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Abstract Many animals, including men, use periodicity
information, e.g., amplitude modulations of acoustic stim-
uli, as a vital cue to auditory object formation. The underly-
ing neuronal mechanisms, however, still remain a matter of
debate. Here, we mathematically analyze a model for peri-
odicity identification that relies on the interplay of excita-
tion and delayed inhibition. Our analytical results show how
the maximal response of such a system varies systemati-
cally with the time constants of excitation and inhibition. The
model reliably identifies signal periodicity in the range from
about ten to several hundred Hertz. Importantly, the model
relies on biologically plausible parameters only. It works
best for excitatory and inhibitory neuronal couplings of equal
strength, the so-called ‘balanced inhibition’. We show how
balanced inhibition can serve to identify low-frequency sig-
nal periodicity and how variation of a single parameter, the
inhibitory time constant, can tune the system to different
frequencies.

Keywords Periodicity detection · Auditory signal
processing · Neuronal modeling · Balanced inhibition

1 Introduction

Neuronal processing of acoustic signal periodicity is impor-
tant for, e.g., hunting and communication and thus survival
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in the natural world. Naturally occurring vibrations usually
carry information about their source by frequency content
and temporal structure, i.e., fluctuations of the frequency
content often called amplitude modulations (Langner 1992).
The frequency content can be identified by, for example,
the cochlea. Some animals, however, such as spiders, the
clawed frog or surface feeding fish, can detect and distin-
guish the frequency of vibratory signals (Bleckmann and
Barth 1984; Elepfandt 1984; Käse and Bleckmann 1987)
in spite of the fact that their vibration-sensitive organs do
not display frequency-specificity (Barth 1998; Coombs et al.
1989; Kalmijn 1988). On the other hand, even mammals that
employ a cochlea cannot identify the temporal structure, i.e.,
amplitude modulations, by means of this organ. Neverthe-
less amplitude modulations are vital to speech recognition
(Shannon et al. 1995), identification of acoustic events (‘cock-
tail party effect’) (Bregman 1990; Cherry 1953; Yost 1994),
and the perception of pitch (Bendor and Wang 2005; Joris
et al. 2004). Even more so, typical natural signals in gen-
eral are a superposition of comodulated frequencies (Nelken
et al. 1999). Thus, signal periodicity needs to be processed,
or, better, identified neuronally. Here we face the question of
how to do so.

‘Balanced inhibition’ (BI) denotes inhibitory input of app-
roximately the same strength as the excitatory input. It has
been observed at several locations and under various condi-
tions, ranging from cat visual cortex (Anderson et al. 2000;
Monier et al. 2003) to the cochlear nucleus in rats (Paolini
et al. 2005), and in ongoing as well as sensory-evoked neu-
ronal activity (Okun and Lampl 2008). A number of pos-
sible functions have been proposed for BI, but its actual
purpose is still a matter of debate. In cat visual cortex it
may be important for orientation and direction selectivity of
synaptic inputs (Anderson et al. 2000; Monier et al. 2003).
In cat auditory cortex, BI is associated with the envelope of

123



262 Biol Cybern (2009) 100:261–270

a noise signal if this signal is attended to (Las et al. 2005).
Furthermore, it appears to play a role in the processing of
frequency modulated tones (Zhang et al. 2003). It has been
ruled out to be important to frequency tuning or gain control
but has been proposed (Wehr and Zador 2003) to account for
enhancing temporal precision and regulating random back-
ground activity. In rat cochlear nucleus, BI modulates the
chopping frequency in chopper neurons and influences spike
firing regularity (Paolini et al. 2005). Rat whisker deflections
cause a sequence of excitation and balanced inhibition that
is supposed to create a short time window for spikes, like a
gate or a filter (Highley and Contreras 2006). The function
of this ‘spike window’, however, remains unknown. In the
following, we will see that such filtering property, i.e., a neu-
ronal band-pass filter, is indeed a consequence of balanced
inhibitory input to a neuron.

How does one identify periodicity in neuronal activity?
It is known that neurons selectively responding to specific
modulation frequencies exist (Joris et al. 2004; Schreiner and
Langner 1988; Speck-Hergenröder and Barth 1987). But how
can such a selectivity, a neuronal band-pass characteristic, be
explained? A possible solution is to generate the band-pass
response in the neurons themselves via membrane dynam-
ics. Here, the spike-generating mechanism may induce oscil-
lations of the membrane potential that follow a spike and
thus enhance the firing at certain instants of time after the
first spike (Izhikevich 2001). Alternatively, inhibitory input
can cause such an oscillation of the membrane potential,
the so-called ‘post-inhibitory rebound’ (Large and Crawford
2002). On the level of neuronal circuitry a band-pass charac-
teristic can be realized by excitatory–excitatory interaction or
excitatory–inhibitory interaction. The excitatory–excitatory
interaction basically works like a coincidence detector where
two spikes can only evoke neuronal activity if they arrive at
a neuron simultaneously. In other words, if they arrive in
phase. The timing of the spikes can either arise from delays
(Friedel et al. 2007; Licklider 1951), which gives the neuro-
nal analogon to autocorrelation, or from ’chopping’ neurons
(Meddis and O’Mard 2006), neurons that produce a series of
well-timed spikes. Similarly, a band-pass characteristic arises
if a single excitatory spike strong enough to evoke neuronal
activity is combined with delayed inhibitory spike that arrives
in anti-phase to the excitatory input (Grothe 1994). Further-
more, band-pass characteristics within the excitatory–inhib-
itory setup can also arise from different time constants for
excitation and inhibition (Nelson and Carney 2004). This is
what we will study in the following.

Similar to the SFIE (Same Frequency I nhibition and
Excitation) model proposed by Nelson and Carney (2004)
our approach is based on a band-pass characteristic aris-
ing from different time constants for excitatory and inhib-
itory postsynaptic potential (PSP). This is possible because
every synapse is a low-pass filter with the ‘cut-off’ frequency

sin sout

sin sout

Fig. 1 The two possible ways of extracting frequency or timing infor-
mation neuronally from a signal using excitatory (closed circles) and
inhibitory synapses (open circles). The first method (upper panel) uses
a feedforward network, and is called feedforward model. The input neu-
ron, driven by a continuous input function sin, sends spikes to the output
neuron via a direct excitatory and a delayed inhibitory connection, pos-
sibly realized by one or more interneurons. Depending on excitatory
and inhibitory time constants, certain temporal correlations in the input
signal lead to an augmented firing probability for the output neuron.
The second method (lower panel) is based on the same idea, but uses
an inhibitory recurrent loop with time delay !, again possibly realized
by one or more interneurons. This we call the recurrent model. The
neuron is driven again by sin, this time via an excitatory synapse. If the
neuron emits a spike at time t = t0, its firing probability is reduced at
time t = t0 + ! because of inhibitory feedback. Depending on excit-
atory and inhibitory time constants, a certain signal periodicity leads to
a higher number of spikes in the output signal sout

determined by the neuronal time constant τ of the PSP.
A larger τ will lead to a lower ‘cut-off’ frequency of the
synapse. According to this consideration, the combination
of an excitatory synapse with small τexc and an inhibitory
synapse with large τinh projecting to the same population of
neurons will lead to a bandpass characteristic governed by
absolute value and difference of the excitatory and inhibitory
time constants.

2 Models

In the following section, we provide a detailed analysis of two
minimal models for periodicity identification on the basis of
excitatory–inhibitory interplay. The models are ‘minimal’ in
that they feature two neurons or neuron populations at most
and only two synapses, one inhibitory and one excitatory
(Fig. 1).

Analogous to the considerations in the introduction, the
first model consists of two neurons or neuron populations
(Friedel et al. 2007). If the input neuron (population) fires a
spike, it is fed into two distinct pathways leading to the out-
put neuron (population). One pathway will project onto the
output neuron via an excitatory synapse, the other, delayed
pathway via an inhibitory synapse. In a biological realization
the delayed pathway will consist of at least one reliable inter-
neuron. Certain combinations of delay, inhibitory and excit-
atory time constants, as well as the strength of the synapses
will lead to maximal firing rates for different frequencies. We
call this model the feedforward model.
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The second model consists of a single neuron (or, again, a
neuron population) that receives an input signal via an excit-
atory synapse. If the neuron spikes, the output spike will be
fed into a pathway (again biologically realized by an inter-
neuron) that projects back to the neuron itself with a particular
delay. The spike will result in an inhibitory PSP character-
ized by its strength and a time constant different from the
excitatory one. Such a setting leads, as we will see in the
following sections, to a maximal firing rate for one specific
frequency. A set of neurons, each with different time con-
stants and coupling strengths should then act as a frequency
analyzer. We call this model the recurrent model.

2.1 Detailed description of the feedforward model

The feedforward model features an input neuron population
of Poisson neurons (van Hemmen 2001). That is, we assume
the firing of the input neurons to be a statistical process,
an inhomogeneous Poisson process. Such a Poisson process
is defined by three properties. First, the probability of find-
ing a spike between t and t + !t is λ(t)!t , so λ(t) is the
time-dependent firing probability density or rate function.
Second, the probability of finding two or more spikes there
is o (!t), which means that we ignore their occurrence for
small !t . Third, a Poisson process has independent incre-
ments, i.e., events in disjoint intervals are independent.

The Poisson input neurons are driven externally by sin and
form a simple input stage for the model, similar to e.g. the
auditory nerve. If any of the input neurons fires, its spike is
fed into two pathways, one excitatory and one inhibitory, to a
output neuron population, Poisson neurons again. The excit-
atory spike reaches the output neurons directly, the inhibitory
spike is delayed by ! due to interneurons. We note that in
principle the delay ! could be negative, that is, the excit-
atory spike could be delayed more than the inhibitory one
by excitatory interneurons. Since we want to keep the setup
simple and in biological systems excitatory signals usually
are converted into inhibitory signals by means of inhibitory
interneurons, delayed inhibition is a reasonable assumption.
The connection to every output neuron population is there-
fore described by a specific combination of inhibitory time
constant τinh, delay ! and inhibitory coupling strength Jinh
on the one hand and excitatory time constant τexc and excit-
atory coupling strength Jexc on the other hand.

If a spike is emitted at time t = t0 by any input neuron it
leads to two postsynaptic responses ε in the output neuron,
for which we will take weighted α-functions (Gerstner and
Kistler 2002),

εexc = Jexc
t − t0
τ 2

exc
e−(t−t0)/τexcθ(t − t0) (1)

and

εinh = Jinh
t − t0 − !

τ 2
inh

e−(t−t0−!)/τinhθ(t − t0 − !). (2)

Here J is the synaptic weight, positive for excitatory and
negative for inhibitory synapses, t0 the spiking time of the
presynaptic neuron, τ determines the width of the α-function,
and ! is the delay of the inhibition. θ denotes the Heaviside
step function [θ(t) = 0 if t < 0, θ(t) = 1 if t ≥ 0].

2.2 Detailed description of the recurrent model

The recurrent model consists of Poisson output neurons (van
Hemmen 2001) that are driven by the continuous input func-
tion sin convoluted with the excitatory postsynaptic current.
All neurons feature a recurrent connection that feeds output
spikes back into the neuron. The recurrent connection is char-
acterized by a specific combination of inhibitory time con-
stant τinh, delay !, and inhibitory coupling strength Jinh.
Again, inhibitory and excitatory currents are described by
α-functions of the form (1) and (2).

3 Mathematical discussion of the models

We are now going to mathematically discuss the behavior of
the two types of periodicity detectors.

3.1 Feedforward model

We mimic a realistic, usually half-wave rectified periodic sig-
nal by a shifted cosine similar to the (positive) envelope of
an AM signal. As a consequence of the properties of a Pois-
son neuron (van Hemmen 2001), this input function then
describes the inhomogeneous firing probability density λin
of the input neuron,

sin(t) = A
2

[1 − cos(2 f π t)] = λin(t). (3)

The total response ε of one specific output neuron to the input
neuron activity is given by [referring to (1) and (2)]

εtotal = εexc + εinh. (4)

The firing probability density λout of the output neurons is
then given by

λout(t) =
∞∫

−∞
ds sin(s) εtotal(t − s). (5)

Equation (5) can be evaluated exactly for the given input
function (3) with result
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λout(t) = 1
2
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[(
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(1+4ζ 2
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2
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]
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(6)

where we assumed A = 1 and ζ j = f πτ j for τ j = τexc
and τinh, respectively. The symmetry between excitation and
delayed inhibition is obvious.

In order to analyze (6), it is desirable to reduce the num-
ber of free parameters. We therefore set Jexc = 1 in the
following. Furthermore, it is easy to see that (6) is of the
form λmax(Jinh; !; τexc; τinh; f ) × cos(2 f π t + φ), φ being
a phase-shift of no further interest. It is thus sufficient to con-
sider the amplitude λmax to obtain an understanding of the
system:

λmax = 1
2

+ Jinh

2
+

{
1

2
(
1 + 4ζ 2

exc
)2 (

1 + 4ζ 2
inh

)2

×
[(

Jinh+4Jinhζ
2
exc

)2
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inh

)2

+2Jinh
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−4ζ 2
exc + 16ζexcζinh − 4ζ 2

inh

)
cos(2 f π!)

+ 8Jinh(ζexc−ζinh) (1+4ζexcζinh) sin(2 f π!)

]} 1
2

.

(7)

Next, we want to get rid of Jinh as a free parameter. For
an optimal performance of our model the maximum of the
response should be a clear peak. We can minimize λmax at the
boundary of the range of frequencies we are interested in; that
is, positive frequencies. If λmax is minimal at the left and at
the right border of the frequency range under consideration,
the peak, somewhere in between these two limits, should
be easy to distinguish. At f =1 Hz, λmax is minimal for an
inhibitory coupling strength Jinh of −1 to −0.99, depending
on the parameters chosen. This is true for the complete range
of accessed parameters; that is !, τexc, and τinh taking any
value from 1 ms to 10 ms each. At the same time, the limiting
value of (7) for f → ∞ is (1 + Jinh)/2. The optimal inhibi-
tory coupling Jinh is therefore −1, the same absolute value as
the excitatory coupling. This is called balanced inhibition.

In what follows, we will take the delay ! to be 2 ms. This
assumption is equivalent to our concept of constructing a
‘minimal’ model since, in order to turn an excitatory signal
inhibitory, we need at least one interneuron. Two millisec-
onds are a reasonable time for a signal passing one neuron.
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Fig. 2 Frequency detection by excitatory–inhibitory networks. Top
time-invariant amplitude λmax of the firing probability density against
frequency of the input signal sin. Four sets of parameters are shown,
each resulting in a maximum of the amplitude at different frequencies.
Characteristics of the solutions match numerical results from Nelson
and Carney (2004); cf. bottom panel. The parameters except Jinh were
taken from Nelson and Carney (2004): A(τexc; τinh) = (5 ms; 10 ms),
B(2 ms; 6 ms), C(1 ms; 3 ms), D(1 ms; 1 ms); ! = 2 ms; Jinh = −1.
Bottom absolute rate modulation transfer function of the SFIE model
(Nelson and Carney 2004), rate versus frequency [Hz]. Four different
model cells in the inferior colliculus have been simulated, every cell
responding maximally to a certain modulation frequency of the signal.
The match of analytical and numerical results for identical parameters
is surprising since the SFIE model (Nelson and Carney 2004) is much
more complicated than our setup

At the end of this section we will discuss the influence of the
delay and its variation on the behavior of model.

Figure 2, top panel, illustrates the behavior of the solution
(7) for four different parameter sets. We see that the solu-
tions have a clear maximum for one specific frequency rang-
ing from about 14 Hz (solution A) to approximately 140 Hz
(solution D), depending on the combination of time constants
τexc and τinh. Before analyzing (6) further, it is interesting to
compare its behavior with numerical simulations published
before (Nelson and Carney 2004). In the latter, time con-
stants as well as delay between excitation and inhibition we
have used have led to almost identical results (see Fig. 2, bot-
tom panel). It is noteworthy that, motivated by physiological
findings, the setup of the model of Nelson and Carney (2004)
is much more complicated than here: two subsequent stages
of delayed inhibition and excitation with different coupling
strengths featuring three cell populations (auditory nerve,
cochlear nucleus, and inferior colliculus) and four synapses
lead to quantitatively the same results regarding frequency
selectivity.

Ideally, a maximum that is to be discerned clearly should
have a big amplitude (in this respect, cell A in the bottom
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Fig. 3 Amplitude of the response of the feedforward model for low
and high-frequency signals with a fixed delay as a function of excita-
tatory and inhibitory time constant. Black stands for a large, white for
a small amplitude. Big low-frequency stimuli (here: 14 Hz) lead to two
clearly separated areas of maximal response. The response is maximal
for a large difference of τexc and τinh, and a larger inhibitory time con-
stant results in a higher amplitude (∼ 0.5 versus ∼ 0.4 in the case
of larger excitatory time constant). Right, top to bottom (units same
as on the left): increasing frequency of the stimulus (here: 50, 90, and
130 Hz) leads to a merge of the two areas of maximal response and a
decreasing amplitude. The amplitude is maximal when either excitatory
or inhibitory time constant is very small. Here ! = 2 ms, Jinh = −1

panel of Fig. 2 would be a bad example). As a consequence
we are interested in the regions of our solution where the
amplitude λmax is maximal. Since an analytical solution is
not feasible we will revert to a graphical approach.

Figure 3 shows the amplitude of the solution (7) for
different time constants and frequencies. For low frequencies
we can discern two distinct regions of maximal amplitude:
amplitude is maximal when inhibitory and excitatory time
constants have a maximal difference (dark areas). In the fig-
ure, the amplitude is minimal for τinh = τexc + 0.5! (bright
area), but this relation only holds if ! is small compared to
the time scale of the frequency under consideration. As the
frequency increases (right side of Fig. 3, top to bottom), the
two regions of maximal amplitude move towards the origin
and merge. The overall amplitude shrinks but is still largest
for one of the time constants being very small. At 130 Hz,
finally, the amplitude maximum is reached at combinations
of very small inhibitory with even smaller excitatory time
constants.

The response magnitude’s dependence upon excitatory
and inhibitory time constant as shown in Fig. 3 does not,
however, elucidate how the frequency with maximal response
amplitude depends on the combination of excitatory and
inhibitory time constant (as well as delay). Since the deriva-
tive of λmax (7) with respect to inhibitory and excitatory time
constants is not tractable analytically, we have to stick to a
graphical solution once more. Figure 4 depicts the depen-
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Fig. 4 Contours of the maximal response amplitude in the τinh-τexc-
plane for different signal frequencies with fixed delay. Black solid,
dashed, and dotted line, gray solid, dashed, and dotted line: ampli-
tude maxima for 130, 90, 50, 30, 20, and 14 Hz; thin gray line:
τinh = τexc + 0.5!. As the frequency increases, the maximal ampli-
tude appears at smaller time constants. We note that the performance
of the model can only be estimated in combination with the absolute
amplitude (cf. Fig. 3). Here ! = 2 ms, Jinh = −1

dence of the maximum of (6) upon excitatory and inhibi-
tory time constants. Generally, lower time constants lead to a
maximum for higher frequencies. Lower frequencies can be
accessed by larger time constants, leading to no strict cut-off
in the low-frequency range. The delay breaks the symmetry
of the solution and results in an ‘anomaly’ along the line
τinh = τexc + 0.5! if ! ' 1/ f . Since the amplitude of
the solution is minimal along this axis, useful maxima lie
at small values of either the excitatory or inhibitory time
constant. In principle every combination of a small excit-
atory with a larger inhibitory time constant has an equivalent
combination of small inhibitory with larger excitatory time
constant, but the discrimination ability for high frequencies
is poorer (see maximum for 90 and 130 Hz in Fig. 4). In addi-
tion, combinations of small excitatory with larger inhibitory
time constants lead to higher amplitudes, so that our original
idea of filtering and subtracting different frequencies with
help of different time constants seems suggestive.

The considerations above are, however, only valid if the
assumption of ! being much smaller than T = 1/ f holds. If
! is varied independently of f the landscape of the solution
changes, as Fig. 5 illustrates, drastically.

Figure 5 shows the amplitude λmax as a function of dimen-
sionless time constants τ ′ and delay !′. We define dimen-
sionless units x ′ as x ′ = x/T . For integer multiples of the
cycle periods T of the signal the amplitude behaves very
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Fig. 5 Influence of the delay on
the amplitude in dimensionless
units. Amplitude of the solution
to (7) as a function of
dimensionless excitatory and
inhibitory time constant in cycle
periods T of the signal. Upper
left in case of no delay or the
delay matching exactly one
period of the signal frequency,
the solution is completely
symmetric relative to excitatory
and inhibitory time constants.
Upper right increasing delay
shifts the axis of the minimum
to larger excitatory time
constants and the maximum to
the origin. Lower left a delay of
T/2 leads to a maximal
response for minimal excitatory
and inhibitory time constants;
that is, δ-functions as PSPs.
Lower right the axis of the
minimum reappears at further
increase of the delay, this time at
larger inhibitory time constants.
Since, we are interested in low
frequencies and delays of
limited length, only the regime
displayed in the upper panel is
relevant. Jinh = −1
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similar to Fig. 3, big panel, viz., two distinct areas of maxi-
mal amplitude separated by a diagonal of minimal response.
The reason is that a delay of 2 ms is small compared to the
cycle period of 14 Hz, ∼70 ms. Increasing the delay ! (Fig.
5: to 0.25 T ) shifts the axis of minimum response to the right;
that is, to larger excitatory time constants. At the same time
the maximum moves towards smaller inhibitory time con-
stants. The very same behavior occurs when signal frequency
is increased but the delay is kept constant. The increase of
frequency from 14 Hz to 50, 90, and 130 Hz at a constant
delay of 2 ms in Fig. 3 corresponds to an increase of the
delay from 0.028 T to 0.1, 0.18, and 0.26 T in the current
setting. At a delay corresponding to half the cycle period
of the signal, symmetry is restored and a single maximum
exists at (τexc; τinh) = (0; 0); that is, the PSPs behave like
δ- instead of α-functions. Since at this particular delay the
inhibitory signal operates in the valley of the excitatory sig-
nal, a minimal excitatory–inhibitory interference leads to a
maximal response. The minimal interference is provided by
δ-functions as PSPs. At a further increase of the delay the
maximum wanders towards larger excitatory time constants
and a second maximum appears for small excitatory and large
inhibitory time constants. For ! = T , the contour of the

amplitude is finally symmetric again, featuring two clearly
separated areas of maximal response.

Two considerations restrict our interest to the regime sho-
wn in the upper half of Fig. 5. First, in various animals,
most neurons that are sensitive to amplitude modulation are
responding maximally to frequencies between 30 and 100 Hz.
Second, the initial motivation for a model of neuronal fre-
quency identification by means of inhibition has been the lack
of evidence for delay lines with ! > 10 ms in biological sys-
tems, so only “short” delays are of interest to us. A delay of
4 ms, which is a value well within the range of physiological
constraints, corresponds to 0.5 T at 125 Hz. In order to obtain
a maximal response to amplitude modulated stimuli in this
frequency range, it therefore makes sense to combine small
excitatory with larger inhibitory time constants.

The delay can also be varied so as to allow a broader range
of frequencies. A very short delay of ! = 0.3 ms pushes the
upper limit of about 140 Hz for a ! of 2 ms to about 500 Hz
(result not shown). Longer delays extend the accessible fre-
quency range to lower frequencies. Changing the delay from
2 ms to a ! of 15 ms, for example, lowers the preferred fre-
quency for (τexc; τinh) = (1; 15.5) from 14 to 10 Hz (result
not shown).
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With a given delay we can take the excitatory time constant
to be a very small value (e.g. 1 ms) and vary the inhibitory
time constant in order to control the preferred frequency of
our model (cf. Fig. 4). We thus arrive at a neuronal band-pass
filter characterized by the biologically plausible variation of
a single parameter, the inhibitory time constant.

The analytical calculations above have been verified by
numerical simulations (data not shown). There we have used
a population of Poisson input neurons and LIF output neu-
rons. The outcome matched our results very closely. This
was to be expected, since Eq. (5) describes not only the fir-
ing probability density for Poisson neurons but also holds
for the expectation value of an input current to LIF neurons
(Friedel et al. 2007). Interestingly, the phase locking of the
output spikes has been increased by the model even further
than in a comparable setting (Friedel et al. 2007).

3.2 Recurrent model

The idea of a neuronal band-pass filter we have developed
in the last section can be compressed into an even simpler
setup. One single population of neurons suffices if we use
a recurrent inhibitory connection; see the bottom panel of
Fig. 1. In order to cope with the feedback, we will consider
Poisson neurons for our analytic calculations.

For sufficient neuronal activity (Friedel et al. 2007) we
can describe the rate function λ of a single Poisson neuron or
neuron population projecting back to itself with a particular
delay time ! by the integral equation

λ(t) = Jexc

∞∫

−∞
ds gexc(s)sin(t − s)

+Jinh

∞∫

−∞
ds ginh(s;!)λ(t − s)

= Jexc(gexc + sin)(t) + Jinh(ginh + λ)(t). (8)

The rate function consists of the sum of the external input
sin and the delayed inhibitory input from the recurrent loop,
both ‘smeared out’ by the kernel gexc and ginh, respectively.
The feedback strength is given by Jinh and we choose g to
be α-functions as in (1) and (2) so as to ensure causality and
obtain unit weights.

To solve Eq. (8) we change to Fourier space where convo-
lutions are ordinary products. The Fourier-transformed ver-
sion of (8) reads

,(ω) = JexcGexc(ω)Sin(ω) + JinhG inh(ω),(ω), (9)

where the Fourier transform of each input term is denoted by
a capital letter. The solution is thus given by

, = JexcGexc

1 − JinhG inh
Sin (10)

and can be transformed back into a function of time by taking
its inverse Fourier transform.

In a way similar to the last section, we mimic a half-wave
rectified signal by a shifted cosine function

sin(t) = 1
2

[B − cos(2 f π t)] (11)

where B denotes the shift of the cosine along the y-axis.
This is a necessary precaution in order to avoid a negative
rate function. We obtain a solution that is, just as in the
feedforward model, of the form

λ(t)=λmax(B; Jexc; Jinh;!; τexc; τinh; f )×cos(2 f π t+φ).

(12)

As before, φ is a phase-shift of no further interest. For any
finite solution we can find an B that can shift the solution
to positive values and prevent a negative rate function. Since
this shift does not affect the solution otherwise, we can as
well forego the shift; that is, set B = 0 for the sake of con-
venience. We now turn to the time-invariant amplitude λmax
that is of interest for a characterization of the system,

λmax = Jexc√
2

(
4 f 2π2τ 2

inh + 1
)

√
ϒ2 + /2

(13)

where

ϒ =
√

2Jinh

(
−1 + 4ζ 2

exc

)
+ 2

√
π

×
{[

1 + 16ζ 2
excζ

2
inh − 4

(
ζ 2

exc

+4ζexcζinh + ζ 2
inh

)]
cos(2 f π!)

+4(ζexc + ζinh) (−1 + 4ζexcζinh) sin(2 f π!)
}

(14)

and

/ = −4Jinh
√

2ζexc − 2
√

π

×
{[

1 + 16ζ 2
excζ

2
inh − 4

(
ζ 2

exc

+4ζexcζinh + ζ 2
exc

)]
sin(2 f π!)

+4 (ζexc + ζinh) (−1 + 4ζexcζinh) cos(2 f π!)
}

(15)

with ζ j = f πτ j for τ j = τexc and τinh. In order to reduce
the number of parameters we set Jexc = 1.

Figure 6 illustrates the performance of the recurrent model.
Parameter sets that are identical to the ones we have used
in the example for the feedforward model (Fig. 2) lead to
a very similar behavior, viz., maximal response at virtually
identical frequencies. The peaks are, however, less clear since
for low frequencies the amplitude does not drop as in the
feedforward model. In addition, the overall amplitudes are
lower.

For a quantitative understanding of the recurrent model,
we proceed as in the last section and change to dimension-
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Fig. 6 Frequency detection of the recurrent excitatory–inhibitory net-
work for balanced inhibition in the form of the time-invariant amplitude
λmax of the rate function against the frequency of the input signal sin.
The parameter sets are identical to those of Fig. 2 and lead to a maximal
response for virtually identical frequencies. The quality of the peaks is
low as compared to the feedforward model. A smaller overall ampli-
tude and a relatively high amplitude for low frequencies deteriorates
the recurrent network performance. Parameter values are A(τexc; τinh)
= (5 ms; 10 ms), B(2 ms; 6 ms), C(1 ms; 3 ms), D(1 ms; 1 ms); ! = 2 ms;
Jinh = −1

less units. We derive the inhibitory coupling strength Jmax
for which the dimensionless version of (13) is maximal,

Jmax =
√

2π
[
(1 − ζ 2

inh) cos(2 f π!) − ζinh sin(2 f π!)
]

(16)

By combining this inhibitory coupling strength with the
dimensionless version of (13) we arrive at a λmax that is
dependent only on the excitatory and inhibitory time constant
as well as the delay (in dimensionless units),

λmax = 1√
2π

× 1 + ζ 2
inh

(1 + ζ 2
exc)

[
2ζinh cos(ζ!) + (1 − ζ 2

inh) sin(ζ!)
] (17)

where ζ! = 2 f π!. Obviously the excitatory time constant
does not characterize the band-pass response of the model but
simply scales the amplitude; we will not discuss this param-
eter in the following.

We can now easily derive a constraint for the relation
between inhibitory time constant ζinh = f πτinh and delay
ζ! = f π!: Equation (17) is maximal if

ζ! = arctan

(
2ζinh

ζ 2
inh − 1

)

+ nπ (18)

with n = 0 if ζinh > 1 and n = 1 if ζinh < 1. For the inhib-
itory time constant approaching zero, that is, δ- instead of
α-functions as PSPs, (18) reduces to ζ! = π or, in dimen-
sional units,

! = 1
2 f

= 0.5 T, (19)
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Fig. 7 Contours of the maximal response amplitude in the τinh-τexc-
plane for different signal frequencies with fixed delay for the recurrent
model. Black solid, dashed, and dotted line, gray solid, dashed, and
dotted line: amplitude maxima for 130, 90, 50, 30, 20, and 14 Hz. As
the frequency increases, the maximal amplitude appears at smaller time
constants. We note that the performance of the model can only be esti-
mated in combination with the absolute amplitude; largest amplitudes
are obtained for small excitatory time constants (data not shown). In
contrast to the feedforward model, all maxima that are characteristic
for a given frequency feature inhibitory time constants that are larger
than the excitatory ones. Here, ! = 2 ms, Jinh = −1

just as in the feedforward model where the amplitude is max-
imal for (τexc; τinh) = (0; 0) if the delay is 0.5 T .

Equation (18) could be interpreted as if an arbitrary short
delay could be compensated by an appropriate inhibitory time
constant. This is not the case since, as a consequence of (16),
such an arbitrary short delay would require a very large inhib-
itory coupling (e.g., a delay of ! = 0.05T would result in
τinh = T and Jinh = −101). But how far can we get with a
realistic inhibitory coupling?

From Fig. 6 we see that restricting the inhibitory strength
to a balanced inhibition (Jinh = −1) as in the feedforward
model still gives reasonable results. What is, however, the
relation between parameter set and preferred frequency, the
frequency for which the response of the model is maximal?
Analytic insight is easy in dimensionless units but hard to
transfer into dimensional units, so we will stick to a graphi-
cal approach as in the last section.

The relation between excitatory time constant, inhibitory
time constant, and preferred frequency is shown in Fig. 7.
As in the feedforward model, lower (inhibitory) time con-
stants lead to a maximum for higher frequencies. However,
contrary to the feedforward model, there is no symmetry
between combinations of large excitatory with small inhib-
itory and combinations of large inhibitory with small excit-
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atory time constants. All maxima that are characteristic to
a given frequency feature inhibitory time constants that are
larger than the excitatory ones. Since the amplitude of the
solution is maximal for small excitatory time constants (data
not shown), it makes sense to choose the excitatory time
constant as small as possible. The result is a system where—
given delay and inhibitory strength fixed—the frequency
response can again be tuned over one order of magnitude
by the inhibitory time constant alone.

4 Discussion

As we have seen, a simple feedforward model can identify
frequencies in the range of approximately ten to several hun-
dred Hertz relying on biologically plausible parameters only,
viz., short delays and balanced inhibition. The model works
best for a very short, fixed excitatory time constant. Given a
specific delay the preferred frequency of the model where the
response is maximal can be varied by tuning the inhibitory
time constant. Alternatively, the inhibitory time constant can
be taken to be short and the model can be tuned by the excit-
atory time constant. A recurrent setup shows a behavior very
similar to the feedforward model and can identify frequen-
cies in the same range. The amplitude peaks, however, are
shallow when compared to the response maxima in the feed-
forward model. Furthermore, in contrast to the feedforward
model, a short excitatory time constant is necessary for the
model to work. Again, the model can be tuned by choosing
the appropriate inhibitory time constant.

Interestingly, the characteristics of the neuronal band-pass
filter at hand are quite different from the initial conception
we have formulated in the introduction. The naive picture
of simply subtracting the envelopes of two low-pass-filtered
signals does not explain the characteristics of the system.
If the neuronal band-pass filter would follow such a naive
picture and we had defined the cut-off frequency as the fre-
quency where the response of the system is half of the max-
imal response, the preferred frequency would be given by
fpref = 1/(4π2τexcτinh)

1/2. This would lead to hyperbola-
like curves in Fig. 4. Obviously an in-depth mathematical
description is crucial to an accurate analysis of the system.

Although motivated by our intention to create a ‘minimal
model’, the delay of 2 ms chosen in the current calculations
may seem arbitrary. Appearances are deceiving, however, as
experimental results of inhibition being delayed by 2.4 (Wehr
and Zador 2003) and 2 ms (Las et al. 2005) have been found
in cortex. In the auditory brainstem, one could expect even
shorter delays as 0.6 ms for the inhibition (Wickesberg 1996).
Thinking of the influence a short delay has on the preferred
frequency of our model, these short delays fit the concept
of the auditory brainstem dealing with higher frequency sig-
nal periodicity than the cortex. In fact, sensitivity for ampli-
tude modulations up to 1,000 Hz has been reported in the

experimental literature (Joris et al. 2004). However, neurons
sensitive to modulation frequencies >300 Hz are few and
far between, while the majority of the neurons is confined
to the range of 30–100 Hz. This finding is valid for the audi-
tory brainstem of various animals (Krishna and Semple 2000;
Langner and Schreiner 1988; Rees and Møller 1983, 1987;
Rees and Palmer 1989) so that, from a conceptual point of
view, most of the AM sensitivity of neurons can be explained
by our model.

Quite surprisingly, balanced inhibition turns out to be the
optimal choice for the inhibitory coupling strength. This is
of interest since, as stated in the introduction, BI has been
observed at several examples of processing sensory informa-
tion but its function remained unclear. Our findings suggest
that a role in the processing of signal periodicity such as
amplitude modulations and/or the processing of vibratory
signals would be feasible. The findings of single whisker
deflections causing a sequence of excitation and balanced
inhibition in the rat barrel cortex (Highley and Contreras
2006) and BI changing the chopping frequency in chopper
neurons in the very same animal (Paolini et al. 2005) fit here
nicely. The idea of BI acting as a kind of gate or filter between
cortical areas (Highley and Contreras 2006) agrees with our
present results in that the frequency range of our model cov-
ers the β (13–30 Hz) and γ (30–100 Hz) oscillations that are
believed to play a role in the communication between differ-
ent parts of the brain and in attention, a related topic. Fur-
thermore, BI is locked to noise envelopes in the cat auditory
cortex and locking is suppressed by low-level tones (Las et al.
2005). This can be taken as a hint towards BI playing a role
in the attentional framework.
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