. 2004). The combined sensory
information can then be used to generate directional motor
responses (Krauzlis et al. 1997, 2004; Luksch 2008; Stein
et al. 2004; van Opstal and Munoz 2004). This is only pos-
sible since, within the SC, there exist not only sensory but
also motor maps, i.e., motor neurons organized in a map-like
structure. Direct evidence for this hypothesis has recently
been found in eye tracking experiments (Hafed et al. 2008).

Moreover, external objects can be identified by their posi-
tion encoded through the firing pattern in a neuronal map.
This does not mean that an object is adequately described
if only the position is known but rather it implies that posi-
tion serves as appropriate and—in contrast to higher com-
putational levels (Eckhorn et al. 1988; Gray et al. 1989)—
necessary information for defining a sensory object. When
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combining different sensory systems, the spatial information
is needed to bind information associated with the same posi-
tion in the monosensory maps into one single multimodal
percept for further processing.

Bearing in mind these advantages of neuronal maps we
now face the question of how to optimally construct a map
from the responses of the different sensory systems.

3 Mathematical model

For the derivation of our mathematical model we recall our
initial division of sensory processing into three major steps
(see Fig. 1) and our focus on optimal map formation. We
consequently need to decode the stimulus characteristics at
the best from the sensory response as described in Sect. 1.
Mathematically speaking we have to derive the inverse trans-
fer function that can perform an optimal reconstruction of a
particular stimulus from the sensory response. The inverse
transfer function can then be translated into a neuronal con-
nectivity pattern.

The derivation we provide below is based on two reason-
able simplifications. First, we assume that all sensory maps
are purely monosensory. Although it has been questioned
whether maps without influence from other sensory systems
exist (Stein and Stanford 2008), our assumption can be justi-
fied by the finding that many spatial maps are clearly domi-
nated by a single sensory modality (Wallace and Stein 2007).

The second important assumption is a linear relation
between the stimulus and the receptor response of the
sensory system. That means that the detector responses
change proportionally to the signal strength. For example, the
moving speed (signal strength) of a submerged moving
object translates linearly to the detectable water velocities
at the lateral-line organs (Sichert et al. 2009; Franosch
et al. 2005b). Nonlinear relations between stimulus and
detector responses, e.g., a logarithmic response (Krueger
1989; Norwich and Wong 1997; Laming 1997; Johnson et al.
2002; Copelli et al. 2002), can in principle be treated with
our model as well; see Appendix A for details.

3.1 Definition of the problem

An object generates a stimulus sx(t) varying in time t and
position x in the external world. The corresponding signal
may be, for instance, the time-dependent sound pressure at
a particular location or may denote the presence of edges or
movement at a particular position within the visual field.

The signal induces a response ri (t) in a set of N sensory
detectors. Depending on the problem at hand a single detec-
tor i with 0 ≤ i ≤ N can be a complete sensory organ, such
as the left ear, or a part of a detector array such as a specific
interval of best frequrncies in the cochlea. In principle, the

detector combines information from past signals within the
whole sensory space. The response is therefore described by

ri (t) =
∫

all space

dx

t∫

−∞
dτ sx(τ )hx

i (t − τ) (1)

where the transfer function hx
i (t) incorporates the physics

of signal transmission and detection. The transfer function
can be different for each detector i . Auditory transfer func-
tions, for example, incorporate the position of sound source
and ear with respect to the head midline and therefore differ
between right and left ear. In general, we can safely assume
that hx

i (t) = 0 for large values of |x| and t . This reflects our
intuition that events occuring far away or long ago will not
influence the state of a sensor. We will need this property
later on. Moreover, since any detector can only react to tem-
poral-causal, i.e., past signals we set hx

i (t) = 0 for t < 0.
We can then rewrite the response function (1) with adapted
integration limits as a convolution with respect to time,

ri (t) =
∫

dx

∞∫

−∞
dτ sx(τ )hx

i (t − τ)

=:
∫

dx (sx � hx
i )(t).

(2)

The above equation describes the response of an ideal system.
In biological systems the quality of the detector response is
limited by at least three factors.

First, information may get lost during the transfer from
the outside object to the inside sensory system. Second, noise
influences all steps in the detection and reconstruction pro-
cess (Faisale et al. 2008). Finally, limitations of the neuronal
hardware, for instance, the limited dynamic range of recep-
tors, constrain possible solutions; see Sect. 3.5 for details.

Within our mathematical model we incorporate these
three restrictive factors by introducing additional noise terms.
Accordingly, a term describing background noise ξx(t) must
be added to the signal. Furthermore, we assume that transfer
function and sensory response are hampered by additional
noise terms ηx

i (t) and χi (t), respectively. Consequently, (2)
is modified so as to read

ri (t) =
∫

dx [(sx + ξx) �(hx
i + ηx

i )](t) + χi (t). (3)

To reconstruct the estimated signal from the detector
responses ri (t), the above transformation must be “inverted”
in some appropriate way. We therefore calculate the time-
dependent inverse transfer functions lx

i (t) between detector i
and the map at position x. When applying lx

i (t) to the receptor
responses at i we obtain the estimate

ŝx(t) =
∑

i

[ri �(lx
i + λx

i )](t) (4)
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li
x(t) + λi

x(t)hi
x(t) + ηi

x(t)

sx(t) + ξx(t) ri (t) + χi (t)
x(t)

Fig. 3 Physical mapping: signal sx(t) with background noise ξx(t) is
mapped onto a noisy receptor response ri (t) + χi (t) through the noisy
transfer function hx

i (t) + ηx
i (t). Optimal map formation: the (possibly

noisy) inverse transfer function lx
i (t) + λx

i (t) gives an estimate ŝx(t) of
the signal

of the original signal sx(t). Here the hat on ŝx(t) denotes a
reconstruction and the term λx

i (t) represents the noise due
to the concrete realization of the theoretical inverse transfer
function. We note that in contrast to elsewhere (Oǧuztöreli
and Caelli 1985; Puetter et al. 2005) the present model is
non-iterative. This will result in a purely feedforward net-
work structure when it comes to a neuronal realization in
Sect. 3.5.

Figure 3 illustrates the whole mathematical procedure of
sensory information processing as described in the first two
steps of Fig. 1. All the relevant terms are summarized in
Table 1. In the next section, we will indicate how to calcu-
late inverse transfer functions lx

i (t) that enable optimal signal
reconstruction.

3.2 Optimal reconstruction

We want to tune our sensory system to optimally reconstruct
not only one specific situation but the typical environment. In
other words, biologically relevant signals belong to a class of
signals that we denote as “typical”. Consequently, a specific
sensory signal is a concrete realization of a class of typi-
cal, biologically relevant, signals. That is, it is a stochastic
quantity. We therefore minimize the expectation value of the
squared difference between signal and reconstruction.

This is possible because all quantities and functions
(Figs. 1, 3) involved in both, the process of physical map-
ping (see Appendix B) and the neuronal process of optimal
map formation (Sect. 3.5) are self-averaging. The mathemat-
ical definition of self-averaging allows for a description in
terms of expectation values.

To derive the inverse transfer functions lx
i (t) that enable

optimal signal reconstruction for a class of typical signals,
we can next minimize the expectation value of the squared

error between estimated and real signal

E{lx(t), t} :=
〈 t∫

t−T

dt ′
∫

dx
[
sx(t ′) − ŝx(t ′)

]2
〉

=
t∫

t−T

dt ′
∫

dx
〈[

sx(t ′) − ŝx(t ′)
]2〉

.

(5)

Here the brackets 〈.〉 denote the expectation value with
respect to the different types of noise and T is a typical pro-
cessing time.

To be mathematically precise, an expectation value is an
integral on a probability space with respect to a probability
measure p. For arbitrary functions f and g, if 〈| f − g|2〉 =
0 then f = g with respect to p or, physically, looking at
the world through p’s glasses: what p finds important pops
up clearly whereas what p finds “irrelevant” has hardly any
weight. The latter need not correspond to what we “think”
ourselves (see van der Waerden 1957).

A quadratic form of the error term has been proven to be
a reasonable and practical choice in many physical optimiz-
ing problems (see, e.g., Miller 1970). In case of indepen-
dent Gaussian error terms, the formulation via a quadratic
error is under certain conditions identical to results obtained
by means of maximum-likelihood estimates (Johnson and
Dudgeon 1993; Kay 1993); see Sect. 3.4.2.

Mathematically, the error (5) is a functional assigning to
every set of inverse transfer functions one specific value.
Minimization of functionals in the above integral form is a
central and well-studied aspect of the calculus of variations
(Clegg 1968; Gelfand and Fomin 1963; Jost and Li-Jost 1998;
Van Brunt 2000). For the present situation the first variation
with respect to every inverse transfer function l j (x, t ′) is to
vanish. That is,

∂
〈[

sx(t ′) − ŝx(t ′)
]2〉

∂ lx
j (t

′)
= 0 for every j. (6)

In order to solve (6), we have to substitute (4) for the estimate
ŝx(t) and replace ri (t) by its description (3). Expanding the
square, we encounter expectation values of products con-
sisting of varying combinations of noise and signal terms.
Here we assume that all noise terms as well as the signal
itself are stochastically independent of each other so that the
expectation of a product of independent term factorizes; for

Table 1 Functions and error
terms describing detection and
processing of sensory
information

Signal sx(t) + ξx(t)

Transfer function hx
i (t) + ηx

i (t)

Receptor response ri (t) + χi (t)

Inverse transfer function lx
i (t) + λx

i (t)

Estimated signal ŝx(t)
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instance,
〈
sx(t)ηx′

i (t ′)
〉
= 〈

sx(t)
〉 〈

ηx′
i (t ′)

〉
.

For a product consisting of the same kind of term we need
to consider the definition of the autocorrelation of a quantity
f x(t) as given by
〈

f x(t) f x′
(t ′)
〉
= δ(x − x′)δ(t − t ′)(μ2

f + σ 2
f ) (7)

with μ f the mean and σ f the variance of the quantity f x(t).
That is, we assume in a first step that the values for differ-
ent spatio-temporal positions are completely uncorrelated, a
kind of worst-case analysis.

Since the means of all noise terms μ f vanish we get the
following correlation terms
〈
ξx(t)ξx′

(t ′)
〉
= δ(x − x′)δ(t − t ′)σ 2

ξ , (8a)
〈
χi (t)χ j (t ′)

〉 = δi jδ(t − t ′)σ 2
χ , (8b)〈

ηx
i (t)ηx′

j (t ′)
〉
= δi jδ(x − x′)δ(t − t ′)σ 2

η

with |x|< xmax and 0< t < tmax. (8c)

Through the final equation we take into account that the noise
ηx

i (t) vanishes for large values of t and |x|, in the same way
as for the transfer function hx

i (t).
The autocorrelation (7) of the signal sx(t) itself depends

on the problem at hand. Either the detectors of the sensory
system measure absolute signal strengths (μS), e.g., vision,
or modulations of a mean value of the signal (deviation σS),
e.g., audition. In any case, one has to choose the correspond-
ing biologically relevant term and put the others equal to
zero. In the following, we choose the expectation value μ2

S
of the signal as the appropriate quantity and therefore take
σ 2

S zero,
〈
sx(t)sx′

(t ′)
〉
= δ(x − x′)δ(t − t ′) μ2

s . (9)

While (8) incorporates reasonable assumptions for all
noise terms, the correlation (9) for the signal is a strong
hypothesis. Signals are namely characterized by
spatio-temporal continuity (e.g., objects and their corre-
sponding signals usually do not disappear from one point
in time to the next). A Gaussian correlation term
〈
sx(t)sx′

(t ′)
〉

= A exp
(
−∣∣x − x′∣∣2/(2σ 2

x )
)

exp
(
−∣∣t − t ′

∣∣2/(2σ 2
t )
)

,

(10)

for instance, can take into account correlations between
neighboring points in space and time. Here σx and σt are
typical spatial and temporal correlation scales. The applica-
tion of such a Gaussian correlation, however, does not greatly
alter the further derivation (see Appendix D for details) but

only smoothens the final estimated signal. For reasons of
clarity, we will therefore stick to the relation (9).

Returning to the (6) we have to solve it and in so doing
apply the correlations (8) and (9) so as to arrive at

lx
j (t)

⎡
⎢⎢⎢⎣σ 2

χ + (μ2
s + σ 2

ξ )

∫

|y|<ymax

0<τ<tmax

dydτ σ 2
η

⎤
⎥⎥⎥⎦+ (μ2

s + σ 2
ξ )

∑
i

∫
dy

[
(hy

i � lx
i ) ◦ hy

j

]
(−t) = μ2

s hx
j (−t) ; (11)

for details see Appendix C. The open circle ◦ denotes the
autocorrelation integral

(a ◦ b)(t) :=
∞∫

−∞
dτ a(τ )b(t + τ). (12)

In order to simplify (11), we define two new noise measures,

τ 2 := σ 2
ξ

μ2
s

(13)

and

σ 2 := σ 2
χ

μ2
s

+
∫

|y|<ymax

0<τ<tmax

dydτ
σ 2

η (μ2
s + σ 2

ξ )

μ2
s

. (14)

The parameter τ represents an inverse signal-to-noise ratio.
It is therefore often reasonable to assume a small value of
τ . The parameter σ , on the other hand, describes the overall
measurement noise by relating detection and transmission
noise, σχ and ση, to the signal mean amplitude μs . A priori,
its value cannot be assumed to be small and has to be adjusted
according to the situation at hand.

In order to further simplify Eq. 11 we switch to Fourier
space, where convolution (2) and correlation (12) become
ordinary multiplications combined with complex conjuga-
tions. Denoting Fourier transforms by capital letters and the
complex conjugation by an overline, (11) simplifies to

∑
i

Lx
i

[
σ 2δi j + (1 + τ 2)

∫
dy Hy

i Hy
j

]
= Hx

j (15)

where we have used (13) and (14).
Equation 15 is the main result of our derivation. In princi-

ple, it allows us to calculate the inverse transfer functions Lx
i

for optimal signal reconstruction. A calculation of the second
variation—see (51) in the Appendix for details—then con-
firms that the inverse transformation we have found indeed
minimizes the error. For convenience we will introduce an
alternative notation in the next section.
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3.3 Matrix notation

To rewrite (15) in a more practical notation we introduce
“matrices” H and L by putting

H[i x] = Hx
i , L[xi] = Lx

i . (16)

The notations illustrate that transfer functions and inverse
transfer functions are linear transformations from a continu-
ous space (the outside world) into a discrete space (the neuro-
nal map) and vice versa. H and L are therefore only formally
matrices with a spatial coordinate x varying in R. The matrix
multiplication involving the spatial coordinate must conse-
quently be understood as an integration. A discretization of
space, as is usual in numerics, would lead to a true matrix
formulation.

In addition, we introduce the covariance matrix C(R) of
the receptor response R as described, e.g., in Johnson and
Dudgeon (1993); Kay (1993). In our case we find

C(R) :=
〈
(R − 〈R〉)(R − 〈R〉)T

〉
(17)

= μ2
s

(
σ 21 + τ 2H ·HT

)
(18)

where the superscript T denotes the matrix transpose and 1

the identity matrix. Equation 15 now simplifies to

M · LT = H with M := μ−2
s C + H ·HT . (19)

Given M as an invertible matrix, denoted as the ‘model
matrix’, the solution for L turns out to be

L =
(
M−1H

)T = HT
(
μ−2

s C + H ·HT
)−1

. (20)

This equation gives a unique solution for the optimal recon-
struction for any given set of transfer functions and noise
constants (σ , τ ). Using (4) in matrix form we find

Ŝ = L · R (21)

as estimated signal from the measured response vector R.

3.4 Relation to common methods

The challenge of signal reconstruction has a long tradition,
and, accordingly, one may ask how the above formalism
relates to methods that have been established in this field.
In the following, we will discuss the relation of our model to
methods based on the pseudo-inverse and to the maximum-
likelihood approach.

3.4.1 Pseudo-inverse

If the noise terms can be neglected, the interpretation of
Eq. 19 is straightforward. In this case the covariance matrix
C vanishes and the resulting equation leads to

L = HT ·
(
H ·HT

)−1
. (22)

The inverse transfer functions L that we have just found
fulfill the properties of the Moore–Penrose pseudo-inverse3

of H (Ben-Israel and Greville 2003). With hindsight, this
makes sense since the pseudo-inverse generates an approxi-
mate inverse matrix that minimizes the quadratic error (see
Appendix E). An exact inversion may not be possible for
a matrix H that is, e.g., rectangular instead of square or of
incomplete rank.

But even in the more general situation of non-vanishing
noise terms, we can observe strong relations between our
framework and methods based on the pseudo-inverse. The
point is that, for the calculation of the pseudo-inverse, a
regularization has to be introduced to suppress noise terms,
typically high-frequency variations. The so-called Tikhonov-
Miller regularization adds a positive term α1 to make it more
stable (Miller 1970; Tikhonov et al. 1977, 1995; Press et al.
2007). The regularized equation then reads
(
α1 + H ·HT

)
·LT = H. (23)

Comparing this equation with (19) we see that α corresponds
exactly to our term σ 2 if τ = 0. Hence, in this special
case our general approach is identical to methods using the
Tikhonov-Miller regularization.

3.4.2 Maximum-likelihood approach

The maximum-likelihood analysis (Johnson and Dudgeon
1993; Kay 1993) is a common tool in the interpretation of
measurement data. Within the maximum-likelihood scheme
one computes the stimulus that is the most likely one given
a set of detector responses R. Experiments have shown that
optimal or near-optimal stimulus combinations can indeed
describe several phenomena of sensory processing (Ernst
and Banks 2002; Hürlimann and Kiper 2002; Körding and
Wolpert 2004; Alais and Burr 2004; Helbig and Ernst 2007;
Morgan et al. 2008). A method of optimal stimulus com-
bination like the maximum-likelihood approach is therefore
highly relevant to neuronal information processing and ought
to be included into our model.

The maximum-likelihood approach tries to find the most
probable input signal S given the detector responses R, a
known transfer function H, and no apriori knowledge about
the signal (σs = ∞). We now assume a linear relation

R = HS + χ (24)

3 The explicit expression for L in (22) only holds if (H · HT
) is

invertible.
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with χ representing the noise. We assume the noise to fol-
low a Gaussian distribution with zero mean and the standard
deviation σχ .

The method minimizes the noise χ . That is, based on the
fundamental definitions of Bayesian statistics, it maximizes
the conditional probability density function

p(R|S) ∝ exp

[
− 1

2σ 2
χ

(R − HS)T (R − HS)

]
(25)

with respect to the signal S. This leads to a linear system of
equations

S =
(
HT H

)−1 HT

︸ ︷︷ ︸
=:LM L

R. (26)

Using the above assumptions for our model, viz., σs = ∞,
η = 0, and ξ = 0, (19) reduces to
(
HHT

)
LT = H. (27)

To test whether the two filters are equal, we insert LM L

into (27). Application of the transposition rules shows that
with the assumptions we used L = LML and therefore the
two strategies are identical; for details we refer to elsewhere
(Johnson and Dudgeon 1993; Kay 1993; Sarkar et al. 1981;
Rosenfeld 2002).

3.5 Neuronal realization of the model

In this subsection, we translate the general mathematical
algorithm of optimal stimulus reconstruction into a concrete
neuronal context. We therefore have to verify first whether
the assumptions we have made in Sect. 3.2 are fulfilled in
neuronal processing. That is, we need to check whether the
neuronal quantities and functions of optimal map formation
are self-averaging. To this end we note on the one hand that
firing of neurons is correlated with neuronal input and that
neuronal noise can be described by a stochastic process, e.g.,
a Gaussian one; we will see in a minute why. Our frame-
work can cope with any distribution of neuronal noise as
long as the mean is zero. On the other hand the optimal
inverse transfer functions lx

i (t) are learned synaptic connec-
tions between the maps associated with different modali-
ties and hence reflect properties of the underlying learning
process. Effective learning is slow because it needs many
independent repetitions. Accordingly time scales for learn-
ing and individual realizations of an external signal can be
separated. In other words, learning is a self-averaging process
where only averaged quantities enter by the very nature of
the process; (see Kempter et al. 1999). As mentioned before,
quantities and functions within the physical mapping process
are self-averaging as well; please see also Appendix B. In

 

I I  
I  

I I I  
 

I I

I

 I

 
 III

 
 
 

I

I i

 
 

I  
 
 I

I I

 
 
 

I  
 II

I I   

I I I   

I

map neurons

detectors

li
x(t)

ii-1 i+1

x

synaptic connections

yw....

Fig. 4 Neuronal realization of unimodal map formation. Each sensor
(here hair cells labeled by i) connects to several map neurons. The
map neurons (encoding the location x) may receive (multiple) connec-
tions from each sensor. Each connection has a well-defined strength and
temporal delay t . In this way, the transformation lx

i (t) can be reliably
represented in a neuronal network (Franosch et al. 2003)

conclusion, the conditions needed to exploit the mathemati-
cal framework as derived in Sect. 3 are fulfilled.

Consequently, we can now translate the inverse transfer
functions lx

i (t) into neuronal hardware. In such an architec-
ture, the actual processing is performed by the synaptic con-
nections between neurons and detectors. Spatial processing
is governed by the topographic structure of the network; that
is, which detector is connected to which neuron. Temporal
processing on the other hand is determined by the distribu-
tion of delays within the set of connections. Figure 4 shows
an example of such a neuronal setup.

In the above derivation we have already taken into account
the discrete character of detectors and the ensuing map
through a discrete number of inverse transfer functions. Fur-
thermore, the discrete, “spiky” character of response and
reconstruction by the neuronal realization is already taken
care of by the noise terms χi and λx

i . That is, we are left
with the temporal discretization of the inverse transfer func-
tions lx

i (t). This discretization is realized by a sampling pro-
cedure where a number of dendrites with appropriate delays
is chosen to represent the complete lx

i (t). It has indeed been
shown that a limited number of synaptic connections suf-
fices to sample the time course of lx

i (t) (Franosch et al. 2003).
Even more so, the map-neuron response is robust with respect
to the sampling method of the temporal delays (Lingenheil
2004) as well.

Consequently, as illustrated by Fig. 4, our unified frame-
work can be implemented by means of a simple feedforward
network of excitatory and inhibitory connections in order to
form a unimodal map from arbitrary input (Franosch et al.
2003; Sichert et al. 2006; Lingenheil 2004). It does not,
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however, explain how such a connectivity pattern is estab-
lished in a real biological system. Here the correct syn-
aptic connections have to be learned. It has been shown
(Franosch et al. 2005a; Friedel and van Hemmen 2008) that
a teacher such as the visual system can generate correct syn-
aptic strengths so that a map can indeed develop in other
modalities by means of (supervised) STDP; for details see
Sect. 5.2. Thanks to the present method we can compare the
learned connectivity pattern with the optimal one as given by
Eqs. (15) and (20).

A meaningful comparison of the mathematically opti-
mal network architecture with an actual biological setup,
though, may not be straightforward. In real biological sys-
tems, error reduction as in Eq. 5 to its minimum—that is, real-
izing the optimal connectivity—may not be possible because
of neuronal limitations. The limited neuronal accuracy that
results can be included into our framework by reducing the
error only below a certain error threshold, which may even
vary in space. For instance, the sampling arrays of animal
eyes are non-uniform, with different parts of the visual field
being sampled with different spatial and spectral resolution
(Hughes 1977; Stavenga 2002; Zeil and Hemmi 2006). Such
a focus on specific spatio-temporal domains can mathemat-
ically be realized by introducing a positive weighting func-
tion into the integral of Eq. 5. Accordingly, when reducing
the global error below a certain threshold, the areas within
the focus of the weight function have to reach a higher level
of optimization, i.e., of resolution, than the rest.

As indicated in Sect. 2, the concept of receptive fields
is included in our formalism. It may be well to remember,
though, that there are two mapping functions (LH) and L
projecting directly onto the map. Since the rows of these
mapping functions contain the information from which areas
a specific map neuron receives input, the rows describe the
receptive fields.

Taken together, the formalism of optimal map formation is
capable to deliver an optimal neuronal connectivity pattern,
just as illustrated in Fig. 4, and hereby directly gives a fore-
cast of how the receptive fields are shaped.

4 Exploring the model

In the previous section, we have shown that an optimal con-
nectivity pattern between sensory system and map can be
calculated (Fig. 3 and Eq. 15) and that it can be realized neu-
ronally (Fig. 4). We now focus on concrete applications of
our framework. To this end, we provide a simple “recipe” that
summarizes the mathematical concepts discussed above. Fol-
lowing this recipe step by step we then demonstrate through
two examples how to arrive at an optimal map in both the
spatial and the temporal domain.

4.1 A recipe of making maps

To bring to life the mathematical framework of Sect. 3, we
present an easy step-by-step “recipe” to find the optimal con-
nectivity in a realistic biological setup:

– First, we derive the transfer function hx
i (t) that deter-

mines the response of the detector i to a stimulus pulse
that occurred t time units ago at position x.

– Next, we calculate the Fourier transform Hx
i of the trans-

fer function hx
i (t).

– We choose suitable values of τ and σ . In general the
noise-to-signal ratio τ can be assumed to be much smaller
than 1 for any measurable signal. In contrast, σ needs to
be estimated in dependence upon the situation at hand
(Franosch et al. 2003, 2005b; Sichert et al. 2006).

– We then calculate the matrix entries Mi j as given by
Eq. 19 and invert the model matrix M.

– We multiply the inverted matrix M−1 by the vector Hx
i

so as to find the input connection strengths Lx
i .

– Finally, we calculate the inverse Fourier transform of Lx
i

so as to find the connection strengths lx
i (t).

In the following, we will demonstrate the above recipe
through two examples, starting with the derivation of opti-
mal map formation in the spatial domain.

4.2 Spatial example: visual processing

Within the visual system each sensory neuron is basically
tuned to a particular spatial position. In mathematical terms,
every retinal neuron i receives input from a spatial position
xi , its preferred position, and neighboring positions within
a region determined by resolution ρ. The transfer function
corresponding to such a sensory system is

hx
i (t) = exp

(
−|x − xi |2

2ρ2

)
δ(t), (28)

and its Fourier transform reads

Hx
i = exp

(
−|x − xi |2

2ρ2

)
. (29)

Within our exemplary setup we assume that the signal posi-
tion x = (u, v) encodes positions u, v ∈ [−1/2, 1/2].
As a reminder, we have rescaled positions so as to make
them dimensionless and fit in the square [−1/2, 1/2]2. From
the above ansatz (28) and (15) we calculate the matrix
components
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Fig. 5 Spatial receptive field. Connection strengths to a map neuron
encoding the position (u, v) = (0.1,−0.2). The sensory neurons are
distributed on a 40×40 grid with preferred positions u, v ∈ [−1/2, 1/2]
and a tuning curve width ρ = 0.9. We chose σ = 1 and τ = 0. A clear
center-surround receptive field emerges. Receptor neurons that have
a preferred position matching that of the map neuron have excitatory
connections (white spot). Receptor neurons having a slightly off-set
position inhibit the map neuron (dark circle). Neurons with preferred
positions far away from the map neuron have connection strength zero
(gray)

Mi j = σ 2δi j + (1 + τ 2) exp

(
−
∣∣xi − x j

∣∣2
4ρ2

)

×
[

erf

(
ui + u j − 1

2ρ

)
− erf

(
ui + u j + 1

2ρ

)]

×
[

erf

(
vi + v j − 1

2ρ

)
− erf

(
vi + v j + 1

2ρ

)]
(30)

where erf(x) := 2√
π

∫ x
0 exp

(−y2
)

dy is the error function.

To find the connection strengths lx
i , we numerically calculate

the model matrix M for a discretized space and parameters
σ = 1 and τ = 0. With the matrix M we then determine
the connection strengths L. By an inverse Fourier transfor-
mation we can numerically obtain lx

i for each map position
x as shown in Fig. 5. Here the connections from all receptors
to a map neuron i , i.e., its receptive field, are plotted for an
arbitrary preferred position xi = (0.1, −0.2). Clearly, the
receptors encoding the preferred position have strong pro-
jections to the map neuron (bright spot in Fig. 5) but, inter-
estingly, the receptors that encode slightly differing locations
contribute negatively (dark circle in Fig. 5).

Such a center-surround profile is called “Mexican hat” and
is, e.g., realized by lateral inhibition, a well-known phenom-
enon first described by Mach (1866) in the visual system in
1866. Up to now this mechanism, studied in the mammalian
visual system (Wandell 1995; Kandel et al. 2000), has been
discovered as well in, for instance, insect vision (Järvilehto
1985), snake infrared vision (Stanford and Hartline 1980;
Sichert et al. 2006), electric field detection in electric fish
(Shumway 1989), and surface wave detection in the back
swimmer (Murphey 1973).

In contrast to many models such as pop-out (Knierim and
van Essen 1992) or saliency detection (Itti and Koch 2001;
Li 2002) a center-surround receptive field is a natural conse-
quence of our model and thus explains lateral inhibition as
optimal for map-formation purposes.

4.3 Temporal example: auditory processing

The framework of map formation is not restricted to spatial
dimensions. In the following we demonstrate this by apply-
ing our recipe of making maps to the processing of temporal
information in the auditory system.

The response of the auditory system to an acoustic signal
is usually corrupted by noise and reflections, i.e., echoes. In
a first-order approximation an echo is a delayed, weakened
repetition of the signal itself. In addition, the signal may well
be smeared out. Assuming one single auditory sensor, we
choose a simple transfer function incorporating the above
characteristics of an echo is

hx(t)=
[

exp

(
− t2

2ρ2

)
+α exp

(
− (t−Δt)2

2ρ2

)]
δ(x). (31)

Here we ignore any spatial information, Δt is the delay
between signal and echo, ρ the width of the temporal smear-
ing, and α the strength of the echo relative to the signal. The
Fourier transform of the transfer function (31) is

H(ω) = √
2πρ

{
exp

(
−ρ2ω2

2

)

+ α exp

[
−1

2
ω
(

2iΔt + ρ2ω
)]}

. (32)

Without the spatial dimension, the model matrix M now
consists of only one entry

M = σ 2 + 2πρ2(1 + τ 2)
[
1 + α2 + 2α cos(ωΔt)

]

×e−iωΔt e−ρ2ω2
(33)

and the input connection strengths are given by L . To arrive at
the connection strengths l(t) we need to numerically perform
an inverse Fourier transform. The result of a typical parame-
ter set is shown in Fig. 6 where the connection strengths are
plotted as a function of the delay. This temporal receptive
field can be segregated into two functional subunits. First,
similarly to the center-surround profile in the last section, it
consists of half a Mexican hat that transmits and sharpens
the original signal. Second, it features an inverse Mexican
hat that, just as expected, suppresses the echo.

Altogether, the application of our recipe to echo suppres-
sion can indeed make valuable predictions for biological sys-
tems dealing with echoes. In a more detailed study to be
published elsewhere we show how the mathematical concept
of optimality explains the actual physiology of neuronal echo
suppression.
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Fig. 6 Temporal receptive field. Echo-canceling inverse transfer func-
tion against delay. In a way similar to the spatial case, we find Mexican
hat profiles in time. The half Mexican hat at 0 ms transmits and sharpens
the signal, the upside-down Mexican hat at 6 ms suppresses the echo.
Parameters are α = 0.5, ρ = 0.2 ms,Δt = 6 ms, σ = 0.01, and τ = 0

5 Multimodality

In deriving our framework in Sect. 3, we have assumed
all sensory maps to be purely monosensory. In spite of
this asumption, animals and humans perceive their envi-
ronment through several, multimodal, sensory systems. To
fully access the complete information of all monosensory
maps, their information therefore has to be combined. Phys-
iological and behavioral experiments indeed show that the
monosensory perceptions are not independent but mutually
interact with each other (Shams et al. 2000; Ernst et al. 2000;
Bresciani et al. 2005; Alais and Burr 2004). This interaction
can then lead to the formation of multisensory maps, i.e.,
maps receiving input from more than one sensory system
(Morgan et al. 2008; Kaas and Collins 2004).

A number of brain areas, such as the midbrain in mam-
mals, more precisely the SC (Stein and Meredith 1993), or
even higher brain areas, such as the Anterior Ectosylvian
Sulcus (AES) (Carriere et al. 2007), contain clearly distinct
monosensory, as well as multisensory neurons. Since the per-
ceptual and behavioral role of higher brain areas nevertheless
remains vague we use the well-studied SC as as an example
for multimodal interaction. The SC features a layered organi-
zation of spatial maps from all sensory systems that dispose
of topographic, map-like information (such as vision, but not
olfaction) (Stein and Meredith 1993). All these maps, uni-
or multisensory, are mutually aligned (Stein and Meredith
1993; King 1999; Calvert et al. 2004) and thus, provide a
common reference system of sensory space.

Bearing in mind the above we now turn to the functional
possibilities that arise from multimodal interaction.

5.1 Multimodal interaction

In general, we can distinguish two categories of multimodal
interaction: integration and pooling of information.

5.1.1 Integration

Congruent spatial information from different sensory sys-
tems can be integrated into a single merged and, hence,
multimodal map. Such an integrated map, as compared to
unimodal information processing, features increased infor-
mation reliability and saliency as well as an improved sen-
sitivity in both space and time (Krauzlis et al. 1997, 2004;
Hafed et al. 2008; Rowland et al. 2007a). For example, if
visual and auditory sensory system both register a signal,
e.g., “brown ahead” and “barking ahead”, it is very probable
that the signal corresponds to an actual object rather than to a
sensory artefact. At the same time, the integrated signal will
be stronger and allows for faster reactions (e.g., “escape!”).
In some cases an integrated signal is even optimal (Gu et al.
2008; Morgan et al. 2008).

More general neuronal models describing multimodal
integration and based on statistical methods have been
presented elsewhere (Denève et al. 1999, 2001; Denève
and Pouget 2004). Concrete theoretical models of multi-
modal integration within the SC have been developed as well
(Anastasio et al. 2000; Patton et al. 2002; Rowland et al.
2007b,c; Magosso et al. 2008; Ursino et al. 2009).

5.1.2 Pooling

Not only can the monosensory maps be merged into a more
reliable multisensory map, but the diverse information, thus,
signal characteristics within the monosensory maps can be
accessed simultaneously as well. This simultaneous access-
ing is only possible since all monosensory maps are aligned
and consequently space-time can serve to link the different
modalities. Consequently, an object at one specific position
can be identified and characterized in order to select motor
responses in a complex environment. For example, a rattle
snake may detect spatial coherent activity in its visual and/or
infrared map. Only if the encoded object is visible and warm
will it be identified as a living prey object. If it is visible and
not warm the snake will discard the information. Experimen-
tal evidence for such a pooling of information is provided by
neuronal AND and OR processing steps for the combina-
tion of visual and infrared map (Newman and Hartline 1981,
1982). These prominent examples of pooling in the SC could
enable target selection and thus ensure appropriate motor
commands in a complex environment.

Despite increased reliability of an integrated map, its indi-
vidual input streams cannot be distinguished anymore. That
is, the information of which monosensory map has deter-
mined the position is lost. Within the above example the
multimodal map may indicate a multimodal event ahead, but
the triggering modality, that is, visual, auditory, or yet another
modality remains unresolved.
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In summary, integration of information allows for a reli-
able spatial determination of an object, the key task of object
formation. On the other hand, pooling of information assures
an access to the details of an object necessary for object iden-
tification. Switching between integration and pooling corre-
sponds to a switch between parallel and serial data processing
to best fit different tasks.

To enable efficient multimodal interaction such as inte-
gration and pooling, alignment of the different mono- and
multisensory maps is of crucial importance. Only then can a
multimodalstimulusataspecificspatial locationbeidentified.
An alignment of sensory maps, however, is not present at birth
and must be learned (van Hemmen 2002; Stein and Stanford
2008; Knudsen 2002), as discussed in the next section.

5.2 Development of multisensory space

We now discuss the question of how sensory maps can be
aligned, i.e., how a common multimodal space can evolve.
An obvious solution to such an alignment process would
be the existence of one dominant modality as reference for
all other modalities (Knudsen and Brainard 1991; Knudsen
2002). This reference map would then automatically lead to
modifications of all other maps.

And indeed, experimental and physiological studies have
shown that, in many animals, destruction or disturbance of
the visual pathway leads to disorganized and abnormal sen-
sory maps in non-visual modalities. These findings have been
obtained in hamster (Mooney et al. 1987), cat (Wallace and
Stein 2007; Wallace et al. 2004), clawed frog (Claas 1994),
ferret (King et al. 1988), barn owl (Knudsen and Knudsen
1985), and in snakes (Grace et al. 2001). Psychophysical
experiments with congenitally blind and normally sighted
humans have shown that visual input early in life is neces-
sary for multimodal interaction to occur (Hötting et al. 2004;
Putzar et al. 2007; Röder et al. 2004). Consequently, vision
seems to serve as “teacher” for non-visual modalities.

A plausible argument supporting the idea of vision as a
teacher input is the intrinsic topographic order of the retina.
It is known that layers of neurons can self-organize into topo-
graphic maps, provided that initially a small set of correctly
organized neurons exists (Willshaw and Malsburg 1976). For
a review the reader is referred to Udin and Fawcett (1988).
This together with the subsequent development of layers in
the visual cortex (for mice, see Jiang et al. 2007) may allow
the intrinsic topography of the retina to step-by-step dictate
the organization and alignment of higher visual and, poten-
tially, also multimodal maps.

The general mechanism facilitating such an alignment of
maps is spike-timing-dependent plasticity (STDP) (Bi and
Poo 1998, 2001; Dan and Poo 2004; Gerstner et al. 1996;
van Hemmen 2001; Kempter et al. 1999; Markram et al.
1997; Song et al. 2000; Zhang et al. 1998). An example

where the alignment has been studied in detail, both experi-
mentally and theoretically, is audio-visual integration within
the SC of the barn owl. Here experiments (Hyde and Knud-
sen 2001; Knudsen and Brainard 1991) have shown that the
auditory map follows systematic changes within the visual
input. Although the precise nature of this teaching signal
has not been clarified experimentally, selective neuronal dis-
inhibition, or gating, seems to play a key role (Gutfreund
et al. 2002; Winkowski and Knudsen 2006). Theoretical stud-
ies have confirmed that excitatory and inhibitory teaching
input can account for proper map alignment and thus devel-
opment of multimodal space (Friedel and van Hemmen 2008;
Davison and Frégnac 2006). It is, however, only by inhibitory
teaching input that an already aligned map can be re-aligned
later on (Friedel and van Hemmen 2008).

In summary, the above studies support the idea of vision as
teacher modality to align other monosensory maps, but there
are contradicting findings as well. We can summarize these
findings into two major points. First, vision is not needed
at all as teacher input for the learning process of sensory
maps. Second, vision shows plasticity as it is influenced by
other modalities and as it improves during development. Con-
cerning the first point, it has been shown both theoretically
and experimentally that, although imprecise, a map of azi-
muthal sound location can be learned without any visual input
(Kempter et al. 2001; Knudsen and Brainard 1991) though
admittedly on a genetically determined substrate. In addi-
tion, non-visual modalities can influence each other as well,
e.g., audition can influence haptics (Bresciani et al. 2005).
Moreover, somatosensory receptive fields already shrink in
a postnatal phase when only auditory, but no visual neurons
are present (Wallace and Stein 1997; Wallace et al. 2006).
For the second aspect, behavioral and psychophysical stud-
ies show that visual perception can even be influenced by
other modalities such as haptics (Ernst et al. 2000) or audi-
tion (Shams et al. 2000; Frens and van Opstal 1998; Steenken
et al. 2008). More importantly, vision itself can improve,
respectively, sharpen as found in the visual system of young
cats (Wallace and Stein 1997; Wallace et al. 2006).

Altogether the experimental and theoretical findings we
have presented above put into question the current picture
of vision-guided map alignment (King 2009). Wallace and
Stein (1997) have pointed out that the development of differ-
ent modalities starts in parallel and in temporal coincidence
with the appearance of multimodal integration. They hereby
suggest a common mechanism driving both map develop-
ment and multimodal integration.

6 Discussion

In summary, we have started this review by defining the
‘golden three’ of sensory processing: physical mapping,
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optimal map formation, and multimodal integration, cf.
Fig. 1. Based on these concepts we have formulated a mathe-
matical framework that is able to quantify how a signal stim-
ulates a detector and how the detector response is processed
so as to lead to a “reconstruction” of the original signal. In the
context of neuronal information processing our framework
unifies long-standing concepts of stochastically optimal sig-
nal processing by seamless transitions to maximum likeli-
hood, Wiener filter, and the Tikhonov-Miller regularization.
Moreover, the present model extends these established tech-
niques by linking its parameters to easily accessible experi-
mental quantities. By the use of the mathematical principle
of stochastic optimality we have arrived at a discrete and
optimal representation of the outside world—a map.

Most importantly, we have then translated our mathemat-
ical setup into neuronal architecture. That is, by a discret-
ization in space-time of our mathematical model we have
derived synaptic connection patterns between detector and
map neurons. To illustrate the relation to real biological set-
tings, we have provided a step-by-step recipe that offers the
possibility of solving concrete problems of map formation.
Two such problems, a spatial and a temporal one, have been
treated as illustrative examples and have been shown to repro-
duce experimental findings such as receptive fields. The gen-
erality of the method of optimal map formation can now be
tested to model and analyze experimental results. In particu-
lar, the measurement of internal connections, for instance in
the SC, as well as receptive fields for specific sensory sys-
tems would provide a possibility to experimentally access
the inverse transfer functions as defined in Sect. 3.1.

On the basis of our understanding of monosensory map
formation, we have proceeded to multimodal interaction and
the development of multisensory space. Here the concept
of neuronal maps as compared to single neuron effects can
deliver new perspectives on multimodal interaction, viz.,
integration and pooling of information. While integration
of information allows for a reliable spatial localization of an
object, pooling of information assures access to the details of
an object. The latter observation would answer the question
as to why we find multiple maps in the SC instead of a single
multimodal map.

Finally, we have emphasized the importance of proper
map alignment for multimodal interaction. We have shown
that STDP learning algorithms with an inhibitory teacher sig-
nal can account for both, initial alignment and even subse-
quent re-alignment of maps. Further experimental studies on
inhibitory teacher input, e.g., within the SC, are nevertheless
needed to clarify the precise role of inhibition in the align-
ment process. In addition, such experiments could answer
the crucial question of which sensory systems determine the
formation of multimodal space.

In other words, we need more experimental evidence in
order to understand how multimodal interaction is realized

and established on an anatomical level. For example, through
which mechanism could a collection of aligned maps allow
the pooling of information? Does such a mechanism also
include feature selection in a common sensory space? How
does multimodal interaction of maps contribute to the forma-
tion of such a common sensory space? And to what extent
does such a finding contradict the current picture of vision
guiding the map alignment? Furthermore, it is important to
test the generality of the mathematical framework that we
have so far substantiated only by findings in the SC through
additional applications to other areas of the brain, such as the
AES, a well-defined multisensory cortical area in cat.

In other words, we are able to explain fundamental ingre-
dients of the ‘golden three’ of sensory processing. Through
the present work we provide not only a synopsis of the cur-
rent state-of-knowledge but also helpful tools for verifiable
predictions of sensory processing by means of maps.
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Appendix

A Nonlinearities in information processing

The presented model assumes a linear relation between
stimulus and detector response. For a number of sensory
systems, however, we find non-linearities in the mapping
process. First, the transfer function h can be a non-linear
function h̃. Second, the neuronal detector response can be
nonlinear, typically logarithmic (Krueger 1989; Norwich and
Wong 1997; Laming 1997; Johnson et al. 2002; Copelli et al.
2002). In case of a logarithmic response and a nonlinear
transfer function the biological detector response r̃ has to
be rewritten from (1) as

r̃i (t) = log

⎡
⎢⎣

∫

all space

dx

t∫

−∞
dτ sx(τ )h̃x

i (t − τ)

⎤
⎥⎦ . (34)

To apply our model we first have to incorporate an additional
computational step canceling the logarithm. In a biological
system this can be realized, e.g., by neurons with exponential
firing behavior. Assuming such a neuronal step r̃i (t) as in (34)
reduces to (1) with a nonlinear h̃. We can linearize a nonlinear
transfer function by a redefinition of the signal s → s̃. That
is, we identify appropriate characteristics of the stimulus that
are linearly related to r . For example, instead of looking at the
heat distribution T (x, t) we can consider the intensity distri-
bution of the corresponding radiation ∼ T 4(x, t) due to the
Stefan-Boltzmann Law. In this way, a reasonable redefini-
tion of detector response and signal can allow for an optimal
linear stimulus reconstruction.
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B Self-averaging and laws of large numbers

Why can physical but noisy input quantities be expected to
be self-averaging? To understand this valuable property we
assume a detector receives input signals fi with 1 ≤ i ≤ N as
a sum ηN

∑N
i=1 fi where ηN is a scaling factor. For the sake

of convenience we take ηN = 1/N to get a decent scaling
behavior as N → ∞ but for N large but finite there is ample
choice. Moreover, we assume the fi to be stochastic random
variables with mean ai and finite variance. Finally, if the
1 ≤ i ≤ N represent for example different positions in space,
in biological reality the stochastic correlation between posi-
tions that are far apart is small. Hence we write fi = ai + φi

where we start by taking the noise terms φi , cf. Fig. 3, to be
independent random variables that by construction all have
zero mean.

For inputs of the sum form

N∑
i=1

fi =
(

N∑
i=1

ai

)
+
(

N∑
i=1

φi

)
=: AN + ΦN (35)

we see that AN is some deterministic number and regard-
ing ΦN we can immediately invoke the strong law of large
numbers (see below), so as to conclude that, as N → ∞,
we find ηN ΦN → 0 whatever specific realization of the {φi }
we meet. The latter circumstance is exactly what we need in
practical work since we never know the realization until it is
all over. The strong law of large numbers guarantees that ΦN

vanishes as N becomes large.
The only, minor, drawback of all this is twofold. First,

in reality the φi are never perfectly independent. Neverthe-
less, as long as correlations fall off fast enough as the dis-
tance |i − j | becomes large, the strong law of large numbers
still holds; the adjective “strong” indicates that ΦN → 0
as N → ∞ for (almost) all realizations of the {φi }; here
“almost” is an epithet nearly everybody can forget about.
Second, in practical work N is and remains finite. Then the
central limit theorem in the paragraph below tells us that
for independent φi , whatever their distribution provided the
second moment 〈φ2

i 〉 is finite, and N large

1√
N

N∑
i=1

φi (36)

has a Gaussian distribution with mean zero; its standard devi-
ation gives information about the width of the Gaussian. The
same holds true for weakly dependent φi . The weak depen-
dence being a consequence of biophysical reality, we are
done.

To finish the argument, we need to discuss briefly the var-
ious assumptions that we have used above to clarify the issue
of self-averaging. The discussion below is practically identi-
cal with Appendix A of van Hemmen (2001). The textbook
by Durrett (2004) is a general, though advanced, background

for various formulations of the laws of large numbers listed
below. To begin with, let us suppose that the fi are inde-
pendent, identically distributed random variables with mean
zero. If the mean 〈 f 〉 is nonzero, we subtract it and consider
fi := fi −〈 f 〉 instead. There is no harm in taking the fi to be
real variables. Furthermore, we require the second moment
〈 f 2〉 to be finite. By Cauchy-Schwarz, 〈| f |〉 ≤ 〈 f 2〉1/2 <

∞, and the variance σ 2 := 〈( f − 〈 f 〉)2〉 is finite too. Let

Sn =
n∑

i=1

fi (37)

be the sum of the random variables fi . Then the following
theorems hold:

– Strong law of large numbers: limn→∞ n−1Sn = 0 with
probability 1. Since the fi are sampled from a probability
distribution, this means that, as n → ∞, the configura-
tions where the above equality does not hold have proba-
bility zero. In plain English, they do not occur. One also
says that the above equality holds ‘almost surely’ (a.s.).
All that is needed is 〈| f |〉 < ∞.

– Central limit theorem: As n → ∞, n−1/2Sn has a Gauss-
ian distribution with mean zero and variance σ 2.

Etemadi (1981) has given an “elementary” proof of the
strong law of large numbers for pairwise independent, iden-
tically distributed random variables under the minimal condi-
tion 〈| f |〉 < ∞. Slick proofs (occasionally with some extra
conditions, say, finite fourth moment) have been given by
Lamperti (1966). Breiman (1968) treats the two theorems in
their full generality.

The theorems also hold for independent, not necessar-
ily identically distributed random variables (Lamperti 1966;
Breiman 1968; Gnedenko and Kolmogorov 1968). They even
allow a weak dependence. For example, let Ri j := 〈 fi f j 〉 −
〈 fi 〉〈 f j 〉, and suppose the fi do not have too wide a distri-
bution, e.g., supi |Rii | < ∞. Then the strong law of large
numbers holds (Gnedenko and Kolmogorov 1968, p. 265;
Halmos 1956), provided Ri j → 0 as |i − j | → ∞; that is
to say, the correlations between fi and f j should not have
too long a range. For the central limit theorem to hold, trick-
ier conditions are required, e.g., stationarity of the sequence
f1, f2, . . ., and some kind of mixing (Durrett 2004, Ch. 7.7c)
so that, say,

∑
j |Ri j | < ∞. Then the variance of the Gauss-

ian limit distribution is given by

σ 2 = lim
N→∞

1

N

∑
i j

〈 fi fk〉 = 〈 f 2
1 〉 + 2

∞∑
k=2

〈 f1 fk〉. (38)

Dropping stationarity, the reader may consult Scott (1973)
for an advanced account.
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C Remaining derivation steps leading to (15)

In the following we elaborate some steps skipped in the der-
ivation of (15) in the main text. In doing so we take advan-
tage of ideas due to the calculus of variations (Jost and Li-Jost
1998). We therefore start from (6) as a condition to minimize
the expectation value of the quadratic error with respect to the
optimal reverse transfer functions, the connection strengths
lx

j (t). This leads to

∂
〈[

sx(t ′) − ŝx(t ′)
]2〉

∂ lx
j (t

′)
= 0 for every j.

⇔
〈[

sx(t ′) − ŝx(t ′)
] ∂ ŝx(t ′)

∂ lx
j (t

′)

〉
= 0.

(39)

In order to solve (39), we expand the estimate ŝx(t) using
Eqs. (3) and (4) from the main text giving

ŝx =
∑

i

{
χi � lx

i + χi � λx
i

+
∫

dy
[
sy � hy

i � lx
i + sy � hy

i � λx
i

+ sy � η
y
i � lx

i + sy � η
y
i � λx

i + ξy � hy
i � lx

i

+ξy � hy
i � λx

i + ξy � η
y
i � lx

i + ξy � η
y
i � λx

i

]}
. (40)

The variation of ŝ in (40) leads to

∂ ŝx(t ′)
∂ lx

j (t
′)

=
[
χ j + ∫

dy
(

sy � hy
j + sy � η

y
j

+ ξy � hy
j + ξy � η

y
j

)]
(0). (41)

As before, we assume on the one hand that all noise terms as
well as the expectation of the input are stochastically inde-
pendent of each other. On the other hand we use the fact that
all noise terms have zero mean and the signal is self-aver-
aging. With these two assumptions, the expectation values〈
s ∂ ŝ/∂l

〉
and

〈
ŝ ∂ ŝ/∂l

〉
from (39) can be written

〈
sx(t ′)∂ ŝx(t ′)

∂ lx
j (t

′)

〉
=
∫

dy
〈
sx(t ′) (sy � hy

j )(0)
〉

(42)

and〈
ŝx(t ′)∂ ŝx(t ′)

∂ lx
j (t

′)

〉

=
∑

i

{〈
(χi � lx

i )(t ′)χ j (0)
〉

+
∫

dydy′ [〈(sy � hy
i � lx

i )(t ′)(sy′
� hy′

j )(0)
〉

+
〈
(sy � η

y
i � lx

i )(t ′)(sy′
� η

y′
j )(0)

〉

+
〈
(ξy � hy

i � lx
i )(t ′)(ξy′

� hy′
j )(0)

〉

+
〈
(ξy � η

y
i � lx

i )(t ′)(ξy′
� η

y′
j )(0)

〉]}
. (43)

In the next step we substitute the correlation terms as given
in (9) of the main text. To illustrate the calculations, which
simplify (42) and (43), we analyze two isolated terms from
(43) as an example. The other terms are treated in a similar
way. We first simplify

∑
i

∫
dydy′ 〈(sy � hy

i � lx
i )(t ′)(sy′

� hy′
j )(0)

〉

=
∑

i

∫
dydy′dτdτ ′dτ ′′

〈
sy(t ′ − τ − τ ′)hy

i (τ
′)lx

i (τ )sy′
(−τ ′′)hy′

j (τ ′′)
〉
. (44)

Exploiting the correlation assumptions this expression becomes

μ2
s

∑
i

∫
dydy′dτdτ ′dτ ′′δ(y − y′)

δ(t ′ − τ − τ ′ + τ ′′)hy
i (τ

′)lx
i (τ )hy′

j (τ ′′)

= μ2
s

∑
i

∫
dydτdτ ′′hy

i (t
′ − τ + τ ′′)lx

i (τ )hy
j (τ

′′)

= μ2
s

∑
i

∫
dy((hy

i � lx
i ) ◦ hy

j )(t
′) (45)

with the open circle ◦ denoting the autocorrelation integral
defined in (12). We focus on the second term in the right-hand
side of (43). That is,

∑
i

∫
dydy′ 〈(sy � η

y
i � lx

i )(t ′)(sy′
� η

y′
j )(0)

〉

=
∑

i

∫
dydy′dτdτ ′dτ ′′

〈
sy(t ′ − τ − τ ′)ηy

i (τ
′)lx

i (τ )sy′
(−τ ′′)ηy′

j (τ ′′)
〉
, (46)

which simplifies to

μ2
s σ

2
η

∑
i

∫

|y|<ymax

0<τ ′<tmax

dydy′dτdτ ′dτ ′′δ(y − y′)

δ(t ′ − τ − τ ′ + τ ′′)δi jδ(y − y′)δ(τ ′ − τ ′′)lx
i (τ )

= μ2
s σ

2
η

∫

|y|<ymax

0<τ ′<tmax

dydτdτ ′δ(−τ + t ′)lx
j (τ )

= μ2
s σ

2
η

∫

|y|<ymax

0<τ ′<tmax

dydτ ′lx
j (t

′). (47)
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Altogether the final expressions for the expectation values
become〈

sx(t ′)∂ ŝx(t ′)
∂ lx

j (t
′)

〉
= μ2

s hx
j (−t ′) (48)

and〈
ŝx(t ′)∂ ŝx(t ′)

∂ lx
j (t

′)

〉
= σ 2

χ lx
j (t

′) + σ 2
η (μ2

s + σ 2
ξ )

∫

|y|<ymax

0<τ<tmax

dydτ lx
j (t

′) + (μ2
s + σ 2

ξ )

×
∑

i

∫
dy

[
(hy

i � lx
i ) ◦ hy

j

]
(t ′). (49)

Equation 39 therefore transforms into

lx
j (t)

⎡
⎢⎢⎢⎣σ 2

χ + (μ2
s + σ 2

ξ )

∫

|y|<ymax

0<τ<tmax

dydτ σ 2
η

⎤
⎥⎥⎥⎦+ (μ2

s + σ 2
ξ )

∑
i

∫
dy

[
(hy

i � lx
i ) ◦ hy

j

]
(−t) = μ2

s hx
j (−t). (50)

Inserting the parameter σ and τ and applying a Fourier trans-
formation finally leads to (15).

In order to test whether the extremum is indeed a mini-
mum, we have to calculate the second variation, which reads

∂2
〈[

sx(t ′) − ŝx(t ′)
]2〉

(
∂ lx

j (t
′)
)2

= 2
∂

∂ lx
j (t

′)

[〈
sx(t ′)∂ ŝx(t ′)

∂ lx
j (t

′)

〉
−
〈

ŝx(t ′)∂ ŝx(t ′)
∂ lx

j (t
′)

〉]

= 0 + 2

⎡
⎢⎢⎢⎣σ 2

χ + σ 2
η (μ2

s + σ 2
ξ )

∫

|y|<ymax

0<τ<tmax

dydτ

+ (μ2
s + σ 2

ξ )

∫
dy
∫

dτ
[
hy

j (τ )
]2

⎤
⎥⎥⎥⎦ . (51)

Since the squares are positive, so is the second derivative and
thus the extremum is a minimum.

D Gaussian blurred signal

In this subsection, we present an equation equivalent to (15)
of the main text so as to derive an expression for a Gaussian

blurred signal. As in (10), a realistic signal would fulfill some
kind of Gaussian relation for the expectation value

〈
sx(t)sx′

(t ′)
〉
= A exp

(
−
∣∣x − x′∣∣2

2σ 2
x

)
exp

(
−
∣∣t − t ′

∣∣2
2σ 2

t

)
.

(52)

For this case we can, analogously to Appendix C, derive an
equation like (15). Since for the signal the Gaussian corre-
lations, however, replace the delta functions, e.g., in (47),
integrals over space and time cannot be evaluated directly.
Instead they can only be restricted to the region where the
Gaussian is non-negligible. Denoting these temporal and
spatial limits by εt and ε we can derive the analogue to (15),
viz.,
∫

dε dεt A exp

(
− |ε|2

2σ 2
x

)
exp

(
−|εt |2

2σ 2
t

)

hx+ε
j (t ′′ + εt )

= σ 2
χ lx

j (t
′′) + σ 2

η σ 2
ξ

∫

|y|<ymax

0<τ<tmax

dydτ lx
j (t

′′)

+σ 2
ξ

∑
i

∫
dy

[
(hy

i � lx
i ) ◦ hy

j

]
(t ′′)

+σ 2
η

∫

|y|<ymax

0<τ<tmax

dydεdτ ′ A exp

(
− εt

2

2σ 2
t

)

lx
j (t

′′ + εt )

+
∑

i

∫
dydεdεt A exp

(
− |ε|2

2σ 2
x

)
exp

(
− ε2

t

2σ 2
t

)

((hy
i � lx

i ) ◦ hy+ε

j )(t ′′ + εt ). (53)

The effect of the additional remaining spatio-temporal inte-
grals as compared to (15) is a smoothening of the final
reconstruction. Not only is the value at a specific point
in space and time (y, t ′′) taken into account but neigh-
boring points in a nearly area surrounding it are included
as well.

E Pseudoinverse

A pseudoinverse matrix B of an arbitrary m×n matrix A with
its elements ∈ R, C is a generalization of the inverse matrix.
Following Moore (1920); Penrose (1955) the pseudoinverse
B is defined by four equations,

ABA = A, (54a)

BAB = B, (54b)

(AB)
T = AB, (54c)

(BA)
T = BA, (54d)
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where the overbar denotes the complex conjugation. The
pseudoinverse is used for a matrix A that is of incomplete
rang and therefore cannot be inverted directly but only due to
auxiliary constructions (54 a, b). The last two equations (54 c,
d) tell us that the product of matrix A with its pseudoinverse
B is Hermitian.

One of the most famous applications of the pseudoinverse
is to calculate the least-square solution of a system of linear
equations.

Ax = b → x̂ = Bb (55)

Given a matrix A and a vector b, the above solution x̂ =
Bb minimizes the Euclidean norm ||Ax̂ − b||. If the inverse
matrix exists, the pseudoinverse reduces to the normal inverse
matrix. For a general review and applications the reader is
referred to, e.g., (Albert 1972).
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