
Abstract. Neuronal coding of temporal stimulus fea-
tures can occur by means of delay lines. Given that
neuronal activity is conducted through many parallel
axons, there has to be a mechanism guaranteeing
minimal temporal dispersion. We argue that plastic
changes in synaptic transmission that are unspecifically
propagated along presynaptic axons are a basis for the
development of delay-line topologies. Furthermore, we
show how two populations of afferents form a map of
interaural time differences as found, for instance, in the
laminar nucleus of the barn owl.

1 Introduction

How is time represented by neuronal activity? This
challenging question has fascinated neuroscientists al-
ready decades ago. A traditional way of thinking is to
translate time into the place of high firing rate (Jeffress
1948) – a rate-place code of temporal features which we
refer to as a temporal map. What is needed for any
neuronal representation of time is a mechanism that
translates time into a biophysical concept provided by
the neuronal system, such us conduction delays, oscil-
lation periods, decay times, or trajectories of network
dynamics. In this paper we discuss the strategy of
mapping time into a place code by means of delay lines.
Let us imagine a piece of neuronal tissue forming a

functional unit with a spatial extent X , typically in the
range of one to two millimeters. Afferent fibers pass
through this set of cells in a prominent direction and are
assumed to contact the cells synaptically (see Fig. 1).
The feedforward activity is propagated at a conduc-

tion speed c of at least 2 m/s. The time delay K across the
area is thus of the order of K ¼ X=cK5 ms. A temporal
map – i.e, a continuous representation of a stimulus
feature along the arborization direction of the delay lines

– is therefore restricted to a time scale of a few milli-
seconds. The neurons’ average distance, denoted by dx,
defines the temporal resolution of the spatial code
through dx=c.
The neuronal delay of axon n at the edge of the nu-

cleus is labeled Dn0. In order to guarantee the temporally
most-precise propagation of postsynaptic excitation
across the nucleus, the distribution width of edge delays
Dn0 has to be at least as small as the postsynaptic
membrane time constants. The latter then determine the
temporal resolution of the system.
Especially auditory brainstem neurons are very fast.

Their postsynaptic potentials have rise times in the range
of 100 ls. It is thus essential for the delay-line hypothesis
to provide a mechanism that ‘‘tunes’’ delay distributions
in an appropriate fashion. In this paper we concentrate
on delay selection, meaning that an initially (in the im-
mature animal) broad range of available delays Dn0 is
refined by ‘‘selecting’’ afferents with approximately the
same delay and withdrawing the rest. Selection and
withdrawal are both performed at the synaptic level. A
synapse is said to be selected if its efficacy J has reached
a stable high value, whereas it is withdrawn if J has
vanished. The temporal dynamics of synaptic weights is
governed by a learning rule (Gerstner et al. 1996; van
Hemmen 2000), which originally dates back to Hebb
(1949). The above paradigm is thus often referred to as
Hebbian delay selection (Gerstner et al. 1996; Eurich
et al. 1999; Leibold et al. 2002; Sect. 2). Since it explains
the temporal evolution of synaptic efficacies at the level
of a single neuron, the concept of delay selection has to
be generalized to a whole afferent fiber. Here we will
explain how this can be realized through so-called axon-
mediated synaptic learning (AMSL; Sect. 3).
Theoretical discussion of synaptic dynamics will be

performed by means of a Poisson neuron (Kempter et al.
1999; van Hemmen 2000), a neuron model that enables
us to find explicit expressions for rate and correlation
functions (Leibold et al. 2002; Sect. 4). We will show
that, under the assumption of stationarity, the dynamics
of delay selection at a single cell and the coordination of
synaptic development along the afferent fibre separate,
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which yields a quantitative estimate of the strength of
AMSL (Sect. 5). We also obtain a theoretical prediction
of the time course of order parameters measuring
the extent of delay selection both at a single cell and
within the distribution of edge delays (Sect. 6). The
result of delay selection is a restriction of edge delays to
a small interval. As a consequence, afferent activity is
temporally precisely translated to postsynaptic excita-
tion (Sect. 7).
An example of a delay-line topology is the model of

Jeffress (1948) for neuronal detection of interaural time
differences (ITDs). Section 8 shows how the introduced
framework applies to the development of the laminar
nucleus in barn owls, forming a map of the bird’s sur-
rounding azimuthal space (Leibold et al. 200l).

2 Homosynaptic learning

Delay selection through synaptic plasticity at the level of
a single neuron is described by a learning rule for the
efficacies Jmn of synapses between the nth afferent axon
and the mth postsynaptic neuron. The 1 � n � N
synapses are providing their input at times tfn . The firing
times of the postsynaptic neurons are denoted by tfm.
Given the firing times, the change DJmnðtÞ :¼ JmnðtÞ�
Jmnðt �TÞ of the efficacy of synapse m during a learning
session of duration T and ending at time t is governed
by several factors:

D JmnðtÞ ¼ g

� X
t�T�tfn<t

win þ
X

t�T�tfm<t

wout

þ
X

t�T�tfn ;tn<t

W ðtfn � tfmÞ
�

: ð1Þ

Here the firing times tfm of the postsynaptic neuron may,
and in general will, depend on Jmn. We now focus on the
individual terms. The prefactor 0 < g � 1 reminds us
explicitly of learning being slow on a neuronal time
scale. Throughout what follows we refer to this condi-
tion as the adiabatic hypothesis. It has been shown to
hold in numerous biological situations and has been a

mainstay of computational neuroscience ever since. It
may also play a beneficial role in an applied context. If it
does not hold, a numerical implementation of the
learning rule (1) is straightforward, but an analytical
treatment is not.
Each incoming spike and each action potential of the

postsynaptic neuron change the synaptic efficacy by gwin

and gwout, respectively.
The last term in (1) represents the learning window W ,

which indicates the synaptic change in dependence upon
the time difference s ¼ tfn � tfm between an incoming
spike tfn and an outgoing spike tfm. When (e.g., for an
excitatory cortical synapse) the former precedes the
latter, we have s < 0, tfn < tfm, and the result is
W ðsÞ > 0, implying potentiation. On the other hand, if
the incoming spike comes ‘‘too late,’’ then s > 0 and
W ðsÞ < 0, implying depression; see Fig. 2 and, for ex-
perimental evidence, Bi and Poo (1998) and Zhang et al.
(1998).
Spike generation is (nearly) always a local process in

time, and so are the 1 � n � N input processes gener-
ating the input spikes tfn . For the latter category we
can, and will, take inhomogeneous Poisson processes
(Kempter et al. 1998), with rate function pinn ðtÞ; any
other local process with independent increments or
short-range correlations would do as well.
The time interval ½t �T; tÞ is taken to be big since,

due to the adiabatic hypothesis, learning is so slow that
we can safely assumeT to greatly exceed neuronal times
such as interspike intervals and the width of the learning
window. Nevertheless, we will arrive at a relatively small
change of the Jmn values so that the assumption con-
cerning T is self-consistent (otherwise we do not see
anything). We can divide the time interval ½t �T; tÞ into
many small intervals that are, stochastically, indepen-
dent of each other – apart from a minuscule overlap at
their borders. Hence the sum (1) is self-averaging.
The above averaging was performed over the ran-

domness; we now perform another one over time. To
fully appreciate what is going to happen, we first turn to
the differential equation

d

dt
x ¼ gF ðx; tÞ ð2Þ

Fig. 1. Neurons (black circles) with average distance dx are contacted
by synapses from axons (solid lines) that cross an area of length X in a
predominant direction. Afferent activity is conducted at velocity c

Fig. 2. The learning window W is a function of the time difference s
between the pre- and the postsynaptic spike. For a generic excitatory
synapse we have W ðsÞ > 0 for s < 0 and W ðsÞ < 0 for s > 0.
Parameters have been taken from Kempter et al. (2001)
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where g is ‘‘small’’ and F ðx; tÞ for fixed x is a periodic
function of t, i.e, F ðx; t þTÞ ¼ F ðx; tÞ. After one period
x has hardly changed so that, for fixed x, we can average
F over t. That is to say, instead of (2) one studies
(Sanders and Verhulst 1985; Verhulst 1986)

�FF ðxÞ :¼ 1

T

Z t

t�T

dt0F ðx; t0Þ ) d

dt
x ¼ g �FF ðxÞ : ð3Þ

Here the integral over time, viz., t0, is performed with x,
the argument of �FF , fixed; the integration boundaries
t �T and t of the integral in (3) can be replaced by 0
and T , respectively. Hence the differential equation we
arrive at is an autonomous one since �FF does not depend
explicitly on t. It is plain that the whole argument hinges
on g being small. In fact, under suitable conditions the
‘method of averaging’ (Sanders and Verhulst 1985;
Verhulst 1986) can be generalized to nonperiodic F .
Here we will simply average over a period of durationT
and often use an overbar to indicate this.
We now return to our problem, viz., (1) averaged over

the randomness, and average over time as well. This
sounds quite harmless (it is) but we will soon see the
effect is beneficial. To simplify the notation, we first
introduce two spike flows,

SnðtÞ ¼
X
tfi �t

dðt � tfn Þ; SmðtÞ ¼
X
tfm�t

dðt � tfmÞ ; ð4Þ

and rewrite (1), introducing angular brackets to indicate
an average over the randomness:

D JmnðtÞ
T

¼ g
1

T

Z t

t�T

dt0½winhSnðt0Þi þwouthSmðt0Þi�
�

þ 1

T

Z t

t�T

dt0
Z t�t0

t�T�t0
dsW ðsÞ hSnðt0 þ sÞSmðt0Þi

)
:

ð5Þ

It is evident that both types of averaging – over
randomness and over time – have been taken into
account. So far so good. The first term on the right-
hand side of (5), the time average hSnðtÞi of the rate
function hSnðt0Þi for times t0 in the interval ½t �T; tÞ, is a
mean which we call minn ðtÞ. For an inhomogeneous
Poisson process this is nothing but the mean intensity
pinn ðtÞ, where the probability of finding one spike in an
interval of length Dt near t is pinn ðtÞDt. The second term,
the time average of hSmðtÞi, which is to be called moutm ðtÞ,
is harder to compute since it entails both the outgoing
and all the incoming processes, the latter ‘‘deciding’’
together when an action potential will be generated.
For later reference we summarize the above two
definitions:

minn ðtÞ :¼ hSnðt0Þi; moutm ðtÞ :¼ hSmðtÞi : ð6Þ

The former refers to the input only, the latter takes the
output by itself.
The double integral in (5) is explicitly correlating

input and output, a distinguishing property of Hebbian
learning. Let us take a ‘‘typical’’ t0, say t0 ¼ t �Tþ xT

with 0 < x < 1. Then the lower bound of the integral
over s is effectively �xT, while the upper bound is
ð1� xÞT. The learning window W is something local in
time – much, much shorter than T. Hence for our
‘‘typical’’ t0 the lower bound of the integral over s is �1
whereas the upper bound is þ1 so that, up to a negli-
gible error, we are left with

1

T

Z t

t�T

dt0
Z 1

�1
dsW ðsÞhSnðt0 þ sÞSmðt0Þi

¼
Z 1

�1
dsW ðsÞ 1

T

Z t

t�T

dt0hSnðt0 þ sÞSmðt0Þi : ð7Þ

Returning to (5), we note that we can transform it into a
differential equation since D JmnðtÞ ¼ JmnðtÞ � Jmnðt �TÞ
and, due to the adiabatic hypothesis, the change of Jmn is
so slow that D JmnðtÞ=T can be replaced by dJmn=dt. In
other words, we chooseT so large that it greatly exceeds
all neuronal times, e.g., interspike intervals and the
width of the learning window W , but on the other hand
is much smaller than ðgmÞ�1 for occurring firing rates m –
all in all, a condition fully consistent with the Hebbian
philosophy of ‘‘practice makes perfect.’’ That is to say,
T separates neuronal and learning time scales. Then we
find, using (5)–(7), that

d

dt
Jmn ¼ g winminn þ woutmoutm

�
þ

Z 1

�1
dsW ðsÞ 1

T

Z t

t�T

dt0hSnðt0 þ sÞSmðt0Þi
�

: ð8Þ

This equation is exact and describes the time evolution
of infinitesimal synaptic plasticity, as we call it, for a
neuron with given inputs.
A nice aspect of (8) is that the final integral over t0 is

nothing but the time-averaged correlation function. The
correlation function itself is hSnðt00ÞSmðt0Þi. We may in-
terpret it as the joint probability density for observing an
input spike at synapse n at the time t00 and an output
spike of cell m at time t0. Hence we write

Cmnðt; t þ sÞ : ¼ 1

T

Z t

t�T

dt0hSnðt0 þ sÞSmðt0Þi

¼ hSnðt þ sÞSmðtÞi ; ð9Þ

the second equality being just a definition. Altogether
we get a synaptic dynamics of appealing simplicity
(Kempter et al. 1999; van Hemmen 2000):

d

dt
Jmn

� 	
local

¼ g winminn þ woutmoutm

�
þ

Z
dsW ðsÞCmnðt; t þ s� DmnÞ

�
: ð10Þ

In this form the learning equation is easy to remember:
the input rate minn modifies the synaptic efficacy through
win, the output rate moutm does so through wout, and the
Hebbian correlation function Cmn favors or disfavors it
through the learning window W .
Appearances are deceiving, however. Not only do moutm

and Cmn depend on Jmn but also, through Sm, on all the
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other Jmn0 with n0 6¼ n. Moreover, neuronal firing is
intrinsically nonlinear. Hence synaptic dynamics is an
intricate collective process.

Conclusion

The generic form of W , i.e., W ðsÞ < 0 for positive s and
W ðsÞ > 0 for negative s (see Fig. 2), implies that
presynaptic spikes from axon n arriving at cell m after
a postsynaptic action potential ðs > 0Þ lead to a decrease
of the efficacy Jmn, whereas the arrival of presynaptic
firing before an action potential at m ðs > 0Þ yields an
increase of Jmn. Synaptic connections incidently giving
rise to a postsynaptic spike are strengthened, thus
having a slight advantage in firing the postsynaptic cell
again, and so on; whereas, on average, the other
synapses are depressed. This mechanism can be regard-
ed as a self-organizing development of the synaptic
delay structure in order to optimize the sensitivity of
postsynaptic firing to temporally coherent presynaptic
signals.

3 Axon-mediated synaptic learning

Let us define a map as a neuronal representation of the
sensory world or aspects thereof, such as time. By its
very definition, many neurons are involved in constitut-
ing a map.
In Sect. 2 we have seen how the collective dynamics of

synaptic development at each specific neuron is gov-
erned by the synapses’ learning window, despite the fact
that the latter is operating locally in space, viz., at a
synapse, and in time, as in Fig. 2 where its temporal
width is 1 ms. The idea behind this collective behavior is
that the synapses together ‘‘decide’’ whether or not the
neuron they are attached to will fire. Consequently a
neuron’s temporal accuracy may greatly improve but
there is no reason why it should join a map as a neuronal
representation of the sensory surroundings, here of its
temporal aspects (cf. Figs. 1 and 7a). To this end, syn-
apses at different neurons have to interact. We will now
analyze such an interaction (i.e., AMSL).
The abstract concept of delay selection at the level of

afferent fibers comes along with the introduction of the
so-called axonal weight Kn. It is defined as the sum of all
synaptic efficacies of axon n:

Kn ¼
X
m

Jmn : ð11Þ

A stable configuration of axonal weights in a delay-line
regime requires that few axons with similar edge delay
D0n provide a high value of Kn, whereas all the others are
near 0 and, hence, degenerate. A coordinated develop-
ment of synaptic efficacies at different postsynaptic cells
that fits into this concept is realized through a dynamics
of the synaptic weights Jmn in such a way that neuronal
activity at one synapse induces alterations of all
synapses at the same axon. Formally we write

d

dt
Jmn ¼

X
m0 at axon n

dmm0
d

dt

� 	
local

�

þqmm0
d

dt

� 	
AMSL

�
Jm0n ; ð12Þ

where d
dt


 �
local

is given by (10), and

d

dt
Jmn

� 	
AMSL

¼ g uinminn þ uoutmoutm

�
þ

Z
dsUðsÞCmnðt; t þ s� DmnÞ

�
ð13Þ

describes axonally propagated synaptic changes. The
quantities uin, uout, and UðsÞ may differ from those in the
homosynaptic dynamics (10), but are assumed to be of
the same order of magnitude.
In summary, besides alterations d

dt Jmn

 �

local
initiated

locally, there is also a contribution d
dt Jmn


 �
AMSL

that
stems from the change of synaptic efficacies at neigh-
boring cells contacting the same afferent fiber n and
mediated by the axon through a coupling matrix qmm0

(Fig. 3).
Hence the latter is called AMSL. Its spatial depen-

dence and strength are determined by the matrix qmm0 ,
which – for the sake of convenience – is assumed to be
translationally invariant, i.e., qmm0 ¼ qmþm0m0þm0 for
1 < m0 < M fixed, and symmetric, i.e., qmm0 ¼ qm0m. Ex-
perimental evidence for presynaptically unspecific con-
tributions is available for various locations in the
nervous system (Bonhoeffer et al. 1989; Cash et al. 1996;
Fitzsimonds et al. 1997; Fitzsimonds and Poo 1998;
Goda and Stevens 1998; Tao et al. 2000). The present
application and the ensuing theoretical analysis is due to
Kempter et al. (2001) and Leibold et al. (200l), respec-
tively.

4 Correlation functions of Poisson neurons

The discussion of differential equations (10) and (12)
requires explicit expressions for time-averaged rates m
and correlations C, both of which in general depend
nonlinearly on the ‘weight vector’ Jmn. To this end we
assume from now on that pre- as well as postsynaptic

Fig. 3. Local weight changes (at the gray synapse of the third cell on
the left) are presynaptically propagated (along the thick line) to
synapses (checkered circles) at neighboring neurons, and weighted
through matrix elements qmm0
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spike generation results from inhomogeneous poisso-
nian processes (van Hemmen 2000), where afferent
activity is modeled through given intensities pinn ðtÞ. This
means the following. We write pðtÞ :¼ pinn ðtÞ as short-
hand and define an inhomogeneous poissonian process
by three properties: (i) the probability of getting a
single event during the interval ½t; t þ DtÞ with Dt ! 0 is
pðtÞDt, (ii) the probability of getting two or more events
is oðDtÞ, and (iii) events in disjoint intervals are
independent.
Postsynaptic firing is due to rates poutm ðtÞ ¼ pF½vmðtÞ�,

with pF being an analytic function – called the gain
function – of the instantaneous membrane potential of
the mth neuron:

vmðtÞ ¼
XN
n¼1

Jmn
X
ftfn g

�ðt � tfn � DmnÞ

¼
XN
n¼1

Jmn

Z
ds�ðsÞSnðt � s� DmnÞ : ð14Þ

As above, ftfng labels the set of presynaptic firing times
of fiber n, and �ðsÞ is an excitatory postsynaptic potential
(EPSP) model, which is positive, causal, and normalized,
i.e.,

R1
0 ds�ðsÞ ¼ 1 (Fig. 4).

4.1 Stationary input

We assume temporally averaged rates and correlations
of the input processes to be invariant in time, a property
that we call stationarity on time scale T. Rates are
therefore simply numbers minn ðtÞ ¼ minn , and correlation
functions only depend upon time differences Cnn0 ðt; t0Þ ¼
Cnn0 ðt � t0Þ. This will be the central hypothesis that
allows separation of the synaptic dynamics at the single-
cell level and the selection of delay lines through AMSL
(see Sect. 5).

4.2 Postsynaptic firing rates

Correlation functions hSmðtÞSnðt þ rÞi can be derived
from rates hSmðtÞi ¼ hpoutm ðtÞi ¼ hpF½vmðtÞ�i using Bayes’
formula (Kempter et al. 1998; Leibold et al. 2002), which
is nothing but an expression for conditional probabilities
(Ash 1972):

hSmðtÞSnðt þ rÞi ¼ hSmðtÞjn; t þ ripinn ðt þ rÞ ;

where hSmðtÞjn; t0i labels the average rate at cell m under
the condition of a presynaptic spike in fiber n at time t0.
We now calculate the postsynaptic intensities hSmðtÞi ¼
hpF½vmðtÞ�i. The average on the left-hand side of the
above equation is over both pre- and postsynaptic firing,
whereas the right-hand average is meant presynaptically
only.
Since we have chosen the gain function pF to be

analytical, we can write

pFðvÞ ¼
X
k

f ðkÞvk ;

with finite f ðkÞ 2 R and limk!1 f ðkÞvk ¼ 0. Then the
time-averaged rates can be written as

hpF½vmðtÞ�i ¼
X
k

f ðkÞh½vmðtÞ�ki

¼
X
k

f ðkÞ
Yk
j¼1

X
nj

Jmnj

Z
dsj�ðsjÞ

" #

�
Yk
j¼1

Sjðt � Dmnj � sjÞ
* +

: ð15Þ

Input activity has been assumed to be stationary on
timescale T and, as a consequence, the time-averaged
multispike correlation in (15) is a function of the k � 1
differences of its k arguments only. It is thus independent
of the time t, as is moutm ¼ hpF½vmðtÞ�i. The latter then
solely depends upon the set of delay differences
fDm1 � Dm2; . . . ;DmN�1 � DmNg.
Calculating the conditional averages we obtain

hpF½vmðtÞ�jn; t þ ri ¼
X
k

f ðkÞh½vmðtÞ�kjn; t þ ri ; ð16Þ

and hence

hSmðtÞSnðt þ rÞi ¼ hpF½vmðtÞ�jn; t þ ripinn ðt þ rÞ
¼

X
k

f ðkÞh½vmðtÞ�kjn; t þ ripinn ðt þ rÞ

¼
X
k

f ðkÞh½vmðtÞ�kSnðt þ rÞi : ð17Þ

Inserting (14) into (17) and considering stationarity, we
find that also the time average of (17) only depends
on delay differences and ðr � DmnjÞ. Since in (10)
and (13) the time difference r equals r ¼ s� Dmn, (12)
only depends on the set of delay differences fDmni�
Dmnj ji < jg, so that the learning equation (12) is
autonomous.

Fig. 4. Model of synaptic transmission. Once neuron n fires it takes
an axonal deay Dmn before the spike reaches neuron m. Each of the N
synapses connecting to output neuron m is described by a single
variable Jmn, its efficacy or strength. Its effect is to adjust the amplitude
of the corresponding spike-response kernel �. The sum of all responses
yields the postsynaptic membrane potential vmðtÞ given by (14)
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4.3 Formulae for exponential gain function

In the case of an exponential gain function

pFðvÞ ¼ m0 exp½bv� ;

the above calculations with f ðkÞ ¼ m0b
k=k! yield an

explicit form of rate and correlation (Leibold et al.
2002), viz.,

hpF½vmðtÞ�i ¼ m0 exp
XN
n¼1

Z1
0

ds pinn ðt � s� DmnÞ

8<
:

� ebJmn�ðsÞ � 1
h i9=

; ð18Þ

and

hSmðtÞSnðt þ rÞi ¼ hpF½vmðtÞ�ipinn ðt þ rÞ
� exp½bJmn�ð�r � DmnÞ� : ð19Þ

Both will be useful for treating the example in Sect. 8.

5 Separability of the linear approximation

In general, one can find no explicit solution to the highly
nonlinear differential equation (12). We thus turn
towards the analysis of the linearized dynamics in the
vicinity of an appropriate fixed point Jmn ¼ J fixmn.
To this end, we define a parameter regime to be bio-

logically relevant if the learning equation (12) provides a
fixed point with J fixmn > 0, positive rate hpF½vmðtÞ�i, and a
domain of attraction that includes the generic initial
conditions. We already know that (12) is autonomous
and solely dependent on the set of delay differences
fDmni � Dmnj ji < jg. The same therefore applies to a
linearized dynamics for the deviations imn � Jmn � J fixmn
from a biologically relevant fixed point. In other words,
we discuss the linear dynamics

d

dt
imn ¼

X
m0at axon n

X
n0

�
ðLlocalÞnn0dmm0

þ ðLAMSLÞnn0qmm0

�
im0n0 ð20Þ

where ðL?Þnn0 ¼ L?ðDmn � Dmn0 Þ ¼ L?ðD0n � D0n0 Þ and ? ¼
‘‘local’’ or ‘‘AMSL’’. The last equality is due to
Dmn ¼ D0n þ xðmÞ=c, which resembles a delay-line topol-
ogy. The spatial position xðmÞ of the postsynaptic
neurons is often modeled as xðmÞ ¼ mdx, corresponding
to equidistant cells. Analogously, assuming a large
numberN > 100 of afferents, we model the edge delays as

D0n ¼ nK=N :

The parameter K thereby denotes the width of
available delays. The last step has an important impli-
cation, viz., the matrices ðL�Þnn0 become cyclic, i.e.,
ðL�Þnn0 ¼ ðL�Þn�n0 . Consequently both Llocal and LAMSL
are diagonalized by the same orthonormal set of eigen-
vectors /n , viz., plane waves

/nðlÞ ¼
1ffiffiffiffi
N

p exp
2piln
N

� 	
;�N
2
< l � N

2
: ð21Þ

The eigenvalues k?ðlÞ of L? are then obtained asX
nn0

/�
nðlÞ L?ð Þnn0/n0 ðlÞ ¼ k?ðlÞ :

As an important consequence we note that the eigen-
vectors of the linear operator in (20) separate into a
subcollection /n that describes synaptic plasticity at a
single neuron, and another subcollection wm that
explains the coordination of delay selection along the
axons. The eigenvectors Umn of the complete dynamics
(20) are thus products

Umnðl; lÞ ¼ wmðl; lÞ/nðlÞ ; ð22Þ

where the wm comply withX
m0

dmm0klocalðlÞ þ qmm0kAMSLðlÞ½ �wm0 ðl; lÞ

¼ kðl; lÞwmðl; lÞ : ð23Þ

We now return to the properties of the axonal interac-
tion matrix qmm0 . It was supposed to be symmetric and
translationally invariant, i.e., cyclic. As a result the wm
are also plane waves:

wmðl; lÞ � wmðlÞ ¼
expð2pilm=MÞffiffiffiffiffi

M
p ð24Þ

and the eigenvalues belonging to (23) read

kðl; lÞ ¼ klocalðlÞ þM q̂qlkAMSLðlÞ ð25Þ

where

q̂ql ¼
XM=2

m¼�M=2

qm0e
�2pilm=M

denotes the spatial Fourier transform of the coupling
matrix. This only holds exactly for M ! 1 or periodic
boundary conditions, but as shown by Ledermann
(1944), for finite M the alignment of the spectrum
remains unchanged. Since we have assumed symmetric
axonal coupling, q̂qðlÞ is simply a real number. In the
special case qmm0 ¼ q ¼constant, however (25) is exact
for all M and the eigenvalues are

kðl; lÞ ¼ klocalðlÞ þMq dl0kAMSLðlÞ :

Conclusions

Since the axonal interaction contributes to the eigen-
value with qM , and kAMSLðlÞ is of the same order of
magnitude as klocalðlÞ, a relatively small value of
q � 1=M already has a noticeable effect on the synaptic
dynamics.
The selection of edge delays, i.e, of whole axonal ar-

bors, requires that all synapses at an axon should be
altered similarly: if one synapse is strengthened all syn-
apses at the same axon ought to be strengthened, and if
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one is depressed all of them ought to be depressed. The
only eigenvector wmðlÞ that is in agreement with the
above picture is the one for which l ¼ 0. The strength of
the coordinating effect is then represented by the ei-
genvalue kð0; lÞ ¼ klocalðlÞ þMqkAMSLðlÞ. It exceeds
eigenvalues for which l 6¼ 0, if Mq > 1; it then domi-
nates the synaptic dynamics and leads to a synchronized
development along the axonal arbors.

6 Structure indices

The status of delay selection at the single-cell and
axonal levels can be quantified through so-called
structure indices. We define them as projections of the
weight deviations imn onto eigenvectors of the linea-
rized dynamics.

1. The so-called axonal structure index V axon is the pro-
jection of imn onto the eigenvector Umnð0; lÞ that
describes the synchronization of synaptic dynamics
along the axonal arbors:

V axon ¼ 1ffiffiffiffiffiffiffiffi
MN

p
X
mn

imnUmnð0; lÞ
�����

����� : ð26Þ

2. In contrast, the average structure index V avg is gen-
erated by the projections of imn onto /nðlÞ, averaged
over all postsynaptic cells:

V avg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

X
m

X
n

imn/nðlÞ
�����

�����
2

vuut : ð27Þ

It measures the average extent of synaptic structure
formation at single-cell level and therefore serves as
an upper bound for V axon (see Eq. 31).

In order to calculate the time course of both indices,
we expand imn in eigenvectors Umn:

imn ¼
X
ll

aðl; lÞUmnðl; lÞ :

Since

aðl; lÞðtÞ ¼ exp½tkðl; lÞ�aðl; lÞð0Þ

and the eigenvectors are orthonormal, we find

V axonðtÞ ¼ 1ffiffiffiffiffiffiffiffi
MN

p að0; lÞð0Þekð0;1Þt�� ��
and

V avgðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMNÞ�1

X
l

jaðl; lÞð0Þekðl;1Þtj2
r

:

For the sake of simplicity we assume the axonal coupling
matrix to be of the form qmm0 ¼ q for allm;m0 and<fklocal
ðlÞg ¼ <fkAMSL ðlÞg ¼: kT . The eigenvalues thus
have real parts <fkðl; 1Þg ¼ kT ð1þ qMdl0Þ. We obtain

V axonðtÞ ¼ c0e
tkT ð1þqMÞ ð28Þ

and

V avgðtÞ ¼ c0e
tkT ð1þqMÞ

�
h
1þ ðM � 1Þ c1

c0

� 	2
e�2qMtkT

i1=2
; ð29Þ

where

c0 :¼
jað0; lÞð0Þjffiffiffiffiffiffiffiffi

MN
p ; ð30Þ

c1 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMNÞ�1

X
l;l 6¼0

jaðl; lÞð0Þj2

ðM � 1Þ

vuut :

In (28) and (29) the initial values aðl; lÞð0Þ are reduced
to the two numbers c0 and c1. To estimate their order of
magnitude, we calculate expectation values. As initial
conditions we assume imnð0Þ ¼ nmn, with nmn being
uncorrelated white noise with mean zero and correlation

hnmnnm0n0 i ¼ d2dmm0dnn0 :

We end up with

c0 � c1 �
dffiffiffiffiffiffiffiffi
MN

p :

These approximations are used for plotting the time
evolution of the order parameters, viz., (28) and (29), in
Fig. 5 for the set of parameters used by Kempter et al.
(2001).
Figures 5 and 6 show that the theoretical predictions

are a reasonable approximation of the data obtained by
numerical simulations with the same set of parameters.
Global order is always less than local order since

V axonðtÞ
V avgðtÞ ¼ 1þ ðM � 1Þðc1=c0Þ2

e2qMtkT

" #�1=2

< 1 ð31Þ

while M > 1. As t ! 1, the ratio of vector strengths in
(31) approaches 1 if both q and kT are positive. So, if we
wait sufficiently long, we will gain a perfect, globally
orderedmap. The final quality of themap therefore seems
to have only a little dependence upon q. These consider-
ations, however, only hold if the dynamics remains linear.
For biological systems this assumption is in general not
fulfilled, as the resources available for synaptic modifica-
tion are restricted. This restriction can be mimicked by
introducing an upper bound for the local order parameter
V avg. Once the boundary is reached (at t ¼ tfreeze > 0), the
whole dynamics is assumed to be frozen. The difference
between local and global order at freezing time, however,
has a strong dependence upon q (Fig. 5).
For fixed t ¼ tfreeze > 0, (31) shows that the bigger the

axonal coupling q, the more the difference between the
values of both order parameters diminishes. So one
could argue that map formation becomes more effective
with larger axonal coupling strength. In Leibold et al.
(2002) it is shown that this is not the case and that, due
to noise, the upper limit for the axonal coupling strength
is of the order qJOðM�1=2Þ.
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7 Traveling waves

In order to visualize the effect of the delay-line topology
on postsynaptic excitation, we calculate the average
membrane potential along the axonal arbor for a given
synaptic configuration Jmn ¼ J fixmn þ Umnð0; lÞ and a peri-
odic presynaptic activity with frequency l=K ¼ x=ð2pÞ.
We obtain a traveling wave:

hvmðtÞi ¼ vfixm ðtÞ þ v1 cosðxt þ x=cmdxþ uÞ :

Besides the dynamics at the fixed point, a Hebbian-tuned
structure of edge delays is responsible for wave-like
propagation of postsynaptic activity. The wavelength is
thereby given by x=ð2pcÞ. The phase u is provided by a
global offset of presynaptic activity. The constant v1
incorporates membrane properties.

8 Time-difference maps

As an example of a temporal map that is generated by
delay lines, we refer to the laminar nucleus of barn owls.
This is the first station receiving binaural input and its
cells are tuned to best ITDs as well as best frequencies.
Both features are organized in maps. The tonotopy
gradient roughly runs in the anterior–posterior direc-

tion, whereas the best ITD gradient has been found
along the dorsoventral axis of the nucleus (Sullivan and
Konishi 1986; Fig. 7a).
The biological realization of the ITD map has been

shown to agree with the Jeffress hypothesis (Carr 1993).
He proposed an array of coincidence-detector cells with
a topology the same as that shown in Fig. 7b (we return
to it in Fig. 10). If, at a specific neuron, the difference of
conduction delays between the axon bundles originating
from the left and right ears compensates for the acoustic
time difference that occurs between both ears and is
caused by the sound-source location, then the cell re-
ceives spikes that are temporally highly correlated and
thus (Kempter et al. 1998) fires at a high rate. Although
in the young animal each axon carries a phase-locked
input, the temporal dispersion of all spikes arriving at
each neuron (Carr and Konishi 1990) has a width of 1
ms, i.e., one to several periods of the frequencies in-
volved (1–9 kHz). We now show how a delay-line ar-
chitecture can evolve during maturation of the animal,
and thereby specify the learning equations (10) and (13)
as well as the input processes.

8.1 Model formulation

First, we specify EPSP and learning windows. Since the
membrane time constants in the auditory periphery of
birds are known to be extremely short (e.g., in chickens
the rise times are only 200ls; Reyes et al. 1996), we
assume for barn owls – being auditory specialists – a
membrane rise time of 100ls (Fig. 8a) and a learning

Fig. 5. Dynamics of the order parameters. The global order param-
eters V axon (solid lines) and V avg (dashed lines) are plotted as functions of
time (see Eqs. 28, 29) represented by the horizontal axes. The
interaction strength qM is varied systematically from qM ¼ 0 (no
interaction) to qM ¼ 2=3 (strong interaction). Once the local order
parameter reaches a saturation threshold, say 0:8 (dotted horizontal
lines), synapse growth stops, which canbe achieved, e.g., by introducing
an upper bound for the single synaptic weights. Hence at the same time
(dotted vertical lines) also the global order parameter stops increasing.
Thus the difference between global and local saturation depends on
qM . In accordance with Kempter et al. (2001), the following
parameters have been used: d ¼ 0:2, N ¼ 250, M ¼ 30

Fig. 6. Dynamical evolution of order parameters as given by
numerical simulations. The global (solid lines) and local (dashed lines)
order parameters have been plotted as functions of time (cf. Fig. 5).
Other parameters have been chosen as in Kempter et al. (2001). As the
interaction strength qM is increased, the difference between the
saturation values of the global and local orders diminishes. Saturation
is realized by an upper bound of 2 for the individual synaptic weights
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window with a temporal width that fits in this range
(Fig. 8b).
Moreover, in order to minimize the number of model

parameters, we set the nonlocal learning parameters
equal to the local ones, i.e., uin=out ¼ win=out.
The spatial extent of the laminar nucleus is similar to

the range of axonally mediated learning as reported by
experiments (Bonhoeffer et al. 1989; Cash et al. 1996;
Fitzsimonds et al. 1997). We therefore take qmm0 ¼ q to
be constant.
The crucial step in modeling synaptic plasticity is

the choice of input processes and the correlation
functions that follow from them; see (10) and (13).
Since the auditory system is tonotopically organized,
i.e., different spectral components of the acoustic
stimulus are processed at different spatial locations in
the cochlear nuclei and hence in the input provided by
them, cells in the laminar nucleus are exposed to af-
ferent activity with some prevailing periodicity Tp,
corresponding to the characteristic frequency f ¼ 1=Tp
of the respective cochlear channel. We take this
into account by defining the poissonian input rates to
be periodic functions, pinðtÞ ¼ minTpgðtÞ, where gðtÞ ¼
gðt þ TpÞ with

R Tp
0 dsgðsÞ ¼ 1. Any periodic function, g,

can be expressed as a Fourier series:

gðtÞ ¼ T�1
p

X1
l¼�1

ĝgl expð2pilt=TpÞ

with coefficients ĝgl ¼
R Tp
0 dsgðsÞ expð�2pils=TpÞ. Differ-

ent axons’ firing densities are assumed to differ only by a
retardation of delay D0n, so that pinn ðtÞ ¼ pinðt � Dn0Þ. We
find that, by definition,

hSinn ðtÞi ¼ min

and, less trivially,

hSinn ðtÞSinn0 ðt þ rÞi ¼ pinn ðtÞpinn0 ðt0Þ þ dnn0dðrÞpinn ðtÞ

¼ ðminÞ2
X

l

jĝglj2exp½2pilðr þ D0n � D0n0 Þ=Tp�

þ dnn0dðrÞmin :

Lastly, we specify the gain function pF to be expo-
nential (see Sect. 4.3) since we also want to cover the
effect of nonlinearities on synaptic dynamics.

8.2 Fixed point

We now show that, with an exponential gain function,
learning equations such as (10) have a constant,
biologically relevant, fixed point J fixmn ¼ J fix > 0 under
rather general conditions. We therefore insert Jmn ¼ J fix

into (18) and because ofX
n

pinðt � DmnÞ ¼
X
n

pin½t � xðmÞ=c� nTp=N �

¼minTp
X
n

g½t � xðmÞ=c� nTp=N �

¼min
X
nl

ĝgle
2pil½t�xðmÞ=c�nTp=N �=Tp

¼min
X

l

Ndl0ĝgl ¼ Nmin ĝg0|{z}
1

the mean firing probability is constant:

mout ¼ m0 exp Nmin
Z1
0

dsðebJ fix�ðsÞ � 1Þ

8<
:

9=
; : ð32Þ

Consequently the correlation function in (19) is inde-
pendent of t as well:

Cmnðt; t þ rÞ ¼ moutminebJ fix�ð�r�DmnÞ : ð33Þ

Fig. 7. a Interaural time difference (ITD) map in a barn owl’s laminar
nucleus, after Sullivan and Konishi (1986). Iso-ITD contours (solid
lines) consist of neurons with maximal response at ITDs as indicated;
e.g., �25 corresponds to the left ear leading by 25 ls. The vertical
dashed line is the cut shown in b, where neuronal activity is conveyed
by spike trains in axon bundles (solid lines) that come from the left and
right ears, run in parallel to the dorsoventral direction (arrow), and
contact neurons through synapses (small white balls). Measuring firing
rates of neurons (large gray spheres) along this direction, one finds
that the neuronal site where the firing rate is maximal varys
continuously with the stimulus angle – a place code. Neurons are
taken to be equidistant with dx ¼ 10 lm, a typical value

Fig. 8a,b. Excitatory postsynaptic potential �ðsÞ ¼ s=s2 expð�s=sÞ for
s � 0, �ðsÞ ¼ 0 for s < 0, with s ¼ 0:1ms (a) and learning window W
(Kempter et al. 2001; b), as they have been used in the numerical
simulations
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We insert (32) and (33) into (10) and obtain the fixed-
point condition (d J fixmn=dtlocal ¼ 0):

c :¼ �win

min
R
dsW effðs; bJ fixÞ þ wout

¼ mout

min
ð34Þ

where the effective learning window is defined by
W effðs; xÞ :¼ W ðsÞ exp½x�ð�sÞ�. In biological neuronal
networks the ratio c between the input and output rates
is of order 1. Any arbitrary value of c > 0 can be
obtained by adjusting win and wout in (34) for any given
values of min and bJ fix. We thus postulate a fixed positive
value c, and due to (32) we can write

lnðcmin=m0Þ
Nm

¼
Z1
0

ds½ebJ fix�ðsÞ � 1� ¼: wðbJ fixÞ ð35Þ

Here w is a monotonically increasing function of bJ fix

with wð0Þ ¼ 0 and hence, for lnðcmin=m0Þ > 0, there is a
unique fixed-point solution bJ fix.

8.3 Linearized synaptic dynamics

As announced in (20), for small deviations imn the
synaptic dynamics can be continously mapped upon the
linear differential equation that is obtained through a
Taylor expansion of (12) (Grobman-Hartman theorem,
Hale and Koçak 1991; Verhulst 1996):

d

dt
imn ¼

X
m0n0

@

@Jm0n0

d

dt
Jmn

� 	� ������
Jmn¼J fix

im0n0 :

The partial derivatives at the fixed point then yield the
matrix Lnn0 that appears in (20):

Lnn0 ¼ gbmoutðminÞ2
X

l

jĝglj2ŴW eff
l �̂�effl e2pilðD0n�D0n0 Þ=Tp

� kpost=N þ dnn0k
auto

where �effðs; xÞ ¼ �ðsÞ exp½x�ðsÞ� denotes an effective post-
synaptic potential, while

kauto ¼ gbmoutmin
Z
ds�ð�sÞW effðs; bJ fixÞ

and kpost ¼ gminmoutNwout �̂�eff0 . The coefficients ŴW eff
l and

�̂�effl are ordinary Fourier transforms, such as

ŴW eff
l :¼

Z1
�1

dsW effðs; bJ fixÞ expð�2pils=TpÞ :

As a result, the eigenvalues of L are given by

kðlÞ ¼ gbmoutNðminÞ2jĝglj2ŴW eff
l �̂�effl

þ dl0k
post þ kauto : ð36Þ

Figure 9 shows kðlÞ as a function of x ¼ 2pl=Tp for
different values of bJ fix and wout ¼ 0.
For sufficiently high x (the minimal best frequency of

laminar neurons is about 1 kHz, which yields x ¼

6 kHz), we find the maximal real part for l is �1 and,
therefore, the prominent eigenvector is Umnð0;�1Þ ¼
exp ð2piDmn=TpÞ, which is consistent with numerical
simulations (Kempter et al. 2001) and explains experi-
mental findings (Carr and Konishi 1990). Imaginary
parts of eigenvalues of the matrix L lead to oscillations
and, as such, are disadvantageous to structure forma-
tion. A closer look at Fig. 9 reveals, however, that
imaginary parts are suppressed by increasing b. That is
to say, nonlinearities in pF can stabilize synaptic learn-
ing.

8.4 Mapping interaural time differences

After independent structure formation in both popula-
tions, the system faces two excitation waves – vleftm ðtÞ and
vrightm ðtÞ – that are traveling in opposite directions; cf.
Sect. 7 with cleft ¼ �cright. Their linear superposition
leads to a standing wave:

hvleftm ðtÞ þ vrightm ðtÞi ¼ 2vð0Þ þ 2vð1Þ

� cos½xpxðmÞ=cþ U� cosðxptÞ : ð37Þ

The positions xmax of the interference maxima are then
defined by the phase offset U between both classes of
input processes: xmax ¼ ZcTp=2� cU=xp. We have thus
obtained a place code representing the time difference
U=xp between both classes. The time difference is
determined by both the hard-wired conduction delay
between the auditory organ and the laminar cell, and by
the azimuthal position of the sound source, i.e., the ITD
(Fig. 10a). Since the conduction delay is an anatomic
constant for each neuron, we have actually obtained a
representation of the ITD in terms of position of
interference maxima in the laminar nucleus. Because of
the nonlinear gain function, these interference maxima
are then transformed into firing rates, i.e., an ITD map.

9 Excursion: unreliable synapses

Although up to now spike transmission through syn-
apses has been modeled deterministically, i.e., each

Fig. 9a–c. The normalized temporal eigenvalues kT / ŴW eff�̂�eff, for
bJ fix ¼ 0 (a), 1=3 (b), and 2=3 (c), show band-pass properties. Real
parts (solid lines) get broader as b increases, whereas imaginary parts
(dashed lines) approach zero
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presynaptically arriving spike safely elicits an EPSP, a
more realistic description is obtained by so-called
unreliable synapse models (Senn et al. 2002). The latter
implies that if there is an input spike at time t and input
line n, it is transmitted to the postsynaptic cell – and
hence to the learning procedure – with a probability P .
The mentioned procedure is equivalent to replacing the
input densities pinn by P pinn . As a result, (18) and (19) read

hpðPÞF ½vmðtÞ�i : ¼ m0 exp
XN
n¼1

Z1
0

dsP pinn ðt � s� DmnÞ

8<
:

� ebJmn�ðsÞ � 1
h io

; ð38Þ

mðPÞ : ¼ hpðPÞF ½vmðtÞ�i

and

hSmðtÞSnðt þ rÞi ¼ hpðPÞF ½vmðtÞ�iP pinn ðt þ rÞ
� exp½bJmn�ð�r � DmnÞ� : ð39Þ

We define the abbreviation kstruct ðlÞ ¼ kðlÞ � kauto �dl0
kpost from (36) and find the following eigenvalues of the
linearized dynamics with transmission probability P :

kðPÞðlÞ ¼ PmðPÞ

mout
½PkstructðlÞ þ kauto þ dl0k

post� :

The growth rate due to self-correlations kauto stems from
the exponential function on the right-hand side of (39).
The ratio kauto=½PkstructðlÞ� is increased with increasingly
unreliable synaptic transmission.

As a result, low transmission probabilities P reduce
the driving force for the emergence of temporal
structures, and therefore are disadvantageous from a
point of view of optimizing temporal precision. They
nevertheless can have a beneficial effect if one consid-
ers axonal and postsynaptic dendritic delays separate-
ly. Then, as shown by Senn et al. (2002), P < 1 can
break up the degeneracy of eigenspaces, which is due
to the fact that the learning rule is sensitive to time
differences and, to a first-order approximation, cannot
distinguish between synapses with equal difference be-
tween axonal and retrograde dendritic delays (cf. Senn
2002).

10 Conclusion

Mapping time by means of delay lines is restricted to
temporal features occurring on a timescale of a few
milliseconds and less. It can be guaranteed through
AMSL. The relative strength of the axonal interaction
can thereby be as small as the inverse of the number of
interacting postsynaptic neurons. The result of delay
selection on the level of afferent axons are waves of
postsynaptic excitation. A neuronal anatomy providing
several directions of afferent arborization thus yields
interference patterns, whose maxima represent time
differences between activation of the input populations.
In the simplest case of two input populations arboring
into opposite directions, this gives rise to a realization of
the Jeffress model.
The latter is biologically implemented in the laminar

nucleus of barn owls, a neuronal structure that is re-
sponsible for mapping interaural time differences on a
timescale of 10ls. Our model is consistent with findings
on maturation of the laminar nucleus in young owls.
We suggest that AMSL is a key mechanism for in-

ducing map formation whenever time is involved. The
simple reason behind this suggestion is that temporal
correlations of input activity are best preserved in
afferent axons.
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