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Memory to antigenic challenge of the immune system is described as a synergy of
two components: cycles of interacting B cells in a dynamic equilibrium which stere
an internal image of an antigen, and long-lived memory B cells which stabilize the
cycle that generates them. Small cycles are most relevant to the immune system’s
memory. The network is globally stable and supports Jerne’s idea that suppression is
impertant. Qur model allows for exponential increase of antigens during the initial
stage of infection. It has a number of stable fixed points, viz the virgin state, the
healthy immunized state, and a state of chronic infection, the last occurring if the
antigen is virulent enough. Numerical simulations show a difference between
primary and secondary response and exhibit both predator-prey and intracycle
oscillations, 1n the case of a chronic infection, the simulations suggest a specific
stimulation therapy triggered by repeatedly injecting the antigens, thus making the
infection acute. An optimal therapy is indicated.

1. Introduction

During its existence, the immune system exhibits a remarkably good memory of its
previous experience—remarkable in view of both its complexity and the finite
lifetime of its constituents which is typically one or two orders of magnitude less than
its memory span. In this paper we present extensive simulations based on a network
theory that incorporates three key ideas:

{1} A memory is stored in a cycle which consists of elements (antibodies) that
mutually stimulate and inhibit cach other so as to preserve a dynamic
equilibrium. One of the antibodies in the cycle functions as an internal image
of the antigen.

(i) The equilibrium is stabilized by memory (dormant) B cells, whose lifetime
exceeds the one of their associated antibodies by about an order of magnitude
(though still finite!).

{iii} The whole structure is embedded in a network that is globally inhibitory
(repressive) as advocated by Jerne (1974) and hence globally stable.

Memory to antigenic challenge in the immune system is somewhat paradoxical.

On the one hand, an immunized organism “remembers” previous illness since the
antigen that initiates it is eliminated subclinically soon after the infection. On the

§Cf. the motto of this paper: "The essence of society is repression of the individual™.
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other hand, antibodies, even memory (or dormant) B cells, have a finite lifetime that
may be, and in general is, orders of magnitude less than the time elapsed before the
next infection occurs. (For the current understanding of memory B cells, see, for
example, Gray & Skarvall, 1988; Schittek & Rajewski, 1990; McHeyzer-Williams et
al., 1991; Vitetta et al,, 1991.) This then gives rise to the paradox that the elementary
constituents of the immune system do not live long enough to store the memory. In
spite of that, antigenic challenge leads to immunity.

It is widely believed that antigen-driven immune response is performed by non-
interacting clones. The dynamics of each B-cell clone is governed by an intricate
interaction of cells with distinct immunoregulatory functions. An idiotypic regulation
is considered unimportant. In this paper we treat the intraclonal regulation only
implicitly and concentrate on the interclonal idiotypic interactions. We propose that
the idiotypic interactions of the B-cell clones provide a dynamic memory, as is
explained in detail below, and thus resolve the paradox we alluded to. We do not
exclude that a repeated stimulation of functionally disconnected B-cell clones by
persistent antigen can also lead to a memory.

In addition to the antigen-driven response, the immune system exhibits a somatic
(antigen-independent) memory associated with an intrinsic dynamics (Lundqvist et
al., 1989; Varela et al,, 1991) that has been the subject of recent theories (Stewart &
Varela, 1990; Varela & Stewart, 1990; de Boer et al, 1992) based on idiotypic
interactions. Though we concentrate here on the antigen-driven response, our model
can describe the intrinsic dynamics as well.

In section 2 we formulate a reaction kinetics model that is based on Jerne’s
network theory (Jerne, 1973, 1974, 1976, 1984, 1985; Jerne et al,, 1982; for recent
reviews see, for example, Perelson, 1989; Varela & Coutinho, 1991; for experimental
support see, for example, Lundkvist et al,, 1989) and explain the ensuring memory
mechanism: memory is stored in a cycle whose constituents mutually stimulate and
inhibit each other and in so doing generate memory B cells that stabilize the cycle
locally (Behn & van Hemmen, 1989a, b). More specifically, an n-cycle is a sequence of
antibodies { with 1 < i< »n so that i is inhibited since its epitope is recognized by the
paratope of i+ 1 (n+1 = 1) and stimulated since its paratope recognizes the epitope
of i—1 (0= n), Furthermore, the paratope of i = 1, say, fits into both the epitope of a
specific antigen and the epitope of i=n. So n carries]| the “internal image™ of the
antigen’s epitope and in this way is a constituent of the immune system’s memory.
The simulation of each of the antibodies in the cycle guarantees its reproduction over
a period far beyond its individual lifetime. Hence, the paradox is resolved. It turns
out, though (Behn & van Hemmen, 19894, b), that the cycle, a symbiotic equilibrium,
is unstable by itself and that it is stabilized by the memory B cells which correspond
to the active B lymphocytes in the cycle.

The concentration of antibodies which recognize a specific antigen is relatively
low, so steric hindrance does not occur (yet) and it is realistic to describe the
symbiotic dynamics by equations of a simple reaction kinetics or, in physical terms,
“mean-ficld” type. Owing to a global repression, the escape to infinity is blocked and

}| Frequently, immunologists use a different numbering and say Ab2 carries the image.
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global stability is guaranteed. It is shown that in this context repression is a
surprisingly powerful notion.

In section 3 we present the simulation results and harvest the corollaries of our
theory, an explanation of oscillatory behavior of the number of antigens and
antibodies (the Weigie phenomenon) as it ajso occurs in experiments (see, for
example, Weigle, 1975; Hiernaux et al,, 1982), and a specific stimulation therapy for a
chronic infection through periodic injection of a small dose of antigen.

In section 4 we sketch the rudiments of an Aufbauprinzip, the construction of a
“true” network ouwt of various parts such as cascades and cycles. Section 5 is a
discussion.

Before turning 1o our model, it may be interesting to compare previous literature
with the present approach. As to modeling, there are three categories: (i) models with
continuous time and continuous variables describing the antigen and antibodies,
usually of the Lotka—Volterra type; (ii) models with discrete time, not to be discussed
here; and (iii} models where both time and state variables are discrete (cellular
automata). Our model belongs to the first calegory and is a true network theory, in
contrast to the work of Bell (1973} and Marchuk (1983). Richter (1975) has studied
cascades and cycles of idiotypically interacting antibodies, emphasizing tolerance
effects. In rejecting, however, (flactual suppression as a stabilizing factor of the
immune system, Richter deviates from one of Jerne’s seminal ideas that is funda-
mental to our work. Hoffmann’s theory (1975) for idiotypically connected pairs, in a
sense similar to Richter’s, includes T cells. Hoffmann was the first to stress the
importance of symmetric interactions. Both authors initiated a tathematical
network theory of the immune system to account for the immune system’s memory
since, after elimination of the antigens, there are no external constituents stimulating
the corresponding B lymphocytes. Hiernaux (1977) has analyzed numerically the
stability of Richter’s (1975) cycles. The interactions in a cycle are taken to be
asymmetric. An interaction is symmetric, if i and i+ 1 suppress each other, whereas it
is asymmetric if the inhibition is unidirectional. Hiernaux finds odd-even effects: for
n even, the cycle relaxes to a stationary state with alternatingly low and high
concentrations, whereas for » odd it asymptotically approaches a limit cycle. Though
topologically identical, our cycles will be shown not to exhibit any of these effects,
The reason is simply that they cruciaily depend on a source term § providing suitable
B lymphocytes from the bone marrow and that we do not assume the cycle to
operate under a bell-shaped curve. We would like to stress that our model is not
restricted in any way to cyclic or asymmetric structures. We will comment on
Hiernaux’s (1977) work as we go on.

The work of Farmer et al. (1986, 1987) is closest to our’s in spirit, contains guite an
interesting ansatz for the antibody-antibody interaction, but does not include
memory B cells and, hence, cannot provide a stable memory. As we already noted,
the concentrations involved in storing memory are relatively low and the reaction
kinetics proposed by these authors (mass action) thereforc seems realistic. It is
adopted throughout what follows.

De Boer & Hogeweg (1989) and, in a similar way, Weisbuch (1990) have intro-
duced a model which employs a function with a single maximum, for exampie, a log-
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bell-shaped curve to describe response of a B-cell clone to its anti-idiotypic stimulus.
This model has been investigated thoroughly (Weisbuch et al, 1990; Neumann &
Weisbuch, 1992) and extended to capture more details {de Boer et al., 1990; Segel &
Perelson, 1991). It operates with globally stimulatory idiotypic interactions in
contrast to our global suppression. It, therefore, need not incorporate memory B
cells.

In the context of a shape space approach, Segel & Perelson (1989) have examined
the size of long-lived memory cell clones in a network environment depending on
their death rate. It was argued by Perelson (1989) that “memory may be carried by
both static and dynamic means”. To the best of our knowledge, our model (Behn &
van Hemmen, 19894, b) is the first that establishes a synergy between both poss-
ibilities and recognizes the crucial role of memory cells to stabilize the dynamic
equilibrium of a cycle.

Cellular automata introduced by Kaufman et al. (1985) and by Weisbuch & Atlan
{1988) were analyzed in detail and have since experienced several sophistications
{Kaufman & Thomas, 1987; Davan ez al,, 1988; Kiirten, 1988; Atlan, 1989, Neumann,
1989; Pandey, 1989, 1990; Pandey & Staufler, 1989; Chowdhury & Chakrabarti,
1990; Chowdhury et al., 1990; Stauffer, 1990, 1991). Though easy to simulate, both
this type of model and Parisi’s Ising-spin version (Parisi, 1988, 1989, 1990} are not
close to hiological reality because the state variables are taken to be discrete {0 and 1)
and do not allow any gradual response. More realistic is, however, the recent work of
Celada & Seiden (1992) and Seiden & Celada (1991). A combined discrete and
confinuous approach was proposed by Kaufman {1988). The references mentioned so
far are concerned with the dynamics of elementary constituents of the immune
system, for example, antibodies and antigens, which form a functional network.
Tkegami (1988, 1980), however, is interested in steric structures, spatial networks,
allows aggregates of arbitrary complexity, and studies their statistics.

For recent accounts, see aiso Perelson (1988), Atlan & Cohen (1989), and Perelson
& Weisbuch (1992).

2. Description of the Model

2.1, FUNDAMENTAL EQUATIONS

In this section we consider a given set of constituents of the idiotypic network. For
the sake of simplicity, we do not distinguish free antibodies from those which are on
the surface of a B lymphocyte (surface antibodies). The analysis of a more sophisti-
cated modet without this simplification (see Appendix A) gives qualitatively the same
results.

‘The number of free and surface antibodies per unit volume is denoted by x; where
i=1,2,..., N labels the type characterized by only a single epitope ¢; and paratope
pi- The number of antigens per unit volume characterized by the epitope ¢,
j=N+1,..,N+R,is denoted by y;.

In a simple “mean-field” approach, the probability of a collision between two of
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the constituents is proportional to the respective products x;x; and x; y;. The strength
of the reaction is proportional to the matching m;; between the paratope p; and the
epitope ¢. Then the stimulation of an antibody x, is proportional to m;x;x; and
m;;x; y;. The inhibition is proportional to —xm; x,x;, where the parameter « allows
for an asymmetry between stimulation and inhibition. The terms x,x; and x;y; are
bilinear in the variables x; and x; or y;. Additional evidence in favor of this bilinear
interaction is given in Appeadix A.

Another important parameter is y, the inverse lifetime of the antibodies in the
absence of stimult. The memory B cells ensure the production of antibodies of type i
if there is a non-zero matching m;; with the epitopes of the stimuli x;, respectively y;,
even in the absence of x;. This i 15 included by adding a term m; dlxj, respectively
md, y;, where d; is a source strength mimicking the presence of memory B cells of
type i.

Introducing the shorthand M;; = m;;— km;;, we thus obtain (Behn & van Hemmen,
19894, b)

N N+l
}‘ci-——xi(z % )J)+d Y mpx+(di+x) Y myy, i=1h 0N (1)
=1

i=1 J=N+1

Here, and in the remainder, & denotes a differentiation of x with respect to time.

A few remarks are in order. After a primary response, memory B cells appear once
normal B cells are stimulated sufficiently. Little is known about the lifetime of
unstimulated memory B cells but it is reasonable to assume that it is one or two
orders of magnitude larger than that of ordinary B cells. Upon division (stimulated)
memory cells produce a high percentage {30-40%) of new memory cells (Celada,
1991, private communication), thus providing an efficient reproduction mechanism.
In this paper we describe the dynamics of memory B cells—-as a first
approximation—in a very rudimental way: we insert a non-zero d; into (1), if the
total stimulus per antibody i, viz (3 ;m,x;+ Y my y,), exceeds some threshold i (The
existence of a threshold is explained in Appendix A.) Once they have been inserted
we treat the d; as constant. So we assume that the surplus in the production
compensates the loss owing to a finite lifetime. Models including a more sophisti-
cated dynamics of memory B cells are at present under investigation. The suspictous
reader might argue that a term —xd,; ) ;m,;x; is missing in eqn (1). This is not the
case, however, since (1) describes the dynamics of x;, not 4. In passing, we nole that
it would have been straightforward to add a small source term S to the right-hand
side of (1) so as to include the new celis produced by the bone marrow. These provide
a reservoir of antibodies apt to react against an intruding antigen during a primary
response. Once a cycle is established the concentration of its antibodies is so high
that § can be neglected. We have dropped S because its inclusion clutters the
formulae below but does not alter our conclusions.

As to the matchings m;; Hoffmann (1975) has stressed the importance of symmetric
interactions (m;;=my). Our model includes this situation as a special case, ie.
paratope and epitope may, but need not, be identical.

Finally, since we are mainly interested in memory and, therefore, in cases where
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the input signals are (nearly always) rather weak, we have refrained from composing
the input signal with a bell-shape function that takes into account steric hindrance
and saturation.

For the antigens, a set of equations similar to (1) holds,

N
jz,.=y§(a~2mj,-xj), i=N+1,..,N+R, (2)

i=t

where « is the difference between a proliferation rate and an inverse lifetime. For
most antigens, o is positive. In general, the dynamics described by (1) and (2) may be
very complicated. The simplest qualitative statements which can be made are about
the stationary states (fixed points) and their stability.

The focal stability of a fixed point 2° of a system of differential equations 7 = F(z) is
determined by considering the dynamics of a small deviation e=2z—2° which s

governed by
i= (6_}’) g = F{z"). (3
07 fo .

The fixed point z° is locally stable if £ dies out, ie. if the matrix F{z*) has only
cigenvalues with negative real part,

In the virgin state (d; =) and in the absence of antigens, the trivial fixed point
x* ={is globally stable for x = 1 (in the subspace spanned by the x,} as can be seen by
writing the equation of motion for

N
s= 3 X,
k=1

N
Shys =(1—-x) 3 x;mux,, {4)
jk=1

but obviously x*=0is unstable against antigens since we have from {(2)

b=y =0 {5)

From (4) it is ciear that in the virgin state a non-trivial fixed point x° = a can exist
only for & < 1. However, it is locally unstable since the trace of F{a) is positive,
N N
Trffa)=Y A=Y afl—-xim; >0 %)
i=1 i=1
since my; = 0. The A; are the eigenvalues of F'(a). So in the virgin state the only stable
fixed point is the trivial one (x = 0). No memory exists.

Formally speaking, a non-zero d; mimicking the presence of memory B ¢ells may
destabilize the zero fixed point and allow the formation of stable non-trivial fixed
points, for example cycles (Behn & van Hemmen, 1989a, b). provided d, is large
enough and x> 1.

To elucidate this, we give a qualitative argument in addition to those aiready
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presented elsewhere (Behn & van Hemmen, 1989q, b). We write the equation of
motion for

. .
§= Z xk,
k=1

§4ys=(l—«)

1.

TO=
=

ijjk Xy +

1 Js

I ;M Xy (7
and suppose that all x, are of the same order of magnitude. Then for small x; the
second {linear) term in the right-hand side of (7) dominates—irrespective of x-—and
for d;my large enough, the zero fixed point is destabilized. On the other hand, for
large x; the first (bilinear) term becomes essential but, if repression dominates, i.c.
k> 1, the system cannot explode. .

These formal arguments support in a natural way Jerne’s idea that “the essence of
the immune system is the repression of its lymphoceytes” (Jerne, 1974: 3823; see also
Appendix B,

The result of the competition between the instability of x = 0 and the repression at
infinity will be a non-zero finite solution-—{or instance, a non-zero stable fixed potint.
This solution then provides a reservoir of antibodies which do not die out. Thus,
starting from the virgin state (where all d; vanish), the organism acquires in the
course of its life (owing to encounters with antigens or owing to the interactions
between antibodies) a set of non-zero {d;}. In short, there is a syrometry breaking of
the virgin state.

22, DYNAMIC NATURE OF THE COUPLINGS

In the previous subsection 2.1 we have described the dynamics of a given set of
constituents of the idiotypic network. There is, however, a continuous production of
new types of B lymphocytes. In other words, the list of variables and parameters itself
is dynamic. Therefore, eqns (1) and (2) have to be embedded in a hierarchical scheme
which governs the generation of new variables and the dynamics of the parameters
{see, for example, Farmer et al, 1986; Behn & van Hemmen, 1989, b; de Boer &
Perelson, 1990; Stewart & Varela, 1990; Varela & Stewart, 1990), New types of
antibodies are generated in two ways. First, about 20% of the B lymphocytes are
replaced each day by new ones generated in the bone marrow (see, for example,
Jerne, 1984), This is a mechanism of innovation. Furthermore, stimulated B lympho-
cytes reproduce themselves with a mutation rate which is five orders of magnitude
higher than usual in cell division (see, for example, Kohler, 1987), The antibodies
generated this way are centered about the stimulated type. It is likely that the
matching between them and the stimulating epitope is improved and that an
adaptation to the stimulus occurs, Both innovation and adaptation can be described
in a shape space context (Segel & Perelson, 1988). New antibodies are built through
a process of combining genes from a relative small library of ¥, D, J and C genes (see,
for example, Tonegawa, 1985). There exist well-formalized schemes to describe
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typical mechanisms of mutation (see, for example, Holland, 1986; Tkegami &
Kaneko, 1990),

A description of the dynamics of a “living™ network should include three factors:
(i) innovation through the injection of new antibodies with a given rate to describe
the innovation from the bone marrow, (ii) adaptation through the injection of new
antibodies centered about the stimulated one with a rate depending on the degree of
stimulation and, as already mentioned in 2.1, (iii) appearance of memory cells if the
stimulation exceeds some threshold.

The present paper is the second in a series that aims at realizing the above
program and exploring its novel aspects, in particular in treating the immune system
as a globally repressive network and stressing the role of memory B cells in
stabilizing the cycles and, hence, the memory to antigenic challenge in this network.

3. Memory Mechanisn:: Co-operation of Memory B Cells and Cycles

31 QUALITATIVE ANALYSIS

In section 2.1 we have established the fundamental equations describing a given
set of constituents of the idiotypic network and showed that in the working regime
repression should dominate (x > I). Then, in the virgin state (no memory cells) the
zero fixed point is, in the absence of antigens, globally stable. We have shown that
the appearance of memory cells may destabilize the zero fixed point and supplied
arguments that the formation of a non-trivial, bounded, solution is favored, which
provides a reservoir of useful antibodies {(memory).

In this subsection, we analytically investigate the simplest case, a symmetric two-
cycle interacting with an antigen, and show in a more explicit way the synergism of
the two mechanisms for memory, viz a cycle and the assoctated memory B ceils
which stabilize it,

The equations of motion describing two types of antibedy x, and x, with mutoal
matching m,, = m,; = m and an antigen y which stimulates x, with matching m in
the presence of memory cells d, and d, are

Xy = x,[{1 —xmx; —p] +dymx, +{d; +x,)my, {8)
% = x,[(1—-Kk)mx, —y]+d,mx,, 9
i = yla—imx,). (10)
This system, which is of the form £ = F{z), has three fixed points
73 =(0,0,0), {1

2,2 z__ 2
zf,_::( v —m’d,d, v —md;d, O) (12)

m{1 - x)y + md,) m(l ~w)y+md,)

_ d. Way—a)+mid,a, —d, a,)
s . s ,b — , 2 1 2 281 L2 .
% =203 ) {cz/m x =1 +ymf{am) md, +u } (13)
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A fixed point is relevant if its components are non-negative. Correspondingly, there
exist four parameter regions where either only the trivial fixed point z4, or z§ and z3,
or z§ and z%, or all three fixed points lie in the positive cone. In the various parameter
regions, the fixed points may change its stability. {A fixed point is locally stable if
F{z*}—cf. (3}—has only eigenvalues with negative real part.]

In Fig. 1 the schematic flow diagrams resulting from the linear stability analysis in
three parameter regions are shown. For the sake of convenience we have taken
d, =d; =4 Then 75 takes the simple form (g, g, 0), where a = (d—3y/m){x—1).

In the virgin state [Fig. 1(a)} only the irivial fixed point z} is relevant. The
eigenvalues of F'(z}) are 4,,, = —y+md and 1=oa. Thus, zj is stable in the (x,, x,)
plane as long as not too many memory B cells are present, i.e. d < y/m. Tt is, however,
unstable in the y-direction as long as « > {; the virgin state may become infected.

If there are enough memory B cells, i.e. d > y/m, the non-trivial stable fixed point z3
which describes a two-cycle enters the positive cone and zi = 0 loses its stability in
the (x,, x,) direction [Fig. 1{b)]. The two-cycle provides a reservoir of antibodies x|
even in the absence of the stimulating antigen y since the antibodies x, act as an
internal image of y. The elgenvalues of F(z%) ate 4,,=—md+y and i3 =0—1ma,
[ is defined in {12)]. Thus, z5 is stable in the (x;, x,} plane and as long as the antigen
is not too virulent, i.e. « < ma, it is stable in the y-direction. The system is in an
immunized state, and an infection is spontancously cured.

If the antigen y becomes too virulent (or the matching is too small, or not enough
antibodies are provided by the cycle), i.e. o > ma, the new fixed point z3 emerges from
23 which loses its stability in the p-direction [Fig. He)l. A straightforward but
lengthy application of the Hurwitz criterion shows that z5 is stable for all a > na.
The antibodies are not able to eliminate the virulent antigen, the system lives with a
chronic infection. Using similar arguments one can verify that, if a <0, the fixed point
zj is relevant and stable for o> 0.

If one relaxes the condition d, =d, =4 and allows d, >0 and d, =0, then the
system relaxes to the attractive fixed point z3 which is now in the x,, y-plane. For
d, =d, =0 it becomes marginally stable. If b is low, this state can be interpreted as a
dynamic memory established by a “cycle” consisting of the antibody x; and the
antigen itself. For large values of b it is better to call it a chronic disease. [ The same
remarks apply to the chronic infection shown in Fig. 1(c)] The above analytical
treatment can be extended straightforwardly to an n-cycle (n > 2); cf. Behn & van
Hemmen {19895).

3.2, SIMULATION
3.2.1. Phenomenological parameters

In the description of the idiotypic network on a phenomenological level, a number
of phenomenological parameters appear, For the purpose of a numerical simulation
we have to choose a reasonable parameter setting.

The time scale is fixed by choosing a value for 1/y, the lifetime of antibodies, which
is of the order of 1-3 weeks. In the simulations we took y =001 and 0-002. In ail
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(a)

Xz

0 =
b}
Xz
y
[ 3
{a,a,0)
0
(c)

(a1,29,5)

{0,2,0)

0 X3

FiG. 1. Schematic fiow diagrams for the case of two soris of antibody x, and x, with mutual matching
m. The antigens y are recognized by antibodies x, with matching M. (8) Virgin state. The amount of
memory B celis is so small (4 < y/m) that x =0 is stable in the (x,, x,) plane: antibodies x,,; will die out
without stimulation by an antigen. However, x =0 is unstable in the y-direction so that the virgin state
may become infected. (b) Immunized state. The amount of memory B cells is large enough (d > y/m) so
that a non-zero stable fixed point {a, , 0), a two-cycle, exists. This two-cycle provides a non-zero number
af antibodies x, even in the absence of the stimulating antigen. Antibodies of type x, can be considered as
internal image of the siimulating antigen y (memory). The two-cycle is stable in the y-direction as long as
o < afm, i.e. an infection ends in a healthy state if the antigen is not too virulent. (¢} Chronic infection, If the
anftigen y becomes too virulent (w > a), the two-cycle (a, g, 0) loses its stability and a new stable fixed
point (a,, 4, b} with a non-zero number of antigens b >0 emerges. The antibodies are not able to
extinguish the invading antigen, there is a chronic infection. For the example shown here the system
relaxes to the new fixed point in an oscillatory manner.

figures the time is measured in days assuming a lifetime for antibodies of about 10
days.

The virulence « is taken to be 005, 0-1 and 1, ie. in the absence of antibodies the
number of antigens is doubled in In 2/x = 0-7/x, which ranges from about 1 hr to 1-2
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days. For the other parameters we have only few or no information from experi-
mental data,

From our analysis of the global stability of the system {cf. eqn (7)] we know that
x> | or, in other words, that repression should dominate stimulation. We parenthe-
tically note that these arguments, made on a purely formal level, strongly support
Jerne’s philosophy (Jerne, 1974). Except for Fig. 8, we have chosen « = 11 through-
out. As a general rule, one can assume that the system becomes stiffer the larger x is
and that it is more sensitive the closer x is to 1.

For the absolute value of the matching parameters m; we do not have any
experimental hint. We note, however, that a replacement m;;—Aim;; only means a
rescaling of the umits in which the number of constituents is counted. So the
equations remain invariant under the substitution x,—x;/4, d;—d,/4, y;—y,/i. Thus,
both the matching and the number of constituents per unit volume are measured in
arbitrarzy units. For numerical convenience we have taken m,; between 10-2 and
5x 1074

It remains to fix the number of memory B cells d; and the threshold y above which
they are generated. We have taken 4, = d for all i and used values for 4 between 1072
and 50 x 102 so that md > v and, in a stable symmetric cycle, x*=a=(a, a, .. ), the
fraction a/d is between 5 and 50. The threshold u, which does not appear in the
equations explicitly, is always taken to be 5.

In the simulations we have analyzed the behavior of small subsystems of anti-
bodies which, through the mutual matching, are abte to form n-cycles (n=2,3,4, 7).
The matchings m,; are defined through m,, =mfor I <i<n—1{ and m,, =m. All
other m;; vanish. We are particularly interested in the dynamics of the response
owing to an infection with antigens in the three cases we distinguished in 3.1, viz the
virgin state, the immunized state and the chronic infection. In this context we
consider a method to cure a chronic infection by provoking it to become acute.

3.2.2. Relaxation to a healthy immunized state

Whatever their mutual matching in the virgin state, the antibodies, in the absence
of antigens, die out and the zero fixed point is globally stable in the subspace of
antibodies.

First, we constder (Fig. 2} two types of antibody, in short, two antibodies x, and
x,, with mutual matching m, and infect (vaccinate) the system with an antigen y
which stimulates x, owing to a matching m. If the stimulation is strong enough, ie. if
mx, +my exceeds some threshold g, then memory B cells appear. After elimination of
the antigens, the system does not relax to the virgin state but to a healthy immunized
state: in the two-cycle the antibody x,, which has proved to be useful, is memorized.
In the case of a second infection with y it is immediately available, the secondary
response is much more effective than the primary one.

In Fig. 3 it is shown how the stimulation owing to an antigen y coupling with m to
x; propagates through a symmetric seven-cycle and induces internal oscillations.
During the response fo an antigen, the antibodies oscillate around its steady-state
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F16. 2. Response of a two-cycle (x,, solid line; x,, dashed line} 1o an antigen y coupling to x . The system
starts in the virgin state {d =0), is infected at 1 =0 with a subclinical dose py, =2 and relaxes back to the
virgin state. At t = 200 it is infected again with a dose p,, = 20 sirong enough to initiate the appearance of
memory B cells (d == 0-4) which leads to the formation of a stable two-cycle {primary response). At t =400
the system is infecied again with the same dose p;,. Owing to the existence of a stable cycle the response is
much more efficient (secondary response). The parameters are o = 005, p =001, & = 1'], m =005, m =003,
so that a/d =35,

value, which is for a symmetric n-cycle a =(d—y/m)/(x — 1) (Behn & van Hemmen,
19895). An oscillating response is also observed in experiments (see, for example,
Weigle, 1975; Hiernaux et al., 1982). In passing, we note that as 1 —co, the system
always approaches a homogeneous state, which is to be contrasted with the even—odd
behavior found by Hiernaux (1977). Both the alternating maxima and minima
{n even) and the limit cycle {n odd} found by him hinge on an effective negative bell-
shaped curve and a suitably chosen source term S. Since we do not work with bell-
shaped curves it is not surprising that we obtain neither of these effects—despite the
fact that both theories stress inhibition, The oscillations which we observe in Fig, 3
are inherent to cycles of length n > 3. The underlying mechanism is that antibody i
stimulates antibody i—1 and inhibits antibody i+ 1. Stimuiation and inhibition
propagate through the cycle in opposite directions and equilibrate each other as
t-—+o0. In a two-cycle, however, we get a direct compensation of both effects since
here i~1=i+1 (mod 2).

3.2.3. Chronic infection

We now turn to the situation that the antigens y are so virulent that the antibodies
x, are not able to eliminate them: the system relaxes to a chronic infection, showing
typical predator-prey oscillations. In Fig. 4 the response of a three-cycle is shown.
Note that just after the infection the antigen is much below its final value and
apparently near to becoming extinct. Superposed on these predator-prey oscillations
we have faster intra-cycle oscilations which have been discussed in subsection (ii).
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F1G. 3. Response of a seven-cycle (x,, ..., x,) which is stable against an antigen y that stimulates x,. The
systemn relaxes to a healthy immunized state. In the cycle, x, stimulates x; (solid line), x, stimulates x,
(dashed ling), and so on. In this way, stimulation propagates through the cycle and induces an internal
oscillation, which is seen both following a single track and by pursuing the wave fronts (hills) from top (x;)
to bottom (x,). The parameters are & = 0-05, vy =001, k= 11, m=m =005, d =05, so that a/d =6.

3.2.4. Therapy for a chronic infection

We consider again a two-cycle which is now unstable against a virulent antigen.
After a primary infection the system will relax to a chronic infectious disease.

Our key idea, which we expound below, is to induce a second infection for the
purpose of therapy. To this end, we inject the same dose y,, of antigen repeatedly, viz
I times. The injections drive the system out of the stable fixed point of the chronic
infection towards a new one which exists as long as the antigen input lasts and is
characterized by an extremely high value of antibody x,. the one inhibiting the
antigen y (phase 1). Once the injections are stopped the system moves “free” along
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FiG. 4. Response of a three-cycle (x,;, x,, solid line; xj, dashed line) which is unstable against the
instantaneously applied antigen y (y;, = 20) stimulating x,. There are two different oscillations: (i) of the
predator—prey type which is dominant (cf. Fig. 3), and (ii} the internal oscillations of the cycle which relax
much faster. The parameters are a =01, y =0002, x = I'l, m=m =001, d =05, so that a/d = 6.

trajectories governed by (8—10). The “surplus™ antibodies attack the antigen, whose
number now decreases exponentially to a very small value (phase 2). During this
process x, relaxes to its normal value, which is of the order one. The antigen seems
extinct but it need not be and, if it is not, it returns to a value of order one after a
time we call the recurrence time R (phase 3). If the infection has reappeared the
treatment can be repeated.

As shown in Fig. 5, the recurrence time R increases with I. It becomes infinite once
the antigen is extinct. In passing, we note that the numerically determined recurrence
time loses its biological relevance as soon as y becomes so small that the antigen can
be considered extinct; cf. Fig. 6. We now explain the three phases in more detail. The
equations describing the two-cycle (x,, x,) and the antigen y interacting with x, are
(8), (9) and

¥ = yla—mx))+y,/At (14)

which replaces (10). Here, we introduced an extra simplification. In our simulations
we have assumed discrete injections through [y;, Y i_, 8{(t—nA1)]. In (14), however,
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FiG. 5. Specific stimulation therapy for a chronic infection. We show the response of a two-cycle (x,,
solid line; x,, dotted line) which is unstable against a virulent antigen y stimulating x,. All parts of the
figure have the first infection at 1 =0 in common, after which the system relaxes to a chronic infection
{note the different scales at the ordinate). Then, at t = 100 (days), an additional dose of antigen y,, =20 is
repeatedly injected each time unit over different periods of time [ (f=1,.. ., 55, as indicated in the right
upper corners) [or the purpose of therapy. Alter this, the antigen appears nearly extinct before it reappears
(latent period). The duration of the recurrence time increases in a non-linear way with increasing I. The
parameters are ¢« =01, y =001, x =11, m=005, m=003, d=04.

we have a source term y,,/At = const. which produces the same amount of antigen
but is continuous. This approximation is excellent as long as At is small compared
with characteristic times of the system and greatly simplifies the ensuing arguments.
(In the remainder we put At=1))

In all three phases, the value of x, hardly changes and equals df(x —1) to good
approximation as x, is large. During phase 1, the variable x, approaches asymp-
totically, as I increases, a new quasi-stationary value which usually exceeds the
“chronic” value a/m by two orders of magnitude. So it does not make any sense to
augment [/ without bound.

Once the injections are stopped, phase 2 begins and the huge reservoir of x,
reduces y at an exponential rate. This is clearly seen in Fig. 6 where we have used a
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FiG. 6. Flow diagram for the specific stimulation therapy as in Fig, 5. Since x, is nearly constant {cf.
Fig. 5, dotted line) we restrict ourselves to the projection on the x; —In{y) plane and show trajectories for
increasing I. After these injections (which drive the system out of the stable fixed point of the chronic
infection) the number of antigens decreases exponentially. For y smaller than a given threshold the
antigens can be considered as extinct. (Formerly, however, the trajectories always return to the stable fixed
point as shown in the figure, see also insertion.) The parameters are the same as in Fig. 5 with the
exception of m =001 ang y,, = 5:0.

logarithmic scale for y and a linear one for x,. From (8) and (9) we have

dIn{y}

dx = (a—mmx )/ {x,[(1 — w)mx; —y] +dmx, +(d+x)my} = m/(y+md) (15)

and the linear dependence of In(y) upon x; follows. During this process, x, is also
reduced to normal values where the above approximation breaks down. Then,
finally, phase 3 starts, if y is not extinct yet.

The therapy described so far has two parameters, the dose y,, of a single injection
and the time I during which the antigen is given. With increasing time [ the system
reaches asymptoticaily the new, guasi-stationary, fixed point corresponding to y,,
{phase 1). The free trajectory through this new fixed point is the marginal trajectory.
It may be impossible, however, to treat the patient with arbitrarily high total doses of
antigen ¥, = ¥in!. We have therefore also investigated the case where a fixed total
dose ¥, 15 partitioned into momentary doses y,, = y,,..1/1 applied over period I. A
relevant quantity to measure the success of the therapy is the recurrence time R which
we have defined as the time span between the last injection of the antigen and the
first maximum of antigen population thereafter; cf. Fig. 5. It approximately coincides
with the time span during which the antigen is nearly extinct. Given a fixed total
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Fic. 7. Optimal therapy. Dependence of recurrence time R upon injection period I for fixed total dose
Yiorar- FOr a set-up similar to that of Fig. 6, we have measured the recurrence time R as a function of the
injection time I. The injection peried I and the momentary dose y,, are chosen so that the integrated dose
Yol = Yin f over the whole injection period is a constant: y, = 20 { x), 75 {Q) ot 200 (A). The graphs
clearly exhibit a maximum for injection periods of intermediate length (I = 30-50) and indicate that it may
be advantageous to spread the total dosc of antigen over an extended period of time. The results are
obtained for a four-cycle where antibody x, is stimulated by antigen y. The parameter values are a =01,
y=0002, k=11, m=m=001 and d = 0-5.

dose y,... one can determine the recurrence time R as a function of the injection
time I. This has been done in Fig. 7 for different total doses y,,,;. The recurrence
time has a smooth maximum for an injection period of approximately 40 units of
time where it is considerably larger than for a single injection (I =1} of the same
integrated dosc y,.,,. For still larger injection periods the recurrence time decreases
slightly. The global shape of the curves does not depend on the total dose. The data
indicate that it can be more favorable to dispense repeatedly a small dose of antigen
than injecting a large dose once. (We have also found, however, cases where the
recurrence time decreases monotonically with the injection time.)

Obviously, it is not necessary to inject the antigen with its full virulence which
might be suspected to be hazardous. The same effect could be reached by injection of
a weakened antigen with a smaller virulence o’ « o« or with a substitute with similar
matching that does not reproduce itself at all. The only aim is to provoke a
production of the useful antibodies x, above the value of the steady state of the
chronic infection.

The method to cure a chronic infection by provoking it to become acute (specific
stimulation therapy) is well known in medicine. For instance, it was applied to
tuberculosis before the era of chemotherapy and antibiotics (see, for example,
Alexander-Crespera, 1951). In theoretical immunology there exist models which
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FiG. 8. Aufbauprinzip. We consider three three-cycles with intracycle matching m =02 for different
strengths of the intercycle coupling # [M/m =002 (a}, 0-1 (b) and 1 (c]]. x, in cycle 1 matches with /=02
to the antigen y. For small intercycle coupling (a) the cycles 2 and 3 show only a very modest response on
a longer time scale. (This is the most probable case, cf. section 2.3 With increasing strength of the
intercycle coupling, the time scale of the response becomes faster, the strength of the response increases,
one observes predator-prey oscillations superposed to internal oscillations. If #/m =1 {c) one observes a
complex multifrequent response, it does not seem justified to separate the whole system into subsystems.
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describe the method of unspecific stimulation (Marchuk, 1983). Our approach,
however, is, to the best of our knowledge, the first attempt to explain a stimulation
therapy in the framework of a network theory. It furthermore could help to
understand the rationale behind a homeopathic therapy. We finally note that a
desensibilization therapy for allergic diseases could be explained in a similar vein.

4. Aufbauprinzip

An Aufbauprinzip is a rule, or a set of rules, that governs the composition of a
network out of its basic constituents—here the immune system, as it is composed of
its basic components, cycles and other complexes. The underlying idea of the present
work is that cycles, or whatever basic complexes, can be put together through
matching without destroying the memory storage that is performed by each indivi-
dual cycle. Now that we have studied the constituents carefully, we turn to analyzing
a network.

Suppose we have a coilection of cycles I, with 1 <k < K. By assumption, the
intracycle matchings are rather strong, but we still have to decide about the strength
e of the intercycle interaction. According to a recent proposal of Varela &
Coutinho (1991), about one-fifth of an aduit’s immune system constitutes a network,
whereas the remaining four-fifths which the authors hold responsible for the defense
against invaders, is made up of functionally disconnected units. If this picture is
cotrect, then it implies a very weak intercycle coupling .. In this paper, however,
we have taken the m,, rather strong so as to vindicate our approach.

Figure 8 shows the response of three three-cycles (K = 3) with intracycle coupling
m for different values of intercycle coupling m. We assume that antibody 3 of the
cycle k is inhibited by antibody 1 of cycle (k+1) and that antibody 1 of cycle 1
matches with the antigen. A glance at Fig. 8(a} suffices to conclude that for small
intercycle coupling /i = m/100, the response of cycle 1 upon insertion of the antigen is
dominant and that the other cycles react with a considerable delay. The response of
cycles 2 and 3 becomes (i) faster, (ii) more pronounced, and (i) more “chaotic” as the
intercycle matching is increased. This behavior confirms our a priori expectation. A
weak interaction between the cycles does not destroy the basic features of each of
them, individual memory is preserved, and the response of the cycle which matches
the antigen is by far more pronounced than that of the rest of the network.

In the spirit of the work of Varela & Coutinho, which we have already referred to,
we now propose another model, which is analytically tractable. The network is
modeled as a system of K quasi-independent antibodies which interact via a
matching m/K. Here, one may also include a noise term. In addition to the network,
we take a single cycle that we couple either to one of the network’s constituents or to
the whole network. The network then either functions as background noise or

(This case is highly unprobable; cf. section 2.3.) Note that in the latter case the system is not too efficient in
fighting against the antigen. A total dose of antigen y,, = 50 is injected at t = 2. The ather parameters are
a=10, y=001, k=101 and d =0-1. (In all cycles: x,, solid line; x,, dashed line; x;, dotted line.)
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“swallows™ the cycle. Details of analyticali and numerical work are deferred to a
future publication.

5. Discussion

Though significant differences exist between memory storage in the mmmune
system and in the brain—for example, neurons live much longer than any of the
constituents of the immune system—there is also a striking similarity. Memory in the
brain has been modeled either as storage in specific neurons, each reacting to a
specific stimulus only (grandmother neuronsj, or in a distributive manner through a
tuning of the couplings (synapses) between the neurons. Memory to an antigenic
challenge of the immune system can be modeled cither as an “excited” state of
“grandmother cells”, for example, B cells (Weisbuch, 1990, Weisbuch et al.,, 1990), or
in a distributive manner through the matchings between different cells—as has been
done in the present paper. In the spirit of Jerne (1974), we suppose that memory is
stored “in the symbiotic equilibrium of a cycle that contains an image” of an antigen
and produces dormant {memory) B ceils, which stabilize the cycle. We have estab-
lished a synergy between both dynamic memory (cycles) and static memory (memory
B cells). Also, in agreement with Jerne (1974), we assume the interaction to be such
that it is globaily suppressive. Our model allows an exponential growth of the
number of antigens as it occurs during the initial stage of an infection.

A cycle may, but need not, be embedded in a network. The matching is not
required to be symmetric or uniform nor do we assume a cellular automaton
approximation. In most cases, memory storage is realized at concentrations which
are so low that the saturation and steric hindrance do not occur (yet). If one includes
these effects in the dynamics through, say, a bell-shaped response function, a
straightlorward explanation of high-zone tolerance results. Another extension of the
present model is by combining it with, for example, a dynamics in shape space (Segel
& Perelson, 1988) so as to take care of the interplay between mutation and B-cell
dynamics. Finally, most immune responses also include T cells and the memory
associated with them. However, once basics are understood, a more realistic descrip-
tion of idiotypic memory is within reach.
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APPENDIX A

Separate Treatment of B Lymphocytes and Antibodies

In the main part of this paper no distinction was made between free antibodies
and those on the surface of B lymphocytes, ic. the dynamics of B cells were only
implicitly dealt with. Here, we drop this simplification and establish the equations
which separately describe B cells (carrying about 10° antibodies on its surface), free
antibodies and antigens. We denote the number of B cells of type i by X,,i=1... N,
the number of corresponding free antibodies by x;, and the number of antigens of
type i by y;,, i=N+1... N+ R. Then the equations of motion read

. N N N+R
Xi= Xi(z Mijx,-—v,) +dp Y ompgtdee X) Y myy; (A.1)
=1 j=1 i=N+1
N NiR N N+R
X = —hxi+5Xi(E Mm%+ Y mijyj) —& x| Y my(X;+d)+ Y mi}y)}
=1 J=N+1 =1 J=N+1
N
—erx; ) (mytmyx.  (A2)
i1
N
Vi=Yi {a— Y my [31X;+33(‘#+XJ)]}- (A.3)
j=1

The bilinear term X;M;x; is to be explained as follows.

A B lymphocyte is stimulated only if it carries a minimal number n antibodies or
antigens; n depends on § and j. At first sight this might suggest a term proportional to
X;M,;x] corresponding to a simultaneous occurrence of at least n antibodies
(antigens) on a B lymphocyte of type i. This is not the case, however, because there is
an antibody-antibody (—antigen) binding so that they can arrive one after the other
and are bound for a certain time. If their number exceeds n, a reaction takes place. In
the present paper we do not take into account the corresponding delay and therefore
describe the production/elimination term simply by X;M;;x;. Of course, the sojourn
time of antibodies (antigens) j on the surface of a lymphocyte i is finite. Hence, it is
more appropriate to speak about the mean number of antibodies j on i at a given
time ¢. If this number remains less than n, there is no response of the iymphocyte i.
This directly leads 10 a threshold g as it appears in 2.1 and, hence, to a low-zone
tolerance. The very same threshold could have been included in (1) at the cost of
making the analytical work much harder—without altering the essentials, though.

Equation (A.2) deserves an additional expianation: the second term on the right-
hand side describes the production of free antibodies by B cells which are stimulated
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F1G. 9. Response of a three-cycle which is stable against the instantaneously applied antigen y (y;, = 20}.
We distinguish between B cells (X, X,, X3} and free antibodies (x,, x,, x;). The trajectories of B cells
(surface antibodies) and free antibodies have a similar qualitative behavior. The parameters are o = 0-05,
7, =003, 7, = 0009, k = -1, m=01, =05, d =000, & =01, £, = 10, &, = 01 and § =200,

by antibodies or antigens. The third and fourth terms describe the loss of free
antibodies owing to the binding of free antibodies by B cells and antigens, or by free
(anti-idiotypic} antibodies, respectively. Equation (A.3} is built as eqn (3] in section
2.1 with the only difference that we now distinguish the loss of antigens owing to
interactions with {ree antigens, memory B cells and B cells.

The &, £,, &; and ¢, are the corresponding new phenomenological constants,
Furthermore, y, and y, denote the inverse lifetimes of B cells and free antibodies in
the absence of stimuli, respectively, while m;;, M;; and d; keep their previous meaning,

The numerical simulation of the dynamics described by (A.1-A.3) for small
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systems, as two- and three-cycles interacting with an antigen, shows that the
trajectories of B cells and free antibodies closely follow each other (cf. Fig. 9). This
Jjustifies not to distinguish between them.

1t is, however, just natural that the behavior may as well become more complex as
more details are included; see, for example, Perelson (1989) and de Boer er al. (1990).

APPENDIX B

Global Stability

From (7} it follows that it is impossible that two antibodies, say x, and x,,
connected by a non-zero mutual matching diverge at the same time. In this case, the
left-hand side of (7) would diverge to oo, whereas for « > I, the right-hand side
diverges to — co, which is 4 contradiction.

Is it possible that only a single antibody diverges? To answer this question we take
a finite x; interacting with x, owing to a non-zero M,,, suppose that x, diverges to
infinity, and write

kit yx; =My +dimg)x +x; Y Mppx;+rest, (B.1)

LY )
i#h1
where the “rest” denotes all the terms not containing x; and x, and therefore staying
finite.

If M;, > 0 (x, stimulates x;), the right-hand side of (B.1) diverges to 2o and so does
X;, in contrast to our assumption.

If M;; <0 (x; suppresses x;), we first assume that x,(t— oo) converges to a limit g;
so that x;—0. Then the prefactor of x, in {B.l) should vanish which implies
a;= —d;m;;/M,,. In the case that x,(t) is oscillating, we consider the local extrema of
the trajectory which occur at the times t = 7, for which x(t,) = 0. From (B.1) we then
have

yxty) = [x(edM +dimy Jx (1) + x(t,) Y M, xdt,) + rest. (B.2)
J=i 1
Since x, increases without bound the sequence x,(t,} converges to g; for the same
reason as in the previous case,
That it is, indeed, possible that a single antibody completely dominates can
already be seen for the example of a two-cycle (Behn & van Hemmen, 19894, b). Its
fixed point is

a=("—d dymyymy {(yM;, +dymy M) (9M s +d myp M, ) (B3)

which is stable for y* <d,d,m,,m,,. The positivity of the components leads to a
condition on «, namely, x>x{=max{x, x;} where K;=myly+dm;)/
(ym;+d;m?). So x> K;; ensures that g; is positive. Thercfore, as k—«{ +0 the larger
component of a, say ay, diverges to infinity and the other stays finite, @, =
~d;m; /M;, > 0. To avoid this we have again to make sure that x is large enough, ie.

repression should dominate—-as advertised,



