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Abstract. We present a network model of visual map
development in layer 4 of primary visual cortex. Our
model comprises excitatory and inhibitory spiking
neurons. The input to the network consists of correlated
spike trains to mimick the activity of neurons in the
lateral geniculate nucleus (LGN). An activity-driven
Hebbian learning mechanism governs the development
of both the network’s lateral connectivity and feedfor-
ward projections from LGN to cortex. Plasticity of
inhibitory synapses has been included into the model so
as to control overall cortical activity. Even without
feedforward input, Hebbian modification of the excit-
atory lateral connections can lead to the development of
an intracortical orientation map. We have found that
such an intracortical map can guide the development of
feedforward connections from LGN to cortical simple
cells so that the structure of the final feedforward
orientation map is predetermined by the intracortical
map. In a scenario in which left- and right-eye genicu-
locortical inputs develop sequentially one after the
other, the resulting maps are therefore very similar,
provided the intracortical connectivity remains unal-
tered. This may explain the outcome of so-called reverse
lid-suture experiments, where animals are reared so that
both eyes never receive input at the same time, but the
orientation maps measured separately for the two eyes
are nevertheless nearly identical.

1 Introduction

How does a cortical map arise? This is a longstanding
question that has stimulated many experimental and
theoretical investigations. On the one hand, it has been
proposed that the layout of any map may be genetically
coded. On the other hand, cortical maps may form
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through a Hebbian learning process driven by sponta-
neous or sensory-induced neuronal activity. Here we
suppose that the basic network structure is made
available by genetic coding and show how most of the
orientation map in primary visual cortex can emerge
from Hebbian plasticity of intracortical and geniculo-
cortical interactions. Since the discussions concerning
the origin of cortical maps are intense, we start with a
short review.

Measurements of neuronal activity in primary visual
cortex of cat have shown that cortical cells respond well
to stimulation within a certain receptive field on the ret-
ina. Many cells respond preferentially to bar-like stimuli
of a specific orientation and are activated predominantly
through one of the two eyes. The location of the receptive
field, the preferred orientation, and the ocular dominance
of recorded cells change gradually as the recording site is
moved tangentially to the cortical surface (Hubel and
Wiesel 1962). The global organization of these cortical
response properties has been mapped by anatomical,
electrophysiological, and optical imaging methods for cat
(Tusa et al. 1978; Bonhoeffer and Grinvald 1991; Bon-
hoeffer and Grinvald 1993), monkey (LeVay et al. 1975;
Hubel et al. 1977; Blasdel and Salama 1986; Blasdel
1992a,b), ferret (Law et al. 1988; Chapman and Stryker
1993; Chapman et al. 1996; Weliky and Katz 1997), and
tree shrew (Humphrey and Norton 1980; Humphrey
et al. 1980; Bosking et al. 1997).

It is, however, still a matter of debate how cortical
orientation selectivity is set up (Ferster and Miller 2000).
Hubel and Wiesel (1962) originally proposed that geni-
culocortical connections are arranged so that the re-
ceptive field centers of thalamic cells projecting onto a
single cortical simple cell cover an elongated region in
the visual field. While there are many experimental
studies claiming that the response properties of simple
and complex cells are mainly determined by feedforward
projections, as suggested by this model (Ferster 1987,
1988; Reid and Alonso 1995; Ferster et al. 1996; Chung
and Ferster 1998), others find that intracortical links
provide the main contribution (Sillito 1979; Sillito et al.
1980; Crook and Eysel 1992; Nelson et al. 1994). At
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present it seems most likely that both feedforward and
recurrent intracortical processes both excitatory and
inhibitory in nature participate in the formation of ori-
entation selectivity (Vidyasagar et al. 1996).

Theoretical studies (von der Malsburg 1973; Linsker
1986a,b; Kammen and Yuille 1988; Stetter et al. 1993;
Miller 1994; Wimbauer et al. 1997a,b) have proposed a
Hebbian development of geniculocortical synapses that
is driven by correlated feedforward input from thalamic
neurons (for a recent review see Miller et al. 1999). In
these correlation-based approaches, the intracortical
connectivity is usually assumed to be rotationally sym-
metric and fixed. Under relatively general conditions
they predict the emergence of an orientation map for
cortical simple cells which is formed by the resulting
arrangement of feedforward connections.

As such, the above explanation of cortical map for-
mation has been challenged by work of Gdédecke and
Bonhoeffer (1996) and Sengpiel et al. (1998). In their
experiments, cats were raised so that both eyes never
received visual input at the same time, which was
achieved by reverse lid suture. If geniculocortical re-
finement were driven by activity correlations in the lat-
eral geniculate nucleus (LGN) and these correlations
were mainly determined by the correlations of the visual
input, then the left-eye orientation map would form in-
dependently of the right-eye map and the two maps
could be expected to be different. Optical imaging of
area 18, however, showed them to be nearly identical.
The authors concluded that each map’s layout was fixed
by some internal mechanism either a priori or during the
period when the first eye was open. They proposed long-
range horizontal projections within primary visual cor-
tex as a potential substrate of this mechanism.

Recently, however, Erwin and Miller (1998) have
demonstrated that the emergence of ocularly-matched
orientation maps can be well explained within the
framework of correlation-based development, if an ap-
propriate amount of thalamic inter-eye activity correla-
tions is assumed. Experimental findings of Weliky and
Katz (1999) indicate that strong inter-eye correlations
are indeed present in the ferret’'s LGN before eye
opening. Nevertheless, it is still unclear whether this
model can actually account for the outcome of the
reverse lid-suture experiments.

Wolf et al. (1996) have pointed out that cortical area
18 of the cat is shaped as a narrow band on the cortical
surface, so that pattern formation within this region is
subject to strong confinement. In computer simulations
they have shown that different feedforward orientation
maps developing under this constraint are always very
similar — in accordance with reverse-suturing experi-
ments. The authors argued that experimental results
should be qualitatively different in a larger area, e.g. area
17, because boundary conditions are less important. As
Bonhoeffer and Goédecke (1996) have explained: “Un-
fortunately this idea is difficult to test, as in cats the main
part of area 17 lies buried in the medial bank and is
therefore inaccessible to optical imaging”.

In this paper we propose a model of layer 4 of pri-
mary visual cortex consisting of laterally interconnected

spiking neurons of both excitatory and inhibitory type. It
combines the idea of correlation-based learning of gen-
iculocortical afferents with Hebbian development of
short-range intracortical synapses. Inhibitory interneu-
rons and plastic inhibitory synapses have been included
in the model so as to control overall network activity.

Large-scale computer simulations show that in this
kind of network it is possible to obtain an intracortical
orientation map from a Hebbian learning process driven
by cortical activity alone. The process does not depend
on the presence of feedforward input and could there-
fore occur at early stages of visual development, when
thalamic axons have not yet entered cortical layer 4. The
resulting map structure resembles that typical of orien-
tation maps obtained from optical imaging experiments.
This might indicate that intracortical circuitry does
contribute significantly to the orientation selective re-
sponse properties of cells in the primary visual cortex.

Experiments by Ferster (Ferster 1987, 1988; Ferster
et al. 1996) do indicate, however, that feedforward input
from the LGN is relevant as well. Consistently with
these data, we demonstrate that correlation-based de-
velopment of geniculocortical projections can interact
with emerging intracortical connectivity so as to give a
matched feedforward and intracortical orientation tun-
ing for each cortical cell. As a consequence, the devel-
oping pattern of feedforward projections is more or less
predetermined once the intracortical connectivity is
fixed. This provides a very natural explanation for the
remarkable stability of orientation maps that has been
found experimentally (Kim and Bonhoeffer 1994; We-
liky and Katz 1997; Goédecke and Bonhoeffer 1996;
Sengpiel et al. 1998, 1999). In contrast to the proposi-
tion of Wolf et al. (1996), our model predicts strong
correlation between orientation maps in reverse-suturing
experiments not only for small but also for larger visual
areas such as area 17 of the cat.

This paper is organized as follows. In Sect. 2 we in-
troduce the model of spiking neurons that we have used
in our simulations. We then turn to a description of the
full network, explain the learning rules that govern
synaptic development, and finally we present our data-
analyzing procedure. In Sect. 3 we show that intracor-
tical orientation maps can develop from spontaneous
cortical activity alone, without feedforward input. We
demonstrate how this intracortical development can be
combined with plasticity of geniculocortical connectivity
and show that such a combined development can explain
the outcome of the reverse-suturing experiments. We
end with a summary and a short discussion.

Part of this work has been presented in preliminary
form — see Bartsch and van Hemmen (1999).

2 Methods
2.1 Spiking neurons
To keep our network as close to biology as possible, we

decided to build it up from spiking neurons. A neuron
model that is able to reproduce many biological features



and yet allows large network simulations is given by the
usual integrate-and-fire neuron. For the present inves-
tigation we have chosen the stochastic spike response
model (Gerstner and van Hemmen 1992, 1994), which is
a more flexible, extended version of the integrate-and-
fire neuron.

The state of a spike-response neuron is described by
its membrane potential 4 as a function of time. Every
incoming spike evokes a transient change of this mem-
brane potential called postsynaptic potential and mod-
eled as a response kernel ¢(¢). After spike emission the
neuron enters a refractory period that is described by a
second response function 7(¢), the refractory potential.
Spike generation itself is governed by a generalized
Poisson process. This means that the probability P'(z, d¢)
that the neuron emits a spike during the infinitesimal
time interval [, 7 + df] can be written

Pi(t,dt) = A(t)de

and the probability of more than one spike being emitted
during that period is o(dz). The spike emission rate A(¢)
is given by some function ¢ of the membrane potential 4,

At) = qlh(0)] -

Each time the neuron generates an action potential, a
negative contribution #(¢) is added to the membrane
potential to account for the reduced excitability during
the refractory period. At a postsynaptic neuron i each
action potential arriving from a presynaptic neuron j
induces a postsynaptic potential that is given by &(¢)
multiplied by a synaptic weight J;;.

Thus the total membrane potential 4; of neuron i is a
sum of a synaptic contribution A" evoked by spikes of
other neurons and a refractory contribution A*T as a
result of its own spiking:

hie) = B () + B (1)

where

BT () == "n(t—1)

i<t

) =3 e —1)

f
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and # denotes the firing times of neuron i.

2.2 Network setup and simulation algorithm

We have designed a network of spike response neurons
that is intended to model: (a) excitatory and inhibitory
cells in a small patch of layer 4 in primary visual cortex,
and (b) excitatory cells in a corresponding patch of
LGN, providing input to cortical layer 4. The full
network is separated into three equally-sized square
grids with periodic boundary conditions (see Fig. 1).
Cortical excitatory and inhibitory cells make up two
of these grids. We have separated them into distinct
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Fig. 1. The network model we use to study intracortical and
feedforward learning dynamics can be decomposed into three
equally-sized square grids of spike response neurons. The two upper
layers are designed to represent a small patch of layer 4 of primary
visual cortex. Excitatory and inhibitory neurons have been separated
into distinct layers only for a clear illustration of the connectivity
structure. We do not presume that such a separation is present
anatomically. Each of the excitatory cortical neurons receives lateral
input from neighbouring excitatory and inhibitory cortical cells.
Inhibitory neurons are driven by the activity of excitatory neurons.
Feedforward input into the cortex is provided by LGN neurons in the
bottom layer, representing geniculate relay cells. They produce
correlated spike activity with known statistics. All synaptic connec-
tions except for those from excitatory to inhibitory cells (dashed
arrow) are subject to activity-driven learning dynamics. Periodic
boundary conditions have been applied throughout each layer. In that
part of our simulations where we consider cortical learning dynamics
alone (Sect. 3.1), the LGN grid is not present so that we are left with
the two upper layers only

layers so as to clarify the connectivity structure within
the network; we do not presume that such a separation is
present anatomically. We assume that every neuron has
a limited arborization range of axon collaterals and
dendrites within layer 4 so that each excitatory neuron
receives lateral connections from a certain region of
neighbouring excitatory cells as well as from a region of
neighbouring inhibitory cells. With the network being
intended for an investigation of developmental processes
occurring relatively early in cortical layer 4, the long-
range excitatory connections found in laminae 2/3 and 5
are neglected. It is therefore plausible to choose similar
arborization regions for both excitatory and inhibitory
connections. Here these regions have been chosen to be
circles centered on the cell under consideration and ex-
tending over 11 cells in diameter — a number that is not
realistic but suffices for simulation purposes. In the
present version of our model, inhibitory neurons receive
lateral excitatory input from within a neighbourhood of
11 neurons in diameter, but do not make synapses with
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other inhibitory cells. They produce an inhibitory
background of spikes that is used to normalize overall
network activity.

A third layer in our setup represents geniculate cells,
providing input to the cortex. Since in this paper in-
vestigations are restricted to the case of monocular
input, we need only consider neurons located within one
eye-specific lamina in the LGN, say lamina A. Every
excitatory cortical neuron obtains input from geniculate
neurons lying within a circular arborization area cen-
tered at the retinotopic position of the cortical cell.
Again the diameter of the circle extends over 11 neurons.
To save computation time, which is an important lim-
iting factor of our simulations, we only model LGN cells
with ON-center receptive fields and do not account for
OFF-center cells explicitly. It will become clear in the
following text why this is possible. All synaptic con-
nections in the network, except for those from excitatory
to inhibitory cells (dashed arrow), are subject to activity-
driven learning dynamics.

In many existing models of correlation-based geni-
culocortical self-organization (Linsker 1986b; Miller
1994; Wimbauer et al. 1997a,b; Erwin and Miller 1998),
orientation selectivity of simple cells develops through a
competition between inputs from LGN neurons with
ON-center and OFF-center receptive fields. Correlated
random activity of geniculate cells is the driving force for
this competition. The typical simple-cell receptive field
structure emerging from such a model can be under-
stood to be the result of a symmetry-breaking process
taking place separately for ON- and OFF-center inputs.
This three-stage process is illustrated in Fig. 2 from left
to right.

In our model, like in previous ones, the emergence of
orientation selectivity in the geniculocortical projections
is driven by correlated random activity of LGN cells.
Since, however, ON-OFF competition can be viewed as
two coupled but separable symmetry-breaking processes,

OFF-center

ON-center

Fig. 2. Emergence of an orientation selective simple-cell receptive field
through competition between inputs from LGN neurons with ON-
and OFF-center receptive fields. Initially the cell receives input of both
ON- and OFF-center type from a circularly symmetric region in the
visual field, indicated by a white and a black circle, respectively (a). In
the course of a symmetry breaking process, both input types become
restricted to non-isotropic subfields (b). This symmetry breaking can
be thought of as occurring separately for ON- and OFF-center inputs.
An assumed anticorrelation between the activities of the two
geniculate cell types ensures that the subfields are in anti-phase with
each other. Together they form the receptive field shown on the right
(c), where a black or a white shading indicates whether dominant
input is from OFF- or ON-type cells

we take into account only one geniculate cell type, with
ON-center receptive fields, say. It should be emphasized,
though, that we do not presume that OFF-center LGN
cells do not contribute to orientation selectivity. Ne-
glecting OFF-center inputs in our model is simply a
computational shortcut. Because of the aforementioned
anticorrelations between ON-center and OFF-center
activities, in Fig. 2 the complete receptive field structure
shown by (c) is fully determined by either one of the two
substructures displayed by (b). It is therefore sufficient to
study the development of geniculocortical synapses from
either ON- or OFF-center LGN cells. The lower part of
Fig. 2b gives a schematic view of a simple cell’s typical
feedforward input connectivity emerging in our reduced
model.

In short, the simulation algorithm that has been ap-
plied is as follows. At the beginning of each time step,
the firing probability of every neuron is determined from
its membrane potential 4. To be specific, we let

P{spike during A¢|h}

q(h)At = {1 + exp[—(h — 0)/T]} "'
= (1/2){1 + tanh[(h — 0)/2T]} , (1)

with Ar = 1 ms denoting the size of the time step, 0 being
the neural threshold and T a noise parameter.

Next, it is decided randomly from the firing proba-
bility whether a neuron emits a spike or remains silent
during the current time step. Subsequently, the mem-
brane potential of each cell is updated using the spike
trains of all the neurons projecting onto it. Both the
postsynaptic potential &(¢) and the refractory potential
1(¢) have been chosen to be exponentials (see Fig. 3):

e(t) = exp(—t/1,) , (2)

n(t) = noexp(—t/7y) (3)

for t >0 and vanishing for <0, with 7, =6 ms,
7, = 10 ms, and y, = 10. At the end of each time step,
all synaptic weights are modified as is explained in
Sect. 2.3.
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Fig. 3. In the spike response model (cf. Sect. 2.1) every incoming
spike induces a transient change of the postsynaptic neuron’s
membrane potential. This postsynaptic potential is described by a
response function &(z), which we have chosen to be an exponential as
displayed in the left panel. To model refractoriness, a second response
kernel #(¢), shown in the right panel, is subtracted from the membrane
potential after spike emission



In order to simulate correlated thalamic activity the
membrane potentials of the LGN neurons are prescribed
externally. Their values are drawn from a two-dimen-
sional Gaussian random field. A new realization of this
random field is generated every 10 time steps. In this
simple way we obtain spatially and temporally corre-
lated spike trains from LGN neurons.

Depending on the simulation, these steps are repeated
for 2 500 000 or 5 000 000 iterations (see simulation
parameter values in the Appendix), which corresponds
to roughly 40 or 80 minutes in real time.

2.3 Learning mechanisms

There is increasing evidence that synaptic plasticity in
the developing brain is to a large extent dependent on
neural activity (Wiesel and Hubel 1963; Crair et al. 1998;
Issa et al. 1999). Originally, Hebb (1949) postulated that
the efficacy of a connection between two cells is
increased if the postsynaptic cell is repeatedly activated
by the presynaptic one. Since then many studies have
shown that by appropriately coactivating a pair of
neurons, the strength of their connection can indeed be
modified (Brown and Chattarji 1994; Fregnac et al.
1994).

In the model presented in this paper we have incor-
porated plasticity of both excitatory and inhibitory
connections. Modification of excitatory synapses is
governed by the following rules:

1. A Hebbian mechanism increases synaptic efficacy
whenever a presynaptic action potential is immediately
followed by a postsynaptic one (see the learning window
in Fig. 4).

2. Each time a neuron emits a spike, the weights of all
its incoming synapses are reduced by a certain amount.
Such a process prevents a neuron from enhancing its
inputs ad infinitum, since growing input increases the
neuron’s firing rate, which in turn diminishes the weight
of incoming synapses. As a consequence, different input
synapses of the same neuron have to compete for syn-
aptic weight, because an increased efficacy of one group
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Fig. 4. Learning window ¥ (¢) for excitatory synapses. In our model,
an excitatory synapse is strengthened whenever a presynaptic spike is
immediately followed by a postsynaptic one. The graph displays the
change of synaptic weight (in arbitrary units) that is applied
depending on the time difference between the post- and presynaptic
spikes
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of synapses leads to a down-regulation of the remaining
ones due to the cell’s increased firing rate. Experimental
support for this mechanism has been provided by work
of Turrigiano et al. (1998), who found the total input
strength of rat cortical pyramidal cells to be increased or
decreased as a function of activity.

Taken together, the rules 1. and 2. cause a synapse to
be up-regulated when a postsynaptic spike immediately
follows a presynaptic one, and to be down-regulated
otherwise. This is at least in qualitative agreement with
experimental findings (Markram et al. 1997; Zhang
et al. 1998).

3. The efficacy of every synapse is slowly reduced at a
rate proportional to its current weight. Recently, Engert
and Bonhoeffer (1999) gave some indirect evidence for
such an activity-independent decay in rat hippocampal
slice cultures.

4. Each synaptic weight is enhanced at a constant
rate, independent of neuronal activity. Together with
rule 3., this means that without activation a synapse will
slowly approach some non-zero efficacy. This process
can be considered as an activity-independent formation
of synapses that is driven by some sort of nerve growth
factor.

S. Finally, we limit each synaptic weight to a finite
range between 0 and some upper bound. Note, however,
that in contrast to some previous models (Miller 1994;
Wimbauer et al. 1997a,b; Erwin and Miller 1998) these
bounds are not sticky, i.e. all synapses remain plastic,
whether they are saturated or not.

With J;(t) denoting the excitatory weight from neu-
ron j to neuron i, the change AJ{(#) that results from
contributions by rules 1. to 4. to this weight during the
current time step can be summarized in the following
formula:

AJE(t) = A | a;(t w(t—1) +a(t)e® + e]
50 [()Z (1=1) +aino 3
J 2

— (1) )

In this expression, W(z) denotes the learning window
(see Fig. 4)

W(t) = exp(—t/tw) , (5)

where Ty = 11 ms, and a;(¢) is the activity of neuron i at
the current time step, with ;(¢) =1 if an action
potential is emitted and a;(¢r) =0 otherwise. As in
Sect. 2.1, the # indicate the firing times of cell i. Below
each term, the corresponding number of the above list
of items is given.

In real cortex, the number of synapses connecting two
neurons as a function of their distance is probably a
random quantity (Braitenberg and Schiiz 1991). A sim-
ilar argument may hold for the connections from tha-
lamic relay cells to cortical neurons and their respective
retinotopic coordinates. However, in our simulations we
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neglect the statistical nature of this process. Instead, we
have introduced an ‘arbor function’ 47;, expressing the
expected number of synapses between the neurons j
and i. Within this framework, J;} is taken to be the
effective weight connecting cell j to cell i, i.e. the efficacy
of a single synapse multiplied by the number of synapses
from j to i.

In addition to the above learning rules, an unspecific
spread of weight changes onto neighbouring but non-
activated synapses can be included in the model, as is
suggested by measurements of Engert and Bonhoeffer
(1997). Although the results presented in this paper have
been obtained without this kind of plasticity, we have
performed a corresponding set of numerical simulations
where such an unspecific modification of excitatory
synapses has been taken into account. Except for a
smoothing of the emerging connectivity patterns, we did
not find a qualitative change in our results.

To control overall activation, i.e. to avoid epilepti-
form bursts, our network takes advantage of the sub-
sequent learning rules for inhibitory connections:

1. Whenever an excitatory neuron of the cortical layer
generates an action potential, its incoming inhibitory
synapses are enhanced by a certain amount. This
implements a negative feedback loop with a higher
firing rate leading to a cell receiving more inhibition,
thereby limiting its activity.

2. The efficacy of every synapse is slowly reduced at a
rate proportional to its current weight.

3. The upper bound of zero prevents inhibitory weights
from becoming excitatory. In contrast to excitation,
there is no lower bound for inhibition.

Using the same notation as above and neglecting the
zero upper bound, the change of the inhibitory efficacy
J;;(¢) that results during one time step can be written

A1) =~y () —0(0) (©)
S~ ~——

(1 )

Again, we have used an arbor function Aij to express the
expected number of synapses that the inhibitory neuron
j makes onto cell i. It should be noted that, within the
framework of the spike response model, inhibitory
synapses are represented by a negative coupling constant
Jij. To strengthen an inhibitory synapse is thus equiv-
alent to making its weight J;; more negative, which is the
reason for the negative sign in front of the first term.

In order to allow inhibition to respond sufficiently
fast to changes of excitation during synaptic develop-
ment, parameters have been chosen so that the typical
relaxation time of inhibitory weights is significantly
shorter than that of excitatory weights. More specifi-
cally, we let ¥¢ = 2.5 x 107 for excitatory intracortical
synapses, ¢ = 1.25 x 10~¢ for geniculocortical synaps-
es, and ¥' = 10~* for inhibitory synapses, corresponding
to relaxation time constants of 400 s, 800 s, and 10 s,
respectively.

Comparing these time constants with the typical time
course of pattern formation in the visual system of
higher mammals during the critical period, it is obvious

that Nature takes more time for development than we
do in our simulations. Unfortunately, numerical simu-
lations with spiking neurons are computationally very
expensive, meaning that at the moment it is impossible
to run simulations of suitably sized networks repre-
senting periods of a week or more in real time. We thus
have to reduce the relevant time constants and speed up
learning. In our experience, however, the process of
pattern formation does not become instable, but rather
more stable as learning is slowed down. This is reason-
able since reducing the speed of learning means aver-
aging over a larger number of pre- and postsynaptic
spikes, which reduces the effects of noise. We therefore
think that the results presented below could be repro-
duced using realistic biological learning time constants
by simply rescaling time.

2.4 Data analysis

In Sect. 3 we investigate the connectivity structures
emerging from the learning mechanisms in the network
described so far. To this end, we focus on the incoming
excitatory synapses of all excitatory neurons. As it turns
out, these coupling structures very often show an
elongated shape of a certain orientation. Here the
method is described that we have applied to determine
these orientations.

In our model, the excitatory input efficacies of one
cortical cell, say at location (0,0), are given as a two-
dimensional synaptic array J,, of 11 x 11 positive real
values. Here the coordinates (x,y) can range through
either the geniculate or the cortical layer while the ref-
erence point (0,0) is in V1 (cf. Fig. 1). In order to obtain
the orientation of a connectivity pattern, we calculate
the overlap of the corresponding synaptic array with a
set of Gaussian ‘bars’ S,,:

1 2
s —op{ Lot el

: 2
xexp{_[_XS1n¢+ycos¢] }—So(¢7p) )

2.4

where x,y € {—5,—4,...,5}. The parameter ¢ deter-
mines the orientation of the bar and p controls its
position within a frame of 11 x 11 pixels. So(¢,p) is
chosen so that 3 Sy (¢,p) =0. For each of the four
orientations ¢ € {0°,45°,90°,135°}, p is varied to de-
termine the maximal overlap:

x.y

R6) = ms| 75,600
These values are then taken as the lengths of four vectors
¥(¢) pointing in the directions given by 2¢, i.e.

(@) = [R(¢), 24]

in polar coordinates. We sum the four vectors so as to
obtain a polar vector



V= (Ry,¥,) :=%(0°) +X(45°) + %(90°) + ¥(135°) ,

and take the resulting polar angle v, divided by two
as the required orientation ¢°" of the synaptic weight
pattern,

6= ,/2 .

The described procedure is a formal method to analyze
the neuronal connectivity. It does not directly yield the
cells’ preferred orientation as it would be measured in an
optical imaging experiment. To achieve this, we would
have to apply test stimuli to the geniculate layer of our
network and record the activity in the cortical layer. The
obtained neural response properties would then be
determined by the feedforward connectivity, the lateral
connectivity, and the nonlinear gain function. In this
work, however, we focus on the developmental interplay
of feedforward and lateral projections and thus have to
investigate their structures separately.

3 Results

We now present the results obtained from different
simulations of our model network. Since the number of
simulation parameters is relatively large, we will give
only a qualitative description in the main text. For the
complete network setup the reader is referred to the
Appendix, where the relevant parameter values are
listed.

3.1 Intracortical self-organization

Anatomical studies of the cat’s developing visual system
(Shatz and Luskin 1986; Gosh and Shatz 1992) have
revealed that geniculate axons have reached the cortical
subplate by embryonic day (E) 36 but do not enter the
future cortex during the following week. Although most
of the cells destined for cortical layer 4 have finished
their migration by E55, a geniculate projection to layer 4
could only be detected by E60. Thus, for layer 4 of arca
17 in the cat, there is likely to be a waiting period of
about 1 week between the completion of neuronal
migration and thalamic innervation. This suggests the
possibility of an intracortical synaptic refinement occur-
ing for about one week without feedforward input from
LGN.

As long as the primary visual cortex does not receive
external input, spike-spike correlations of spontaneous
activity are determined by lateral interactions. If the
lateral connections are shaped by an activity-driven
Hebbian learning rule, as we assume in our model, their
development is in turn determined by the cortical spike-
spike correlations. It is therefore interesting to know
what the connectivity patterns emerging under these
conditions will look like.

In order to investigate this, we used the network de-
scribed in Sect. 2.2 but removed the geniculate layer. It
turned out that under certain conditions of network
activity the development of excitatory lateral projections
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can undergo a symmetry breaking process. As a result,
every neuron will receive most of its lateral input from
neighbouring excitatory cells lying within an elongated
region of a certain orientation. Without this symmetry
breaking process the emerging patterns of connectivity
will be rotationally invariant. Both cases are illustrated
schematically for one excitatory cell in Fig. 5.

Figure 6 presents the outcome of two different runs of
a network comprising 16 x 16 excitatory and an equal
number of inhibitory neurons. Lateral input is restricted
to a circular region of 11 cells in diameter, as explained
in Sect. 2.2, i.e. synaptic weights from neurons outside
this circle are zero and the corresponding pixels are
black. For the first network run (Fig. 6a), we have
chosen a low value for the parameter £° in Eq. 4. The
emerging coupling patterns are rotationally symmetric.
For the second run (Fig. 6b), £ has been increased, re-
sulting in higher synaptic efficacies on average. In this
case, rotational symmetry is broken during the learning
process and the emerging connectivity patterns obtain
an elongated shape.

To each of these elongated patterns an orientation
can be assigned as described in Sect. 2.4. Figure 6¢ vi-
sualizes the resulting array of orientations. For every
neuron, a small rectangle is plotted with a color coding
for the orientation of the corresponding input connec-
tivity pattern. The continuous color code that has been
applied is indicated for a few orientations below the plot.

In Fig. 7 we display the lateral projections that have
emerged in a simulated network whose grid size was
32 x 32. The global structure of the map resembles that
of typical orientation maps obtained from optical
imaging experiments in primary visual cortex (Bonho-
effer and Grinvald 1991; Blasdel 1992b; Bonhoeffer and
Grinvald 1993; Chapman et al. 1996; Bosking et al.

no symmetry
breaking

symmetry
breaking

Fig. 5. The panels (a) to (c) display different developmental stages of
a cortical cell’s intracortical input that can arise in our model. The cell
receives lateral excitatory projections from neurons within a circular
arborization area. In the different panels of this figure, the outline of
the arborization area is shaded according to the synaptic efficacy of
the corresponding inputs. Projections from dark regions are weak
whereas those from white regions are relatively strong. At the
beginning of our simulations, all synaptic weights are zero (a). As the
development proceeds, the neuron continually receives more and more
input from within its circular arborization radius (b). Under certain
conditions depending on network activity an oriented connectivity
pattern will emerge due to a symmetry breaking process (bottom of
panel ¢). Otherwise the input region will remain rotationally
symmetric (top of panel c)
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Fig. 6. The outcome of two different simulations of a network
without feedforward input. It comprises 16 x 16 excitatory and an
equal number of inhibitory neurons. a, b Visualization of the final
excitatory lateral connectivities by means of two arrays of 16 x 16
grey level plots. In these plots, each of the small squares consists of
11 x 11 pixels, representing one cell’s incoming synaptic weights from
11 x 11 neighbouring neurons. Dark and bright shaded pixels indicate
low and high synaptic efficacies, respectively. For a we have chosen a
low value of the parameter & in Eq. 4. The emerging coupling
patterns are rotationally symmetric. For b & has been increased,

(a) (b)
[ R RO PP PR rAn L.
S
e kL T
aRsEEEh b
SARMM R R RN
IR AR e AT

v #F"*.i

Tir; EoO0 33k 14310

e -“-====.=5;_.;%E

1 } 4 REFT UK
EamE e
Ak ANK T 'j; : A
AT aSseessh ns Rt
33T 8 SSVEEEE o R delelee
PRRALE ;1_“%..4{ - IEE%;
O e

RSP ARRRAE N

1997). This is even more obvious in Fig. 7c, where a
smoothed version of Fig. 7b is presented. It can be seen
clearly that orientation normally changes continuously
across the surface of the simulated cortical patch. The
only exceptions are point-like singularities where orien-
tation changes by 90 degrees. Such singularities are well-
known from experimental maps of preferred orientation
and have been termed ‘orientation centers’ or ‘pinwheel
centers’ (Bonhoeffer and Grinvald 1993). Around each
of these pinwheel centers, every orientation is repre-
sented once. Two kinds of pinwheels can be distin-
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resulting in higher synaptic efficacies on average. In this case,
rotational symmetry is broken during the learning process and the
emerging connectivity patterns obtain an elongated shape. As
described in Sect. 2.4, an orientation can be assigned to each of these
elongated patterns. ¢ Visualization of the resulting array of
orientations. For every neuron, a small rectangle is plotted with a
color coding for the orientation of the corresponding input
connectivity pattern. The continuous color code that has been applied
is indicated for a few orientations below the plot

s @' C XX

Fig. 7. The intracortical projections that have emerged from Hebbian learning in a network without geniculocortical input and with a grid size of
32 x 32 cells are presented as a grey level plots and b as a colored orientation map. ¢ smoothed version of (b). The color code is the same as in
Fig. 6

guished according to whether orientation changes
clockwise or counterclockwise around the center. Both
kinds appear in approximately equal numbers per unit
area of simulated cortical surface. This is again in
agreement with experimental findings.

Our simulations demonstrate that a Hebbian learning
mechanism driven by spontaneous activity can generate
oriented patterns of intracortical connectivity. The
overall organization of this connectivity can be consid-
ered as an intracortical orientation map that is similar to
maps of preferred orientation that have been measured
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Fig. 8. An activity-driven development of geniculocortical afferents in the lateral input strengths as a grey level plot, and similarly b visualizes
the presence of an isotropic intracortical connectivity leads to the the efficacies of the feedforward input synapses from the LGN.
emergence of a feedforward orientation map; grid size is 32 x 32. This Extracting orientations as described in Sect. 2.4, this feedforward
confirms the results of earlier studies carried out in models that used connectivity pattern can be transformed into a color coded orientation
graded-response neurons and/or did not distinguish between excit- map, which is shown in a smoothed version in ¢. The color code is the
atory and inhibitory cells. For each excitatory cortical cell, a displays same as in Fig. 6

in striate cortex. This suggests that lateral projections  spiking neurons with inhibition mediated via inhibitory
may play an important role in the shaping of orienta-  interneurons. It is therefore important to check whether
tion-selective response properties of cells in the primary  previous results can be reproduced in our setup, which is
visual cortex. On the other hand, experimental data  closer to biology.
obtained by Ferster (Ferster 1987, 1988; Ferster et al. Figure 8a visualizes each excitatory cell’s intracortical
1996) indicate that the feedforward connectivity from  synaptic efficacies in the form of grey-level plots (see
the LGN to the cortex also provide a significant con-  Fig. 6 for details). Grid size is 32 x 32 cells. As men-
tribution to simple-cell responses. In the present work,  tioned above, the coupling patterns have been chosen to
we therefore assume that a cortical neuron’s orientation  be rotationally invariant, namely shaped as a two-
preference is set up by a combination of both its intra-  dimensional Gaussian. The result of a simulation of
cortical and its feedforward connections. geniculocortical development in this setup is presented in
Fig. 8b. It shows an array of 32 x 32 grey level plots,
each corresponding to the feedforward input connec-
3.2 Combined feedforward and intracortical plasticity tivity of one excitatory cortical neuron. All these small
plots consist of 11 x 11 pixels representing the efficacies
We now investigate the effect that the existence of an  of the input synapses that an excitatory cortical neuron
intracortical orientation map can have on the develop-  receives from the LGN. A dark-shaded pixel means that
ment of geniculocortical feedforward projections. To  the corresponding synapse is weak, whereas a white-
this end, we activate the geniculate layer (that had been  shaded pixel indicates a strong synapse. All pixels
removed for the analysis in Sect. 3.1) and let the outside a circle of diameter 11 are black, because the
geniculocortical connections evolve according to the  arborization area of the geniculocortical projection
Hebbian learning dynamics described in Sect. 2.3.  is a circle of that diameter, i.e. the synaptic efficacy from
During that process, the pattern of excitatory intracor-  any LGN cell outside this area is zero.
tical projections is kept fixed, whereas inhibitory syn- Obviously, most of the excitatory cortical neurons
apses remain plastic. This inhibitory plasticity allows for  receive their feedforward input from elongated patches
a normalization of overall network activity on short time  on the LGN grid. As we have described in Sect. 2.2,
scales and thus helps to avoid epileptiform discharges by  these patches can be considered as the ON-center part of
shifting the balance of cortical excitation and inhibition  an orientation selective simple-cell receptive field. To
towards an increased inhibition (Douglas et al. 1995;  extract the orientation of the connectivity pattern we

Varela et al. 1999). apply the same method that we have used for the in-
As a first step we assume the lateral excitatory con-  tracortical projections and which has been explained in

nections to have rotational symmetry, which corre-  Sect. 2.4.

sponds to the scenario studied in earlier work (Linsker We find that the feedforward orientation map shown

1986a; Miller 1994; Wimbauer et al. 1997a,b; Choe and  in Fig. 8c is in good qualitative agreement with experi-
Miikkulainen 1998; Erwin and Miller 1998). These an-  mental data (Bonhoeffer and Grinvald 1991, 1993). This
alyses were based on graded-response neurons and/or  demonstrates that the results of previous models of
did not distinguish between excitatory and inhibitory  correlation-based geniculocortical development can be
cortical cells, whereas the present network consists of  nicely reproduced in our more detailed approach
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(Bartsch and van Hemmen 1999, preprint; A. Bartsch
and H. van Hemmen, in preparation).

Now we turn to the case of an anisotropic intracor-
tical connectivity. We assume this connectivity to form
an orientation map which has emerged during a pre-
ceding learning process as described in Sect. 3.1. To be
specific, we use the map of Fig. 7. The efficacies of the
intracortical excitatory synapses are fixed at their re-
spective values while the spontaneous activity of the
thalamic relay cells drives the development of geniculo-
cortical feedforward projections. The grey-level coded
results are presented in Fig. 9.

Figure 9a reproduces the intracortical map and
Fig. 9b displays the final feedforward orientation map.
The maps are very similar. This means that, in our
model, a pre-existing intracortical connectivity can guide
the synaptic refinement of geniculocortical afferents
(Bartsch and van Hemmen 1998a; A. Bartsch and H.
van Hemmen, in preparation). As a consequence, each
cortical cell’s final orientation preference — shaped by
both its lateral and its feedforward connections — is
highly determined by the intracortical orientation map
that is present during the period of geniculocortical
plasticity. This may provide a natural explanation for
the enormous stability of orientation maps that has been
found in experiments in which normal geniculocortical
development is disturbed (Kim and Bonhoeffer 1994
Godecke and Bonhoeffer 1996; Weliky and Katz 1997,
Sengpiel et al. 1998).

3.3 Reverse lid-suture

Models explaining cortical orientation maps to emerge
from correlation-based development of feedforward
projections have been challenged by the outcome of
reverse lid-suturing experiments (Gédecke and Bonho-
effer 1996; Sengpiel et al. 1998). In these experiments,
kittens were raised so that both eyes never received
visual input at the same time. This was achieved using
the following protocol. Immediately after birth, one
eyelid was sutured and the animal received monocular
input through the other eye. After a period of a few
weeks, the cortical orientation map in area 18 was

recorded via optical imaging through the open eye.
Then the open eye was closed and the initially closed
eye was opened. After one or two weeks the second
eye’s orientation map in the same cortical area was
measured. The two maps turned out to be nearly
identical.

Assuming the activity correlations in the LGN to be
determined chiefly by input from the retinae, the models
predict the left-eye map and the right-eye map to de-
velop independently of each other. Their global layouts
can then be expected to be different, in striking contrast
to the experimental finding.

Two different theoretical approaches have been used
to explain the experimental result. The first is based on a
geometric argument (Wolf et al. 1996), observing that
the cat’s visual area 18 is shaped into a narrow band on
the cortical surface. The formation of an orientation
map in this area is therefore subject to strong confine-
ment, i.e. the layout of a developing map is predeter-
mined by boundary conditions. Numerical simulations
have confirmed that different orientation maps emerging
under this condition are indeed very similar.

The second explanation relies on activity correlations
in the LGN. Erwin and Miller (1998) have shown that
with an appropriate amount of inter-eye correlations in
the activity of geniculate relay cells, a Hebbian devel-
opment of geniculocortical afferents can nicely repro-
duce ocularly-matched cortical orientation maps. They
assume that these correlations are present in LGN ac-
tivity even without visual input. Recently it has been
shown that strong inter-eye correlations can in fact be
found in the ferret LGN before eye opening (Weliky and
Katz 1999).

It is also well-known, however, that monocular de-
privation over a period of a few days during the
critical period causes most cortical neurons to loose
their responsiveness to stimulation of the deprived eye
(Blakemore and van Sluyters 1974). As a consequence,
optical imaging experiments find the orientation map
of the deprived eye to be largely eliminated (Kim and
Bonhoeffer 1994; G6decke and Bonhoeffer 1996). This
may indicate that LGN activity is strongly affected by
monocular occlusion. According to the model of Erwin
and Miller, ocularly matched orientation selectivity can



51

Fig. 10. The reverse lid-suturing protocol is mimicked by a sequence
of numerical simulations. a Before the onset of geniculocortical
development an intracortical orientation map is assumed to emerge
from a Hebbian development of lateral connectivity in layer 4 as
explained in Sect. 3.1. b The geniculocortical afferents of the initially-
open eye are learned and produce a feedforward orientation map. ¢
After the first eye has been closed, the second eye’s afferents develop

be maintained in a reverse-suturing experiment if one
of the two following conditions is fulfilled: either the
remainder of the deprived eye’s map is strong enough
so as to act as a seed for the restoration of the original
map, or there is a sufficient amount of geniculate
inter-eye correlations during the period of reverse oc-
clusion so that the deprived map can be reinstated as a
copy of the non-deprived map. It is still an open
question as to whether one of these conditions does
indeed hold true.

In consideration of our results presented in
Sects. 3.1 and 3.2, we propose a third mechanism that
may reconcile models of correlation-based geniculo-
cortical development with experimental data. As we
have shown, a Hebbian learning mechanism driven by
spontaneous cortical activity may lead to the forma-
tion of an intracortical orientation map. This map is
set up by lateral projections of cortical layer 4 neurons
and can emerge very early in visual development —
even before thalamic afferents reach cortical layer 4.
The intracortical connectivity can then guide the
refinement of thalamocortical inputs, so that the
developing feedforward orientation map is in agree-
ment with the intracortical map.

Let us now assume that the critical period for the
development of short-range interactions in cat layer 4
ends after about three weeks postnatal. Within the
framework of our model this would mean that at this
time the layout of the intracortical orientation map is
fixed, thereby determining the structure of both eyes’
feedforward maps. The outcome of the reverse-suturing
experiments can then be explained as follows.

In the course of — or possibly before — the first period
of monocular deprivation, cortical layer 4 cells finish
their refinement of short-range lateral connections.
During the same period of time, a feedforward orien-
tation map for the open eye emerges. Eventually the

independently from scratch. This is simulated by re-running the
feedforward learning process, but initialized with a different seed value
of the random number generator. Comparing b and ¢ reveals them to
be very similar. This is in accordance with the results of reverse lid-
suture experiments, in which both eyes’ orientation maps have been
found to be virtually identical (Goédecke and Bonhoeffer 1996;
Sengpiel et al. 1998)

feedforward and the intracortical map are in accord with
each other. Together they form the orientation map that
can be recorded by means of optical imaging. After the
open eye has been closed and the closed eye has been
opened, cortical neurons reorganize their geniculate in-
put synapses so that an orientation map for the newly
opened eye is formed. This process is again guided by
the intracortical connectivity, which does not change
any more. As a consequence, the second feedforward
map develops in accord with the same intracortical map
as did the first one. Optical imaging at the end of the
experiment therefore yields a second orientation map
that is very similar to the previous one.

This mechanism can be demonstrated in the following
sequence of numerical simulations. First, the Hebbian
development of short-range lateral connections in cor-
tical layer 4 is simulated according to the explanations of
Sect. 3.1. This process is driven by spontaneous cortical
activity and for simplicity we assume that it is finished
before the onset of thalamocortical input. The emerging
intracortical map is displayed in Fig. 10a.

In the presence of this intracortical map, two inde-
pendent network simulations as described Sect. 3.2 are
then performed to mimick the development of the two
eyes’ geniculocortical afferents during the reverse-su-
turing protocol. Starting each simulation with different
seed values for the random number generator ensures
that their LGN activities are uncorrelated. Despite the
lack of inter-eye correlations in thalamic activity,
the resulting maps are strikingly similar, as can be seen
in Fig. 10b and Fig. 10c. This similarity arises because
both maps develop in such a way that they are in
agreement with the intracortical connectivity, which is
the same during both runs.

Taken together, our results show that a patterned
intracortical connectivity arising early in visual devel-
opment can guide the development of feedforward
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projections so that the emerging cortical orientation
maps are matched in the two eyes. In our simulations,
there were no inter-eye correlations in thalamic activity.
This provides evidence that in the present scenario inter-
eye correlations are not necessary for ocularly-matched
orientation maps to develop.

4 Summary and discussion

In this paper we have introduced a neuronal model of
combined lateral and geniculocortical plasticity in layer
4 of the primary visual cortex. The network consists of
stochastically-spiking neurons to model geniculate relay
cells as well as excitatory cortical cells interacting with
inhibitory interneurons. The development of both lateral
and feedforward connectivity is governed by activity-
driven Hebbian learning dynamics. Plasticity of inhibi-
tory synapses on short time-scales has been incorporated
so as to stabilize cortical activity and prevent epilepti-
form discharges (Douglas et al. 1995; Varela et al.
1999).

We have found that in this model spontaneous cor-
tical activity in the absence of geniculate input can drive
the plasticity of lateral connections to form an intra-
cortical orientation map. The layout of such an intra-
cortical map resembles that of typical orientation maps
obtained from optical imaging experiments in primary
visual cortex. It exhibits linear zones, where orientation
changes smoothly across the cortical surface, as well as
so-called pinwheel centers: point-like singularities at
which orientation changes discontinuously by 90 degrees
(Bonhoeffer and Grinvald 1991; Blasdel 1992b).

Furthermore, a Hebbian development of geniculo-
cortical afferents in the presence of intracortical inter-
action and correlated activity in the LGN leads to the
emergence of orientation-selective receptive fields of
cortical cells. As in previous correlation-based models of
pattern formation (von der Malsburg 1973; Linsker
1986a,b; Miller 1994; Wimbauer et al. 1997a,b; Choe
and Miikkulainen 1998; Erwin and Miller 1998), an
isotropic pattern of intracortical connectivity is sufficient
to obtain nicely ordered feedforward orientation maps
that are very similar to measured ones.

We have also investigated the effect that a non-iso-
tropic intracortical interaction in layer 4 can have on
feedforward plasticity. It turned out that a previously
formed intracortical orientation map can guide the de-
velopment of geniculocortical afferents. As a conse-
quence, the emerging feedforward map will be in
accordance with the existing intracortical map. Com-
paring the lateral arborization radius of layer 4 cells in
the model (<5.5 cells), with the typical distance of
pinwheel centers in the final orientation maps (see e.g.
Fig. 10), shows that lateral interactions are normally
confined to approximately one hypercolumn. The in-
tracortical connectivity under consideration is thus
short-ranged and must not be confused with the patchy
patterns of horizontal projections that have been found
anatomically to exist in layers 2/3 and 5 (Callaway and
Katz 1990; Katz and Callaway 1992).

Since in our setup the same intracortical connectivity
guides the development of afferents from both the left
and the right eye, the orientation maps will be matched
in the two eyes, which is in agreement with experimental
data (Wiesel and Hubel 1974; Gédecke and Bonhoeffer
1996; Godecke et al. 1997; Crair et al. 1998). It is im-
portant to note that we do not presume the response
properties of cortical simple cells to be predominantly
shaped by their lateral connections. Rather, we have
demonstrated that the emerging pattern of feedforward
connectivity is strongly influenced by an existing pattern
of intracortical projections during the critical period of
geniculocortical plasticity. As a result, both eye’s ori-
entation maps will be very similar, no matter whether
orientation selectivity is established mainly by lateral or
by feedforward connections, or by both. As we have
shown, this may provide a new explanation for the
outcome of reverse lid-suturing experiments (Go6decke
and Bonhoeffer 1996; Sengpiel et al. 1998). In contrast
to earlier propositions (Wolf et al. 1996; Erwin and
Miller 1998) it is neither dependent on the geometry of
the respective cortical area nor on inter-eye correlations
in thalamic activity.

Further support for our model comes from recent
observations of Sengpiel et al. (1999). They raised kit-
tens in an environment where they could see contours of
only one orientation. The orientation maps that were
obtained from these animals via optical imaging exhib-
ited only a moderate shift towards this orientation. This
is in full agreement with a scenario in which the devel-
opment of geniculocortical afferents is guided by an
existing pattern of intracortical connectivity and visual
experience has an only minor influence.

Current anatomical data (Shatz and Luskin 1986;
Gosh and Shatz 1992) show that, in the cat, geniculate
afferents reach layer 4 of the primary visual cortex about
one week after the cells in this layer have finished their
migration. This raises the possibility that these cells start
an activity-driven development of lateral interactions at
least one week before a Hebbian modification of feed-
forward afferents can begin. Although in the present
paper we have focused on the case of intracortical
learning occurring strictly before geniculocortical re-
finement, the above considerations remain valid in a
scenario in which both types of connections develop
jointly for a certain period of time. The crucial re-
quirement is that the plasticity of short-ranged lateral
synapses in layer 4 ceases relatively early so that (i) the
emerging intracortical map is independent of visual ex-
perience and (ii) the feedforward afferents can adapt to
this map.

We know of only one other spiking network model
dedicated to the problem of combined development of
feedforward and lateral projections (Choe and Miikku-
lainen 1998). In contrast to the aim of the present work,
however, these authors did not analyze the possibility of
an intracortical map formation and its implications for
the refinement of geniculocortical afferents. Rather, they
concentrated on the formation of feedforward maps and
the role that fast-adapting intracortical synapses can
take in the segmentation of visual scenes afterwards.



Since our network is made up of spiking neurons and
distinguishes strictly between excitatory cells and inhib-
itory interneurons, it is closer to biology than many
previous models of the visual cortex. We have verified
that this relatively detailed approach can reproduce
earlier results on the formation of orientation maps.
This was not obvious a priori because stochastically-
spiking networks produce noise which may prevent
ordered receptive fields from developing within biologi-
cally plausible time scales.

Quite to the contrary and most importantly, we have
demonstrated that the new synaptic order, i.e. the in-
tracortical orientation map, is due to inherent cortical
noise. An external source of noise would be necessary to
obtain similar results in a network consisting of the
usual graded-response neurons. The similarity of such
intracortical maps to optically recorded maps of pre-
ferred orientation, and the finding that they can guide
the refinement of feedforward afferents, emphasizes the
role of horizontal connections in shaping neuronal re-
sponse properties. Not only are lateral interactions likely
to modulate a cortical cell’s tuning curve ‘on the run’,
they can even predetermine its input connectivity during
development.
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Appendix A: Simulation parameter values

In order to allow the reader to reproduce the results presented in
this paper, we list the relevant simulation parameters in this ap-
pendix. A description of the simulation algorithm is given in
Sect. 2.2.

A.1 Intracortical plasticity

We have assumed that the refinement of short-ranged connections
within cortical layer 4 occurs before the onset of geniculocortical
input. For the corresponding simulations the geniculate layer has
thus been removed from our network (Fig. 1). The remaining
cortical part consists of excitatory neurons and inhibitory inter-
neurons arranged on two equally sized square grids. For the firing
probability (Eq. 1), 8 = 3 and T = 0.5 for both excitatory cells and
inhibitory neurons.

Within a circular arborization region of 11 neurons in diameter,
the excitatory neurons connect to one another as well as to the
inhibitory neurons, and the latter project back to the excitatory
cells. Thus there is no connection between two cells if the distance
of their grid positions is larger than 11/2.

Within this radius the connections from excitatory to inhibitory
neurons are kept at fixed values

Jy =03 exp[-di. 7/ (2 )]

with d(i, ) denoting the distance between the grid positions of in-
hibitory neuron i and excitatory neuron j.

In contrast, the synapses between excitatory cells and those
from inhibitory to excitatory neurons are plastic. They develop
according to the learning rules described in Sect. 2.3. We use
Gaussian-shaped arbor functions
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Table Al. Each row specifies the quantities 6%, &°, the total number
of simulated time steps, and the grid size for one network run
simulating Hebbian development of intracortical connections. The
values are listed together with the number of the figure that pre-
sents the corresponding results. All the other simulation parameters
are held constant as given in Sect. A.l1. Parameter sets #3 and #4
are equal except for the seed value of the random number generator

# Figure Grid size Time steps  ¢° &8

1 6a 16 x 16 2.5-10° -0.57 8.0-107*
2 6b,c 16 x 16 2.5-10° -0.57  9.5-107*
3 7, 9a 32 %32 2.5-10° -0.57  9.5-107*
4 10a 32 %32 2.5-10° -0.57 9.5-107*

A5 =0.025 exp[—d(i, e 32)] .,
A, =0.05 exp {—d(i,j)z/(2 : 32)] ,

where d(i, j) denotes again the distance between the grid positions
of the respective neurons. An upper limit J™* = 0.8 is applied for
the weight of excitatory synapses. Furthermore, we let g; =1 in
Eq. 6. The values of the remaining parameters ¢°, £° and the grid
size are varied from run to run. They are summarized in Table Al.

A.2 Geniculocortical plasticity

For our simulations of geniculocortical development we use the full
network presented in Fig. 1. The grid size is 32 x 32. We fix the
excitatory intracortical connectivity, while we let excitatory feed-
forward and inhibitory intracortical synapses develop according to
(4) and (6), respectively.

The postsynaptic potential ¢(z) and the refractory potential #(¢)
are set as given in (2) and (3). For the firing probability we use
again (1) but with 0 =13 and T = 0.25 for excitatory cells, and
0 =3 and T = 0.25 for inhibitory neurons.

At the very early developmental stage that we are concerned
with, real cortical cells are still in a process of maturation, i.e. their
response properties are very likely to change with time. Thus, there
is no need to assume that the response properties of our model
neurons, i.e. 0 and T, are constant.

The spatiotemporal activity correlations in the geniculate layer
that are required to drive thalamocortical pattern formation are
generated as follows. After every ten simulated time steps, the
membrane potentials 4; of all the neurons i on the thalamic layer
are drawn as a new realization of a Gaussian random field and are
then kept fixed over the subsequent ten iterations. Each geniculate
cell produces a random spike train according to its membrane
potential and the firing probability (1) with 6 =7, T = 1.

In order to describe the Gaussian random field of membrane
potentials, the expectation values (h;) as well as the correlation
matrix (h;h;) must be given. Throughout this paper, we have set
(h;) =0 and

(hihy) = 16.3 exp [—d(i,j)z/(2- 12)]
—1.82 exp[—d(i,j)z/(Z : 32)] ,
which is a Mexican-hat-like function of the distance d(i, ) between
the respective geniculate neurons i and ;.
The parameters governing the dynamics of inhibitory weights

are the same as specified in Sect. A.1. For the development of
feedforward synapses, we use an arbor function

A5 = 0.0125 exp[fd(i,j)z/(Z : 32)] ,

and apply an upper weight limit J™* = 1.
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Table A2. For each simulation of geniculocortical development,
the network parameters ¢° and &°, the total number of simulated
time steps, and the corresponding figures are listed. In addition, the
lateral excitatory connectivity is specified in the following way. If
the pattern of lateral weights is isotropic, then the amplitude Ji°,
corresponding to (Al), is given. If the connectivity pattern is the
result of a previous simulation of intracortical development, then
we indicate that simulation by specifying the corresponding row of
Table 1. The last two parameter sets are identical except for the
seed value of the random number generator

Figure = Time steps o¢° & Jie # in Table 1
8b,c 5-10° 085 &-10% 07 -
9b 5-10° 0.4 g§-107% - 3
10b 5-10° 0.4 g§-107* - 4
10c 5-10° 0.4 8§-107% - 4

Table A2 lists the values of those parameters that are varied in
the different simulations. During each simulation the excitatory
lateral weights are kept constant. Their values are either taken from
a previous simulation of intracortical development or determined
by the Gaussian

Jy = Ji exp|=d(i,))/(2-3)] (A1)

where d(i, ) is the distance between the two cortical cells i and ;. In
the former case, Table A2 references the corresponding intracor-
tical simulation by its respective number in Table Al. In the latter
case, the value of Ji¢ is given.
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