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Abstract

Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide
surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations
can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus
to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane’s
elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional.
Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators
that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely
exceeds calculus level.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Soft matter physics is a highly active, and fascinating, part of condensed matter physics. As a consequence of being
soft, this kind of matter can change form easily and, as we will show, classical differential geometry is a natural and
efficient tool to describe many of the physically intriguing phenomena that evolve at the surface of soft matter. The
theory of the mechanics of soft surfaces has a long tradition starting as early as 1805 with the work of Laplace and
Young (Isenberg, 1992) on surface tension. In addition to surface tension, the energy of a surface is determined by the
bending rigidity of the membrane itself and also by forces that arise externally, e.g. from the cytoskeleton. Considering
all these contributions, a geometric theory of elastic surfaces has to provide general answers to the questions of what
the equilibrium configuration of a cell is and how elementary excitations from an equilibrium configuration look.

Fig. 1 shows a few moments out of the “flickering” life of a red blood cell and the inherent undulations of its
membrane surface. Since the surface tension of its cell membrane is low and the membrane is highly flexible (so that
the cell can penetrate easily through narrow veins) the fluctuation amplitudes are high. Hence flickering is even clearly
visible under an ordinary microscope. It was discovered more than a century ago (Brouricz, 1890). As we see, waves
sweep over the cell membrane (Marx et al., 2002) despite its having a (typically) ovoid equilibrium form at rest. Why
is this so? How can we describe it? And how successful is this description?

Biomembrane undulations. As has been shown convincingly by Brochard and Lennon (1975), the aqueous solution
enveloping the cell acts as a heat bath generating undulations (Fig. 1). To describe the cell’s equilibrium form physically,
it is natural to assume it is a minimum of an energy function or, in the present case, an energy functional. Minima are
obtained by differentiation and follow from a vanishing of the first derivative. This, then, would assign to a cell its
equilibrium form, being defined through the minimal elastic energy of both cell and cell membrane. But an equilibrium
form does not tell us anything about the steady flickering a cell is subject to.

The idea to explain flickering and many other phenomena of ‘lower excited states’ such as phonons in a crystal is
that of elementary excitations, dating back to Landau (Landau, 1941); for a more recent and comprehensive vision, see
Anderson (1963). Key to this construct is the concept of energy function. Setting its first derivative equal to zero we find
extrema that are to be associated with equilibria. Computing the second derivative we may find elementary excitations
from a state corresponding to an extremum. If their energies are positive, the extremum is a minimum, maybe a local
one, and stable. If some of the energies are negative, the extremum is a saddle point and unstable. Second derivatives
give rise to quadratic forms that can be diagonalized and, hence, to exact solutions making elementary excitations as
a notion so popular. So the next question is: How to get a suitable energy functional describing a biomembrane?
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Fig. 1. Membrane fluctuations, so-called undulations, of a red blood cell of size ≈ 10 �m. (a). Temporal sequence of contrast-enhanced pictures of
thermally excited surface undulations of a red blood cell provided by dynamic reflection interference contrast microscopy (RICM) (Zilker et al.,
1987). One sees the time-dependent lateral deformation of Newtonian rings generated by the cell-membrane fluctuations. The temporal separation
between the pictures (left-right, top-bottom) is 0.2 s. (b). Resolution [nm] of amplitude fluctuations at a specific site as a function of time and (c)
along a 10 �m strip of a giant DEPC (50 mol cholesterol) vesicle at three different times: 0 s (dot–dashed), 4.8 s (solid) and 5.3 s (dashed). Picture
courtesy of Andreas Zilker (a, b), Stefanie Marx (c).

Fig. 2. Discocyte–stomatocyte transition of a free vesicle with a ‘fluid’ membrane. Top: experimental pictures (Berndl et al., 1990) for increasing
temperatures: 43.8, 43.9, 44.0, and 44.1 ◦C. The shapes are axisymmetric with respect to the vertical. Bottom: corresponding equilibrium shapes as
provided by the theory of Seifert et al. (1991), which explains the complicated phase diagram as well.

Biomembrane undulations and continuum mechanics. An energy functional describing a biomembrane depends on
its shape. Depending on shape it is a functional and not a function anymore. But why can we for instance reduce
a biomembrane, a lipid bilayer of finite thickness h > 0, to a “shape”? Let us describe a cell membrane as a curved
surface equipped with a finite thickness h and curvature R−1 where R is a “typical” radius of curvature; we just want
to estimate orders of magnitude. A glance at Figs. 1c and 2 suffices to convince us that, say, R�1 �m. The central
idea is that h>R. This is indeed correct since h ≈ 10 nm is two orders of magnitude smaller. We now replace the
membrane by a smooth surface, also called manifold, and apply continuum mechanics to this sheet of finite thickness,
leaving us in Section 3 with an energy functional neatly depending on geometric quantities only and containing h as
a prefactor. Even inhomogeneous “sandwich” membranes can be described this way. Though this sounds physically
quite appealing, we may and, in fact, should ask: How good is it?
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Fig. 3. Red blood cell undergoing the so-called stomatocyte–discocyte–echinocyte transition (Ponder, 1948), left → right & top → bottom. It
passes through a ‘main sequence’ of shapes as one increases a specific parameter such as the pH or salt of the aqueous solution it is in. The main
sequence does not depend on the specific parameter that is varied, i.e., it is universal. It starts as a concavely shaped stomatocyte, becomes a round
discocyte, and finally ends up as an echinocyte with convex rounded protrusions or spicules. Analogously to Fig. 2, the universal ‘main sequence’
can be described fully (Lim et al., 2002; Mukhopadhyay et al., 2002) by the geometric theory of elasticity explained in Section 3. Picture courtesy
of Erich Sackmann.

As a first example we turn to shape transformations of a vesicle induced by a change in temperature. The vesicle is
freely floating in an aqueous solution, keeping area and volume constant. Its energy is that given by (19), which will be
derived below, and the ensuing analysis stems from Seifert et al. (1991). A more general and, in fact, simpler derivation
is presented in Section 11.1; see also Section 11.3. As Fig. 2 shows, experiment and theory agree nicely.

The shape transformations of mammalian red blood cells are even more spectacular. Their natural shape is a biconcave
disk of diameter ≈ 8 �m (Fig. 3, top-left corner). Unlike most human cells, red blood cells have no internal formed
elements; in particular, no three-dimensional protein meshwork. Instead, a two-dimensional protein skeleton is apposed
to the cytoplasmic side of the membrane (cf. the sandwich plate of Section 3). Both the lipid bilayer and the skeleton
are highly flexible and elastic, allowing the red cell to squeeze through narrow capillaries. A variety of membrane
intercalators can modify this shape dramatically and reversibly at constant area and volume as illustrated in Fig. 3.

One class of agents such as high salt or high pH induces a series of crenated shapes, called echinocytes, with their
characteristic convex rounded protrusions or spicules. On the other hand, for low salt or low pH concave shapes called
stomatocytes appear, as in the top left corner of Fig 3. The total, main sequence is universal in the sense that the
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shapes seen and the order of appearance do not depend on the specific agent. It is therefore natural to look for intrinsic
membrane properties as an explanation of the main sequence of red-blood-cell shapes.

Sheetz and Singer (1974) were the first to come up with such a universal explanation in that they hypothesized
induction of a small change �A in the relaxed area difference between the two leaflets of the cell membrane, a lipid
bilayer, to be the driving mechanism. An expansion of the outer leaflet with respect to the inner one (�A > 0) produces
a tendency to form convex structures on the cell surface such as spicules so as to accommodate the extra area. On the
other hand, a decrease (�A < 0) would favor concavities such as stomatocytic structures.

It is a major achievement of Wortis and coworkers (Lim et al., 2002; Mukhopadhyay et al., 2002) to have devised a
mathematical model (see Section 9) based on merely geometric structures such as mean and Gaussian curvature (see
Section 4) to explain the complete main sequence as described above and part of which is shown in Fig. 3. That is, here
too we have a striking confirmation of the usefulness of continuum mechanics in conjunction with classical differential
geometry to fully explain the behavior of cell membranes on the basis of a free-energy functional expressed in terms
of geometric quantities only.

Biomembrane undulations and differential geometry. All this is quickly said but not that quickly done. The novel,
and fascinating, aspect of the membrane problem in general and the biomembrane problem in particular (Nelson et al.,
1989; Lipowsky, 1991; Seifert et al., 1991; Sackmann, 1994; Safran, 1994; Peliti, 1996; Seifert, 1997; Boal, 2002) is
that its energy is a functional depending on the shape of the membrane surface instead of being a function depending on
the particles’ coordinates. Furthermore, membrane undulations show a dazzling richness of behavior (Engelhardt et al.,
1985; Zilker et al., 1987; Duwe and Sackmann, 1990; Marx et al., 2002; Peterson et al., 1992; Strey et al., 1995; Zilker
et al., 1992) and often provide surprising insight into underlying processes, e.g., as a consequence of the elasticity
depending critically on constituents and additives. In fact, at many occasions (Hyde et al., 1997) shape is a dominating
aspect of science. Or, as Hildebrandt and Tromba (1996) aptly put it, why does nature produce certain forms, and why
does it prefer them to other conceivable forms?

Differentiation with respect to shapes, though in principle well-known from the calculus of variations, is nontrivial
in practice and therefore needs efficient tools. It is the goal of the present paper to offer these tools through classical
differential geometry. As we will see, this kind of geometry provides us with explicit and simple but nevertheless efficient
techniques to fully solve the elementary excitation problem of biomembranes. A novel and promising application is
adhesion of membranes and vesicles on a substrate. See, for instance, Komura and Andelman (2000), Bruinsma
and Sackmann (2001), Guttenberg et al. (2001), Marx et al. (2002), and Zidovska and Sackmann (2006); theoretical
foundations date back to Seifert and Lipowsky (1990). For various other types of undulation phenomenon we refer to
the literature (Boal, 2002; de Jeu et al., 2003; Kleman and Lavrentovich, 2002).

We first analyze the elementary excitation idea proper in the much simpler phonon context, then provide a concise
derivation of the energy functional describing the most general case of an elastic membrane equipped with locally
specified spontaneous curvature, present the classical differential-geometric formalism that is needed for the solution
of this continuum problem in two parts separated by the nearly flat membrane, which functions as a motivation for what
follows, and finish with a general derivation of the first and second functional derivatives, independent of the specific
shape or symmetry of the membrane, once a notoriously difficult problem. The paper is self-contained and rarely
exceeds calculus level. As such, it is presented with the intent of stimulating independent work by novice investigators.

2. Specimen of elementary excitations: phonons

A crystal is described by a Hamilton function, in short energy, of the form

H =
N∑

i=1

1

2m
p(i)2 + V (q(i); 1� i�N), (1)

where V = V (q(1), . . . , q(N)) is the potential energy of N classical particles with momenta p(i) and coordinates q(i)

and i running from 1 to N. The equations of motion directly follow from H through Hamilton’s equations of motion
q̇�(i) = �H/�p�(i) and ṗ�(i) = −�H/�q�(i) so as to read

mq̈�(i) = −�q�(i)
V , 1���3, 1� i�N , (2)

a rewording of Newton’s law for N particles interacting through a potential V in three-dimensional space.
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At zero temperature we require the crystal to be in equilibrium at a stationary configuration where �q�(i)
V :=

�V/�q�(i) = 0, whatever i and �. We choose coordinates so that q(i) ≡ 0, 1� i�N , characterizes the stationary point
�V = 0 and study small deviations q(i) �= 0, corresponding to low-temperature behavior. A Taylor expansion then
gives

V (q(i); 1� i�N) = V (0) +
∑
�,i

�q�(i)
V (0)︸ ︷︷ ︸

0

q�(i) + 1

2

∑
�,i;�,j

�q�(i)
�q�(j)V (0)︸ ︷︷ ︸
�i,j

�,�

q�(i)q�(j) + O(q3)

=: V (0) + 1

2
q�q (3)

with q = (q(i); 1� i�N) ∈ R3N . The configuration q = 0 is stable, if and only if q�q > 0 for all q �= 0.
The second derivative of V is a quadratic form corresponding the real symmetric matrix �. The symmetry �i,j

�,�=�j,i

�,�
follows from V being smooth enough so that

�q�(i)
�q�(j)V = �q�(j)�q�(i)

V , (4)

a property that we will often invoke in a more general context. �’s eigenvalues � are real and positive once q�q�0
for all q. Its eigenvectors e� can be taken to be orthonormal. The equations of motion for the approximate potential (3)
follow from (2) so as to read q̈=−m−1�q. Being linear, this system is exactly soluble. Making the ansatz q=x(t)e� we
directly find ẍ + (�/m)x =0. The solution is oscillating for � > 0, signaling stability, and explodes for � < 0, indicating
instability of the stationary configuration we started with.

Finally, the eigenvectors e� being orthonormal, we can build an orthogonal matrix O = {e1, . . . , e3N } out of them.
This matrix diagonalizes � in that

� = Odiag(�1, . . . , �3N)O† ⇔ O†�O = � (5)

with �=diag(�1, . . . , �3n) being diagonal. Since the dynamics is linear we get Q̈=−�Q corresponding to a canonical
transformation q = OQ that gives the Hamilton function H = P1P/2m + Q�Q/2 for 3N independent harmonic
oscillators. In a heat bath at temperature T the mean potential energy (Huang, 1987) of each of them is kBT/2.

3. Elastic energy of biomembranes

To gain motivation for studying classical differential geometry, we are going to derive the elastic energy of a
biomembrane by studying it as if it were a thin plate. The advantage of the present argument is its generality in that it
needs no additional assumptions on top of the standard ones. Furthermore, the result has been shown experimentally
to be generally applicable (Lipowsky, 1991; Seifert et al., 1991; Sackmann, 1994; Lim et al., 2002). The underlying
physical assumptions are the following.

First, the thin plate we are considering has a neutral surface on which, to first order, there is no extension or
compression, and on opposite sides of which the deformation has opposite signs. For a truly elastic medium this is not
an ad hoc assumption but a decent approximation (Landau and Lifshitz, 1986).

Second, the plate is so thin that tension along any normal is negligible.
Third, our theory is linear. We consider the plate locally and, if it is already curved, assume that the small piece we

are focusing on has its x and y axes parallel to the principal directions; cf. Section 4.5. Linearity implies that the relative
change �l/ l for given tension �xx parallel to the x-axis satisfies Hooke’s law (�l/ l)x = �xx/E with E as Young’s
modulus. There is an additional contraction �(�l/ l)x along the y-axis, where � is Poisson’s ratio, which can never lead
to ambiguity since it never has a suffix; for some materials � < 0 (Boal et al., 1993; Bowick et al., 2001; Lakes, 2001).
Because of linearity, the amount of work done by the tension �yy can be added to that originating from �xx . In passing
we note that ��� is defined (Landau and Lifshitz, 1986) to be the �-component of a force on unit area perpendicular to
the �-axis.

Fourth, we initially assume the plate is homogeneous but we will see this is not necessary. That is to say, the same
arguments apply to “sandwich” plates such as biomembranes, of which bottom and top are harder than the interior;
cf. (17) and (18). We will also see that for a thin plate or membrane with spontaneous curvature the same arguments
are valid so that e.g. the energy in (15) contains a fit parameter �0 �= 0 to start with.
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Δsx (z)

Δsy (z)

φx

φy Ry = 1/κy

Rx = 1/κx

neutral surface (z=0)

0

z

h

y
x

z

Δsx

Δsy

Fig. 4. An element of a thin plate idealizing a membrane with thickness h (Rayleigh, 1894) and surface area �sx�sy is bent first in the x-, then in
the y-direction. Lengths are thereby changed in dependence upon the height z and the angles 	 = �s/R. The neutral surface is at z = 0.

In summary, the first assumption is natural, the second is relatively harmless as biomembranes are remarkably rigid
in normal direction, the third is essential but justified by experiment, and the fourth can be dispensed with.

Let

�sx/y(z) = (Rx/y + z)	x/y , (6)

be the length of either side of a surface element in x- and y-direction in dependence upon the height z; see Fig. 4. The
neutral surface is at z = 0 and we take it as the manifold M that represents the form of the membrane; see Section 4.1.
The angles 	x/y can be assumed to be small since the surface element is small itself. As shown by Fig. 4, the radii of
curvature R1/2 = |�1/2|−1 describe our piece of surface. According to Meusnier (Section 4.6), we can take �1/2 to be
the usual curvatures (Thomas, 1972) of the intersection of our surface and a plane through the normal vector and the
x- and y-axis, respectively. The �1/2 are principal curvatures (Section 4.6), if the x- and y-axis are principal directions;
by construction these directions are in the tangent plane.

For relative length changes in the direction of x- and y-axis, viz.,

uxx := �sx(z) − �sx(0)

�sx(0)
= z

R1
= �1z, (7)

uyy := �sy(z) − �sy(0)

�sy(0)
= z

R2
= �2z, (8)

Hooke’s law holds,

uxx = 1

E
(�xx − ��yy), (9)

uyy = 1

E
(�yy − ��xx), (10)

with E as Young’s modulus and � as Poisson’s ratio. One can solve Eqs. (9) and (10) for the tensions �xx and �yy ,

�xx = E

1 − �2
(uxx + �uyy), (11)

�yy = E

1 − �2
(uyy + �uxx). (12)
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For the moments of force in x- and y-direction (force = tension times area so that fx/y = �xx/yy�sy/x dz) we obtain
from (11) and (12) in conjunction with (7) and (8)

Mx =
∫ h/2

−h/2
dz�syz�xx = E

1 − �2
�sy

∫ h/2

−h/2
dz(�1 + ��2)z

2

= E

1 − �2
�sy

h3

12
(�1 + ��2), (13)

My = E

1 − �2
�sx

h3

12
(�2 + ��1). (14)

A torque M = r × F is generated by a force F acting at position r and rotated by a small angle d	 about an axis ê,
a unit vector. It gives rise to an infinitesimal amount of work F ds where, due to the rotation, ds = d	ê × r. Hence
Fds=M(d	ê). The infinitesimal amount of work needed to bend a surface area �f := �sx�sy and generate a potential
energy d(�Epot) is therefore

d(�Epot) = Mx d	x + My d	y

= Mx�sx d�1 + My�sy d�2

= Eh3

12(1 − �2)
�sx�sy[(�1 + ��2) d�1 + (�2 + ��1) d�2]

= Eh3

12(1 − �2)
�f

[
1

2
d(�2

1 + �2
2) + �d(�1�2)

]

= Eh3

12(1 − �2)
�f

[
1

2
dH2 + (� − 1) dK

]
, (15)

where �i = 1/Ri for i = 1, 2, d	x/y =�sx/y(0) d�1/2 since the neutral surface is at z= 0, and H =�1 +�2 is the mean
while K = �1�2 is the Gaussian curvature; cf. Fig. 4 and Section 4.6 below. Both H and K are quantities independent
of the parametrization because they can be written as trace and determinant of a linear operator that depends on the
local shape only; cf. Section 4.6. Hence dH2 and dK are total differentials.

We can now simply integrate (15) from initial to final configuration and obtain for a surface element �f = �sx�sy

�Epot = �sx�sy

(
kc

2
H2 + kg

2
K

)
. (16)

In so doing we have defined bending rigidities kc > 0 and kg < 0 (as a fit parameter kg turns out to have either sign)
through

kc = E

1 − �2

h3

12
, kg = − E

1 + �

h3

6
. (17)

With different names for E and � expressions (16) and (17) have already been given by Rayleigh (1894, Section 214),
who credits Thomson and Tait (1878, Sections 639, 642, 720).

Biological membranes are in general not as homogeneous as we had assumed in the above derivation. Nevertheless
we can easily improve on (16) & (17) by substituting E → E(z) and � → �(z), and assuming E(z) and �(z) to be
functions of the height z so as to get a “sandwich” plate, a self-explanatory notion dating back to at least the forties of
the last century (Reissner, 1947; Schäfer, 1952). We then find completely analogously to the homogeneous case

kc =
∫ h/2

−h/2
dz

z2E(z)

1 − �(z)2
, kg = −

∫ h/2

−h/2
dz

2z2E(z)

1 + �(z)
. (18)
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Completing the Riemann sum in (16) over all the �f ’s, i.e., integrating (16) with respect to df over the whole manifold,
for instance a vesicle, and incorporating spontaneous curvature for the moment as a fit parameter �0, we arrive at the
energy functional

F = 1

2
kc

∫
df (�1 + �2 − �0)

2 + 1

2
kg

∫
df �1�2. (19)

To take care of lateral tension we can add 
A where A is the total area and the surface tension 
 plays the role of a
Lagrange multiplier (Segel, 1977) for the total area of M. In a similar vein one can handle volume effects by adding
−PV to (19) with V as volume and P as pressure.

Let us suppose for a moment the side conditions of constant area A and volume V were not there. According to
Theorem (61) of Gauss–Bonnet the term

∫
df (K = �1�2) is a topological invariant that plays no role as long we

punch no holes into and eliminate no handles from M. Then the solution to (19) is simply a surface of constant mean
curvature H := �1 + �2 = �0; a minimal surface has H = 0 (Oprea, 2000; Kenmotsu, 2003). The trouble, however, is
that a surface such as a ‘minimal’ one characterized by H = 0 provides a minimum to (19) but is in general not closed.
Hence it cannot represent the biological physics of, say, a cell membrane.

The functional (19) is also called a “free” energy, though neither its derivation nor its mathematical appearance
show any temperature dependence or entropy yet. It was introduced by Canham (1970), Helfrich (1973), and Evans
(1974) while Boruvka and Neumann (1977) studied its first but not its second derivative in the more general context of
capillarity as conceived originally by J.W. Gibbs. It has been reviewed and further developed ever since (Deuling and
Helfrich, 1976; Nelson et al., 1989; Lipowsky, 1991; Seifert et al., 1991; Sackmann, 1994; Safran, 1994; Peliti, 1996;
Seifert, 1997; Boal, 2002); see in particular Seifert (1997) for an enlightening overview of the older literature.

It was also Seifert (1991) who stressed the relevance of
∫

df H2 being invariant under conformal transformations,
i.e., angle-preserving mappings (Willmore, 1982). It is a nontrivial result dating back to Liouville (1850) that in R3 only
translations, rotations, and inversions, viz., reflections, in spheres are conformal. We will see how conformal invariance
comes about in Section 9. It was already known to Thomsen (1924) and rediscovered for physics by Duplantier (1990,
Section 7); see Duplantier et al. (1990) for a first application.

Evans (1974) introduced the ‘bilayer coupling model’ (BCM), refraining from the spontaneous curvature �0 as such
but requiring instead that the integrated mean curvature M := ∫

df H be fixed. One then introduces curvature through
the lipid-bilayer character of a biomembrane in that the total area �A of the inner leaf of the lipid bilayer be slightly
different from that of the outer one. In practice this means that one puts �0 = 0 in (19) and adds a term QM with Q as
Lagrange multiplier. The proof of this assertion is a simple computation provided by (128) below.

By writing out (19) we can easily verify that BCM and (19) are formally equivalent if we put 
BCM := 
+ 1/2kc�2
0

and QBCM := −kc�0. Their stationary points with vanishing first derivative are identical. We then have to apply the
side constraints of fixed surface area A, volume V , and mean curvature M so that the formal equivalence is not a real one
by lack of freedom in the parameters. Accordingly, the second derivatives and, thus, stability are different (Peterson,
1988; Seifert, 1995); for additional information one may also consult Svetina and Žekš (1989) and Miao et al. (1994).

The latter did not fix a vesicle’s area and volume but described the complete phase diagram for budding and
vesiculation in the context of an area-difference elasticity (ADE) model that takes into account elastic stretching
associated with �A as well; see also Döbereiner et al. (1997) and Zeman et al. (1990). In a sense (Miao et al., 1994), the
ADE model interpolates between BCM and (19). We now turn to the question of where spontaneous curvature comes
from and present a direct solution, which is even more general than simply justifying �0.

Energy and spontaneous curvature. Let us start with an a priori given, so to speak pre-curved, membrane form. For
cell membranes this starting point is quite natural since an actin network in the cell often stabilizes the membrane’s
shape (Boulbitch et al., 2000; Sackmann et al., 2002). Let M0 be the original cell form specified as a manifold and
let {(�(0)

1 (x), �(0)
2 (x)); x ∈ M0} be its “spontaneous” curvatures. In other words, as in a pre-bent plate, each surface

element already exhibits two principal curvatures �(0)
1 = 1/R

(0)
1 and �(0)

2 = 1/R
(0)
2 along two orthogonal principal

directions; cf. Fig. 4 and Section 4.5. Here a, maybe local, energy minimum is realized. Accordingly we return to
Eqs. (7)–(10) and modify Hooke’s law so that a relative change u

(0)
xx/yy(z) = �(0)

1/2z induces no tension, for example,
through the natural ansatz

�xx/yy = E

1 − �2

[
(uxx/yy − u

(0)
xx/yy) + �(uyy/xx − u

(0)
yy/xx)

]
,
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where x- and y-axis agree with the principal directions in x ∈ M(0). Proceeding as before, with H = �1 + �2 and
K = �1�2, we arrive at

d(�Epot) = Mx d	x + My d	y = Mx�sx d�1 + My�sy d�2

= Eh3

12(1 − �2)
�sx�sy{[(�1 − �(0)

1 ) + �(�2 − �(0)
2 )]d(�1 − �(0)

1 )

+ [(�2 − �(0)
2 ) + �(�1 − �(0)

1 )]d(�2 − �(0)
2 )]}

= Eh3

12(1 − �2)
�f

[
1

2
d(H − H(0))2 + (� − 1)d(�1 − �(0)

1 )(�2 − �(0)
2 )

]

= �f

[
kc

2
d(H − H(0))2 + kg

2
d(�1 − �(0)

1 )(�2 − �(0)
2 )

]
.

In case of an isotropic spontaneous curvature we end up with �(0)
1 = �(0)

2 = �0/2, e.g., because the actin network is
isotropic, or absent as in a vesicle (Boal, 2002). Hence

d(�1 − �(0)
1 )(�2 − �(0)

2 ) = dK − (�0/2) dH

is a total differential so that after integration we get

�Epot = �f

[
kc

2
(H − H(0))2 + kg

2
(K − H�0/2)

]
(20)

plus a trivial additive constant kg�2
0/8. The paraboloid Epot(�1, �2) has a minimum Epot = 0 in the force-free state

�1 = �2 = �0/2, provided kc > |kg|/4.
As a continuum approach incorporating cytoskeleton effects, the present arguments can be called fine-grained; see

also Kuzman et al. (2004). The cytoskeleton as a network of filamentous proteins, then, is ‘coarse’-grained and a much
harder analysis such as that of Head et al. (2003) and Wilhelm and Frey (2003) leads to a deeper and more detailed
understanding of viscoelastic cell response.

Heading for an analysis of membrane fluctuations in Section 11 we could also accept a ‘medium’-sized approach
in between as advocated by Gov et al. (2003) and Gov and Safran (2005), who incorporated confining effects of the
cytoskeleton, e.g., for red blood cells a spectrin network, by taking the latter to be a fixed open mesh separated from
the membrane through a ‘confining’ harmonic potential keeping it at a distance ≈ � but attached to it by at discrete
points that are relatively far apart; for instance, 100 nm with � = 25 nm. In this way the attachment of the membrane
to the cytoskeleton causes stretching and gives rise to a relatively high surface tension 
. The confining shell model of
Gov et al. is an intriguing new idea that we will touch upon at the end of Section 5.

The functional (19) or (20) integrated over the membrane surface is defined on smooth membrane shapes. As an
energy it should be minimized. That is, it should be “differentiated”. Its first derivative should vanish and its second
derivative should be positive-definite so as to guarantee stability. To handle differentiation efficiently we need classical
differential geometry, the more so since in the above derivation of the membrane energy we have already met several
of its standard notions, such as differentiable manifold, curvature, principal, mean, and Gaussian curvature, principal
direction, and Meusnier’s theorem. So this is what we now embark on.

4. Classical differential geometry

Elastic response of biological membranes is practically synonymous with the physics of curved surfaces, and differ-
ential geometry is the mathematics that is most natural to describing them. Membranes are concrete physical objects
and one of the purposes of the present paper is to show that abstract mathematics is undue. Even better, we will show
that classical differential geometry has an intrinsic elegance allowing direct insight into what is going on and also
providing, as we will see, an ideal access to describing a membrane’s elementary excitations, viz., its undulations. In
addition, it is widely applicable in soft-matter physics; see, for example, de Jeu et al. (2003).

Though there is a plethora of specific references, particularly on general relativity (Misner et al., 1973; Stephani,
1990), there are not too many focusing on differential geometry and physics of curved surfaces in general. An accessible
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one Frankel (1997). Handling differential geometry from an abstract, hence coordinate-free, point of view, it is at a
high level and, all in all, far too advanced for most of the problems in biological and condensed-matter physics. The
introductory text of Boal (2002) treats the mechanics of the cell in a clear and succinct way but, as a consequence, has
to effectively skip curvature. As we would say later on, here the metric tensor is taken to be the unit matrix 1.

The paper by Kamien (2002) and the present one both expound classical differential geometry (Gerretsen, 1962;
Millman and Parker, 1977; Struik, 1961) as fascinating mathematics, apt to solve many problems in soft-matter physics.
The two papers complement each other. Kamien’s elegant composition is mainly devoted to curves on surfaces and
related theorems, such as Gauss-Bonnet, and is thus directly applicable to clarifying mechanisms inherent to line-
shaped structures, e.g., bacterial flagellar motion (Goldstein et al., 1998, 2000; Coombs et al., 2002). The present
work focuses on intrinsic properties of a surface such as metric tensor, mean curvature, and derived quantities, notably
energy densities and associated operators à la Laplace–Beltrami. Together they present a natural language for describing
membrane undulations. We are now going to introduce the underlying formalism and start with the central object of
our study, a manifold.

4.1. Hypersurfaces and manifolds

The main object of membrane physics is a hypersurface, an n-dimensional differentiable manifold in (n + 1)-
dimensional space Rn+1, throughout what follows simply called a manifold M. In our case n= 2 but it is good to keep
in mind that practically all results that are derived below hold for any finite n. Sloppily formulated, positions x on our
surface depend smoothly on n parameters q� with 1���n so that for a point x ∈ M we have an at least three times
continuously differentiable map

Rn 
 (q�) �→ x(q�) ∈ M ⊂ Rn+1. (21)

This map is called a coordinate map or chart, is locally one-to-one, and as smooth as needed. A specific chart is nothing
but a specific parametrization. Different charts are then packed into an atlas (Milnor, 1997); see below for the sphere
as an example. In practice we can often dispense with the atlas. Evidently, geometric properties do not depend on the
specific parametrization we are working with.

Let us take as a parametrization example the surface M of a two-dimensional sphere or two-sphere x2 +y2 +z2 =R2

in R3, i.e., n = 2. Here the coordinate map

(x, y) �→
(

x, y,

√
R2 − x2 − y2

)
(22)

with x2+y2 < R2 parametrizes the region z > 0. It is one-to-one and smooth. By interchanging x, y, and z, and changing
signs of variables we obtain six charts that cover all of the two-sphere. So to fully describe M we need several charts,
which are to be compatible (here they are) before they can be packed into an atlas. The latter need not be unique either.
For instance, for the two-sphere one could also take spherical coordinates with r = R fixed. There is even an atlas of
the two-sphere that gets along with only two charts, viz., two stereographic projections (Blair, 2000, Section 2.2).

4.2. Tangent space

For a point x on the surface of the manifold M the tangent space is spanned by n tangent vectors

��x := �x/�q�, 1���n, (23)

resulting from differentiating curves x(. . . , q�, . . .) where . . . is fixed and 1���n; cf. Fig. 5 for the case n = 2. The
point x is regular, if the n tangent vectors ��x are linearly independent and, thus, span an n-dimensional plane in Rn+1,
the tangent plane Tx. Hence one dimension is left and it is here where the normal vector n lives, which is normal to
the tangent plane. That is to say, n��x = 0 for 1���n. If the tangent vectors at x are linearly dependent, the point is
called an irregular one. One meets irregular points of a membrane surface at tips and cusps.

A normal vector n is not unique since −n is another one. To get uniqueness we need two requirements. A glance
suffices to convince us that manifolds such as those in Figs. 2, 3, and 11 are orientable. That is, they have an inside and
an outside. More precisely, the normal vector n(x) depends continuously on x ∈ M as x varies through the manifold
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tangent plane

n

q1 varies

q2 varies

manifold

∂2 x

∂1 x

Fig. 5. Two-dimensional hypersurface M and its tangent space, the tangent plane, at x ∈ M ⊂ R3. The tangent space at the regular point x is
spanned by the two tangent vectors �1x and �2x. The normal vector n is orthogonal to the tangent plane at x and has unit length; the same holds for
−n. It is a differential-geometric convention to let the normal vector n point outwards for a sphere; as Fig. 7 shows, by good reason. The vectors
�1x, �2x, and n span all of R3.

M. For instance, the Möbius band (take a strip of paper, twist it once, and glue it together) is not orientable since n(x◦)
is transformed into −n(x◦) as, starting in x◦, we travel with x along the band M back to x◦. We now require that our
membranes constitute orientable surfaces with the normal pointing outward. The former requirement is natural and for
the latter we make a choice; cf. Fig. 7.

Furthermore, n has always length one, i.e., nn := n · n = 1. Throughout what follows we will drop the dot indicating
a scalar product, unless ambiguity arises. Differentiating nn = 1 we directly find n��n = 0 so that the ��n(q�) are back
in the tangent plane of x(q�). As a consequence of being a unit vector normalized to one, n is dimensionless, as is dsx.

4.3. Metric: arc length and how to measure it on a curved surface

A curve in Rn+1 can be parametrized by a single variable t so that {x(t), t ∈ I ⊂ R} is a suitable representation with
dtx �= 0; here and elsewhere dt is a shorthand for d/dt . The arc length as we go from t0 to t1 is given by

∫ t1
t0

dt‖dtx‖ where

‖x‖=(xx)1/2 is the norm, i.e., the Euclidean length, inherited from Rn+1 we started with. We nearly always take the arc
length s to parametrize a curve. Then ‖dsx‖= 1 since in the limit �s → 0 we have ‖�x/�s‖=‖�x‖/�s =�s/�s = 1.
In other words, dsx is a unit vector—a valuable property.

We now turn to a curve {x(t) := x(q�(t))} on a surface M ⊂ Rn+1. Since the surface is parametrized by means of
n q�s, our curve is effectively one in q-space. Hence we first differentiate with respect to q� and put

x� := ��x = �x/�q�. (24)

At a regular point the x� with 1���n are a basis spanning tangent space. Furthermore, using summation convention
where we sum over equal indices, we obtain

dx(s) = dsx ds = x� dsq
� ds = x� dq�. (25)

Three remarks are in order here. First, though dx(s) is a differential, it won’t hurt to imagine it as a finite difference
�x with the expressions on the right in (25) being a decent approximation as �s or �q� gets small. Throughout what
follows this is implicitly understood as it corresponds to physical reality. Second, dividing (25) interpreted as just
indicated by �s so as to get �x/�s and taking the limit �s → 0 we find the tangent vector

dsx = dx/ds = x� dsq
� = x�u�, (26)

where u� := dq�/ds=dsq
�. That is, an arbitrary tangent vector dx(s)/ds is a linear combination of the x�, 1���n—as

expected. We will soon meet the u� quite often. Furthermore, by the very geometry of its construction, dsx =
lim�s→0 �x/�s is a unit vector. Third, and most importantly, we see the arc length ds is given by

(ds)2 = dx dx = x�x� dq� dq� =: g�� dq� dq�. (27)
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That is to say, arc length on a manifold is governed by the metric tensor {g�� = x�x� = g��, 1��, ��n}, a Gramian
(Gantmacher, 1977; Horn and Johnson, 1985).

Before proceeding we prove a useful lemma. Its notation will remind most people of relativity theory.

Lemma A. The metric tensor g�� = x�x� = g�� is a positive-definite matrix associated with the basis x�. There exists
a unique reciprocal basis x� such that x�x� = ��

� where ��
� is the Kronecker delta, i.e., 1 for � = � and 0 elsewhere. If

g� = g� is the inverse of g��, then g� = x�x and x� = g�x so that x = g�x�.

Proof. By the definition of g�� we have for an arbitrary vector (y�) that y�g��y
� = ‖y�x�‖2 �0 with equality if and

only if y�x� = 0 and thus (y�) = 0. Hence (g��) is positive-definite, one-to-one, and thus invertible.
As for existence of a reciprocal basis, let us simply define (g��) to be the inverse matrix of (g��) and put x� := g��x�;

note the summation convention. Then the x� with 1���n are independent, hence a basis, and x�x� = g��x�x� =
g��g�� = ��

� , as required.

Uniqueness follows from the relation x� = g��x� as a consequence of the x� being a basis, x�x� = ��
� = g��x�x� =

g��g��, and the inverse matrix being unique. �

As for uniqueness, the point is that, if there were a second reciprocal basis x̃, then x̃� = g̃��x� so that ��
� = g̃��g��

and thus g = g̃. Taking a scalar product with x� and using the defining property of a reciprocal basis we directly find

x�x� = g��x�x� = g��. (28)

This equation also shows explicitly that the matrix (g�� = g��) is positive-definite as well.
We return to the problem of determining arc length and area of a curved surface. As for arc length, (27) tells us that

for arbitrary parametrization by some t

ds = dt (g�� dt q
� dt q

�)1/2. (29)

Let us call, whatever the parametrization, u� := dt q
�. Then ds = dt (u�g��u

�)1/2.
For the area of a curved surface we need a surface measure df that can be integrated with respect to the coordinates,

or parameters, q�. Let us first consider a parallelogram spanned by two vectors a and b in R3, which have an angle �
in between. Its area is given by the length of their vector product ‖a‖‖b‖ sin � and, thus, is the square root of

‖a × b‖2 = (aa)(bb) − (ab)2 = det

(
aa ab
ba bb

)
. (30)

The area of a curved surface is well-approximated by a Riemann sum of small parallelograms spanned by �q���x
with � = 1, 2. In (30) we therefore take a := �q1�1x and b := �q2�2x so as to find det(g�)(�q1�q2)2. In the limit
�q� → 0 we then end up with an infinitesimal surface area

df = dq1 . . . dqn
√

det g, (31)

which holds equally well for general n (Gantmacher, 1977) as for physical membranes with n = 2, where (30) is good
for.

Eq. (31) has an immediate physical application since for a membrane with surface tension 
 we find the energy
density to be 


√
det g. For membranes with negligible bending rigidity, such as soap films, this is already enough to

completely describe equilibrium and dynamics (Isenberg, 1992; Oprea, 2000), though a detailed understanding requires
a careful analysis of the boundary conditions.

4.4. Curvature

To determine curvature at a point x of a manifold M we need a curve through x but embedded in the manifold so as
to sample M. The curve is parametrized by its arc length s. Before proceeding we take the curve by itself and ask how
to define its curvature. Differentiating dsx dsx = 1 we obtain d2

s x dsx = 0. In other words, the tangent vector dsx and
d2
s x are orthogonal and we define the curvature �̃ to be �̃ := ‖d2

s x‖.
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n

b

t

x

Fig. 6. Darboux triad {t, n, b}. For the sake of simplicity a curve (solid line) in R3 is taken to be in the plane of this page. Its curvature �̃ is the
arc-rate rotation of the tangent t := dsx, a unit vector. That is, dst=d2

s x =: �̃n ⊥ t where the orthogonality n ⊥ t is also evident from the geometric
construction. The larger the curvature, the faster t changes as we proceed along the curve and, hence, the larger �̃. The vector b := t × n completes
a positively oriented, orthonormal basis in R3. It is a local one that travels with the beholder along the curve. Since along the above curve b cannot
change, there is no torsion, i.e., �̃ = 0.

Frenet equations. All this is quickly said but not that quickly caught. Let us therefore step back and focus on a single
curve at a specific position P, viz., x ∈ R3. Intuitively it is plain what curvature is: the arc-rate rotation of its tangent.
We put t := dsx, a unit vector, and dst = d2

s x =: �̃n where n is another unit vector, by construction orthogonal to the
tangent t (0=dst2 =2tdst) and called the principal normal at position P. By the very nature of t, �̃ is exactly its arc-rate
rotation; cf. Fig. 6.

Defining the binormal b := t × n we arrive at the triad {t, n, b} forming a right-handed system of mutually per-
pendicular unit vectors at P. This system, called the Darboux triad, can be used to specify how a curve “proceeds” in
3-space R3,

dt
ds

= �̃n,
dn
ds

= −�̃t + �̃b,
db
ds

= −�̃n. (32)

The solution to the linear system (32) is unique, up to translation, viz., of the initial position P, and rotation, viz., of the
triad {t, n, b}. In a self-explanatory notation (32) reappears much more appealing as

d

ds

( t
n
b

)
=
( 0 �̃ 0

−�̃ 0 �̃
0 −�̃ 0

)( t
n
b

)
. (33)

The above Frenet equations were derived by the mathematician J.F. Frenet in his Toulouse dissertation of 1847; they
were published in 1852. We are about to check how they arise. The elegance of their present formulation is due to
Gaston Darboux (1887). To see their use in physics, one may profitably consult Kamien (2002).

The top line of (33) is nothing but the definition dst = �̃n of the curve’s curvature �̃ at P in conjunction with
the principal normal n, a unit vector. Next we turn to the bottom line. Since bb = 1 we have bdsb = 0. In addition,
differentiating tb = 0 we get, taking again advantage of dst = �̃n,

0 = t
db
ds

+ b
dt
ds

= tdsb + �̃nb = tdsb, (34)

where bn = 0 by construction of the binormal. Hence dsb is perpendicular to both t and b, which together with n span
3-space. That is, dsb =: −�̃n for some proportionality factor �̃, which is called the curve’s torsion �̃ at position P. Both
�̃ and �̃ may, and in general will, depend on the position P on the curve and, hence, on s. Finally, we differentiate
n := b × t and exploit top and bottom of (33) to get the middle, and key, equation. So we are done.

In words, the Frenet equations (33) tell us that the arc-rate of turning of a curve’s tangent is its curvature while the
arc-rate of turning of its binormal is its torsion. Since dsn = −�̃t + �̃b the principal normal gives nothing new. What
is new, however, is the torsion, a consequence of the curve’s dangling around in 3- instead of 2-space. The situation
is quite similar to mechanics, where one often deals with a rotating coordinate system. That is, if s were time and
� := �̃t + �̃b, we had the suggestive analogy dv/ds = � × v of a rotating body, v being one of the vectors of the
Darboux triad {t, n, b}.



J.L. van Hemmen, C. Leibold / Physics Reports 444 (2007) 51–99 65

Fig. 7. Curvature and Meusnier’s theorem. As is plain to the eye, the manifold M (left) is curved. It is sampled by a (boldface) curve C at a point
x ∈ M, where we have the tangent vector t = dsx. The intersection of M and a plane through t and the normal vector n at x is the curve C̃. As is
shown on the right, determining its curvature �̃ = 1/r at x with r as radius of curvature in this vertical plane is as it is done since Huygens (1691)
and Bernoulli (1692). By construction, the tangent t = dsx along C̃ at x is in the plane and so is d2

s x, with t ⊥ d2
s x. Hence � := � (n, d2

s x) = 0 or �.
It is convention to take n so that � = 0; in the figure � = �. The ‘osculating circle’ (dashed, right) with radius r := 1/�̃ and center P approximates
the curve C̃ = (x, y(x)) locally up to 2nd order (Thomas, 1972); hence �s = r�� where �� is e.g. the angle between Pp1 and P x. According to
(36) and (35), �̃ = lim�s→0��/�s = 1/r = ‖ds (dsx)‖; cf. Hilbert and Cohn-Vossen (1964, Section 26). According to Meusnier (see below), the
manifold’s curvature �N at x along C is identical with �̃. We also see that the (boldface) curve C’s big “wiggle” in the manifold M tells us nothing
about M’s curvature �N at x.

To see in another way what �̃ means geometrically, we turn to Fig. 7 (right), focus on a curve x = (x, y(x)) lying in
the plane of this page, and verify that �̃ makes quite a bit of sense as ‘curvature’. For a circle of radius r we can easily
compute �̃ as, by convention, x = rn. Since the tangent vector dsx has length 1, we also have ‖dsn‖ = r−1 and from
ndsx = 0 we find dsndsx = −nd2

s x. Putting things together, we arrive at

�̃ := ‖d2
s x‖ = 1/r . (35)

We now go back to an arbitrary curve C̃ = (x, y(x)), where � be the angle between the tangent and the x-axis with
tan � = dy/dx =: y′; see Fig. 7 (right). Any curve C̃ = (x, y(x)) can be approximated locally up to 2nd order by an
‘osculating circle’ with radius � = 1/�̃ (Thomas, 1972). We therefore define a radius of curvature � to be

� := lim
�s→0

∣∣∣∣ �s

��

∣∣∣∣=
∣∣∣∣ ds

d�

∣∣∣∣ . (36)

So �̃ is a good old friend defined in a way that makes no reference whatsoever to any coordinate system—in clear
contrast to the classical expression �̃=y′′[1 + (y′)2]−3/2 following from (36) for a curve y =y(x); cf. Thomas (1972).

A manifold’s curvature. To exploit (35) for defining a manifold’s curvature we note that the basis {x�}, or {x�}, of
the tangent space Tx at x ∈ M and the normal vector n span all of Rn+1. In tangent space

P := |x�〉〈x�| = g��|x�〉〈x�| = |x�〉〈x�| (37)

is a decomposition of unity. Here we have used g�� = g�� and, for the sake of convenience, Dirac’s braket notation
(Dirac, 1958). By definition, nx� = 0 and nn = 1 while Pn = 0 so that P = P2 = P∗ is the projection onto Tx in Rn+1

and 1 = |n〉〈n| + P. Accordingly the decomposition

d2
s x = n(nd2

s x) + P(d2
s x) (38)

makes sense. It is basic to what follows.
We now return to our manifold, remember from (25) that the unit vector dsx = x�u� with u� = �sq

� is a tangent,
and introduce curvature of a manifold at x ∈ M by decomposing the curve’s d2

s x into two parts, one characterizing the
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curve’s wiggles in the manifold, the other sampling the manifold’s extrinsic curvature through variation of the normal
vector; cf. Fig. 7. To see how this works we start by computing d2

s x = ds(dsx) so as to find

ds(x�u�) = x�u
�u + x�dsu

�. (39)

Evidently, x� := ���x = ���x = x� appears. Whereas x� is in tangent space, its derivative x� also has a normal
component parallel to the normal vector n. Hence we write x� = Px� + n(nx�), take advantage of (37), and obtain
the Gauss formula (1827)

x� = ��
�x� + h�n. (40)

By definition, nx� = 0 and nn = 1. A simple calculation then gives

��
� = x�x� = x�x�g��, (41)

h� = x�n = −x�n. (42)

The final equality in (42) is a consequence of differentiating nx� =0 with respect to q. The ��
� are symbols introduced

by Christoffel (1869); for illuminating background information concerning Christoffel symbols and Gauss’s formula,
see Spivak (1979). The tensor h� is called the second fundamental tensor, the metric one being the first. As matrices,
both are symmetric and real.

Substituting the Gauss formula (40) into (39) we can split �̃2 into two parts �̃2 = �2
N + �2

G corresponding to (38),
with

�N = nd2
s x = u�h�u

, (43)

�2
G = (dsu

� + ��
�u�u)g��(dsu

� + ��
�u�u). (44)

We can also write �G = ‖Pd2
s x‖. The quantity �N = h�u

�u represents a surface’s “true” curvature, which in a sense
is normal to tangent space Tx, whereas �G takes care of geodetic curvature “in” the manifold, i.e., in Tx; cf. Fig. 7.
Curves in M with �G = 0 everywhere are called geodesics. They are characterized by

0 = �G ↔ dsu
� + ��

�u�u = 0, (45)

whatever the index �. For instance, on a sphere with radius R great circles are geodesics. As curves by themselves they
have a nonvanishing curvature in that �̃ = 1/R. So we need something else to characterize what a surface looks like
“from the outside”, viz., its “extrinsic” or, as it is called, normal curvature �N .

The relation �N = h�u
�u with h� = x�n = h� and x� = �2

�x shows explicitly the interplay between a curve
and the surface it is living on. We can also see this in a different way by exploiting the Taylor expansion x(q + �q) −
[x(q) + �q���x] = �q�(�2

��x)�q�/2, noting that, after taking a scalar product with the normal vector n, the distance
(with sign) of x(q + �q) from the tangent plane at x(q) is

n[x(q + �q) − x(q)] = 1
2�q�(n�2

��x)�q� = 1
2�q�(h��)�q�. (46)

In other words, (h��) measures curvature ‘away from’, i.e., normal to, the tangent plane and � ≡ �N is the surface’s
“true”, extrinsic curvature.

The Weingarten equations come for free. From nn=1 we obtain by differentiation n��n=0. We can therefore write
��n = ���x� and because of (42) we find, taking a scalar product with x�, ��� = −h��. Thus we end up with

��n = −h��x�, (47)

the Weingarten equations (1861).

4.5. Principal curvature

The idea behind principal curvature is simple but needs some thought in practice. Let us pick a point P, more precisely
x, on a two-dimensional manifold M, put orthogonal x and y axes in its tangent space Tx with origin at x, and take the
z axis of our coordinate system parallel to the normal vector n. In the neighborhood of x our manifold can be described
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to fine approximation by a quadratic surface z = (x, y)Q(x, y)T/2 with respect to the tangent plane at P and with Q
as an n × n matrix, here n = 2.

Since Q is real and symmetric, i.e., self-adjoint or also Hermitian, we can diagonalize it and find two orthonormal
eigenvectors e1 and e2 in Tx with real eigenvalues, say, �1 and �2, so that in the new coordinates z = (�1x

2
1 + �2x

2
2 )/2.

Plainly, the surface is “strongly curved” at P in direction ei , if |�i | is large. All this is a matter of existence. Doing it in
practice and computing the principal curvatures �i explicitly is a completely different story, to which we now turn.

To see what principal curvature is in hard daily practice and get a feeling for the n orthogonal principal directions in
tangent space Tx of a manifold, we define the linear Weingarten map W(x) from Tx into itself by mapping t = t���x
onto

W(x)(t���x) := −t���n. (48)

W’s dependence upon x is understood. Since n��n = 0, the vectors n� := ��n are all in tangent space Tx and W is

well-defined. The n-dimensional space Tx ⊂ Rn+1 inherits as such a Euclidean scalar product from Rn+1. Using (42)
we show that W is self-adjoint with respect to this scalar product,

(a�x�)[W(bx)] = − a�b(x�n) = a�bh� = a�bh�

= [W(a�x�)](bx). (49)

By the same token and in conjunction with (43), normal curvature in direction t = t�x� with unit length tt = 1 equals
�N(t) = tW t = t�h�t

, a relation W has been made for.
W ’s eigenvalues �� and orthonormal eigenvectors t� in Tx follow directly from the eigenvalue equation W t = �t,

W(tx) = �(tx) ⇒ −tn = �tx. (50)

To simplify notation we have dropped the eigenvector label �. We take a scalar product with x�, use (42),

−tx�n = �x�xt
 ⇒ (h� − �g�)t

 = 0, (51)

and see we end up with a generalized eigenvalue problem (h−�g)�t=0 for �t := (t1, . . . , tn) or equivalently g−1h�t=��t , an
ordinary one. That is to say, principal directions tx are determined by eigenvectors �t of g−1h and principal curvatures
� are the corresponding eigenvalues of g−1h�t = ��t .

As a self-adjoint operator, W’s eigenvalues are bound to be real. Once we know the matrix equation that determines
them, viz., (51), we can also verify this directly. The point is that in general g−1h, though real, is not a symmetric
matrix and thus one might wonder why principal curvatures are real numbers. This kind of worry, however, can easily
be allayed as g−1 (with matrix elements g� = x�x) is positive-definite so that we can take its square root g−1/2 and
rewrite the eigenvalue equation as g−1/2hg−1/2g1/2�t = �g1/2�t . Putting �v := g1/2�t we find this to be the eigenvalue
equation g−1/2hg−1/2�v = ��v for the matrix g−1/2hg−1/2. The two fundamental tensors g and h being real-symmetric
and thus self-adjoint this also applies to g−1/2hg−1/2. Hence its eigenvalues � are real.

Alternative approach to principal curvature. Instead of decomposing d2
s x one can obtain a manifold’s extrinsic, or as

we now know normal, curvature directly (Gerretsen, 1962) by focusing on dsn ∈ Tx, the wiggles of the normal vector
n along a given curve in M. Every vector in tangent space Tx can be decomposed uniquely into a component parallel
to dsx, a unit vector, and its orthogonal complement parallel to b, another unit vector:

dsn = −�dsx + �b, (52)

where � = −dsndsx. We now call � the ‘curvature’ of M at x in the direction dsx, � its ‘torsion’, and say a direction
dsx is a principal one, if � = 0. That is, when a formula due to Olinde Rodrigues (1816) holds, often verified by simple
inspection and therefore extremely helpful,

dsn + �dsx = 0. (53)

Putting u� = dsq
� and using dsn = ��nu� and dsx = ��xu� in conjunction with Weingarten’s relation (47) we obtain

�dsx = �u���x = −dsn = −u���n = x�h��u
�.
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Projecting this onto x� we end up with

�g��u
� = h��u

�, (54)

a principal direction as specified by (51). In addition, 0 = ds(ndsx) = nd2
s x + dsndsx gives � = �N as a combination

of � = −dsndsx and (44). So it all fits.
The orthonormal triad {n, t = dsx, b} resembles the Darboux triad {n, t, b} of Section 4.4. This is not accidental. Not

only does the above definition (52) of a hypersurface’s curvature agree with (43), it also ties nicely with the second
relation dsn = −�̃t + �̃b of the Frenet equations (34), where t = dsx. That is, the notion of torsion can be generalized
from curve to hypersurface as well. The new aspect is that n ∝ d2

s x whereas, as a normal vector n, it refers to the
underlying manifold M.

4.6. Meusnier, Euler, and Gauss–Bonnet

The theorems of Euler and Meusnier tie together the principal curvatures and relate them to curvature in a given
direction (Euler) and what you think to be “ordinary” curvature (Meusnier); they are all locally defined quantities. On
the other hand, Gauss–Bonnet has a global scope.

Meusnier’s theorem. Let us return for a moment to a curve embedded in a manifold M, such as C in Fig. 7, and focus
on the manifold’s curvature �N(t), henceforth simply called the curvature �(t), along a given tangent t to this curve
at a point x ∈ M. We may ask: What is the relation between M’s extrinsic curvature �(t) and the curve’s standard
curvature �̃ = ‖d2

s x‖? The answer is given by Meusnier’s Theorem (1776):

� = �̃ cos � where � := � (n, d2
s x). (55)

� is the angle between n and d2
s x. In this way we obtain a direct relation between the curvature � along a curve in a

manifold, such as C in Fig. 7, and its inherent curvature �̃ at x. For the proof we remember from (35) and (43) that
�̃ = ‖d2

s x‖ while � ≡ �N = nd2
s x. So we are already done.

There is a direct corollary. In three dimensions one could take the normal vector n at the point x ∈ M together
with the tangent t = dsx and construct the plane through n and t. The intersection with M gives a curve C̃ in a two-
dimensional plane (n = 2) spanned by n and t; cf. Fig. 7 and (35) but now with n pointing downwards. In this plane
�̃ = 1/R where R is the radius of the ‘osculating circle’. In fact, also d2

s x is in the very same plane and � = 0 so that
� = �̃. That is, the two curvatures are identical.

In passing we note that during a rotation of the plane through n and t about the fixed normal vector n the curvature
�̃ and, hence � = �̃, assumes a maximum and a minimum. After Euler—see (56) below—these are the two principal
curvatures. They are completely geometrical constructs, independent of any parametrization. The latter is “only” needed
to compute them.

Euler’s theorem. The Weingarten map has the spectral representation W =|t�〉��〈t�| so that �N(t)= tW t=��〈t�|t〉2

is a convex combination of the ��’s. More explicitly

�N(t) =
n∑

�=1

�� cos2 ��, (56)

where �� is the angle between the unit vectors t and t�. This is Euler’s Theorem (1760). It has an interesting corollary
in R3, due to Sophie Germain (1821): If �′

1 and �′
2 are the curvatures in two arbitrary but orthogonal directions, then

�′
1 + �′

2 = �1 + �2. (57)

We may call this relation Germain’s Lemma. For the proof, which is the original one, we use Euler’s theorem, define�′
i� to

be the angle between direction i′ and eigendirection �, note that in two dimensions �′
2�=(�′

1�+�/2) since the directions

we had chosen are orthogonal, and add (summation convention!) �′
1 = �� cos2 �′

1� and �′
2 = �� cos2 �′

2� = �� sin2 �′
1�.

One can generalize the above argument to arbitrary dimension. To this end we take n orthogonal directions d� in Tx
so that 1 = |d�〉〈d�| in the n-dimensional tangent space Tx. By definition, �′

� = d�Wd� and thus we find, using W’s
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spectral representation,∑
�

�′
� =

∑
��

��〈t�|d�〉〈d�|t�〉 =
∑
�

��. (58)

Mean and Gaussian curvature. We finish this section by introducing two invariants, viz., the mean curvature

H = �1 + · · · + �n = h
�
� = tr g−1h (59)

and the Gaussian curvature

K = �1 . . . �n = det g−1h, (60)

where h = (h�) and g−1 = (g�) is the inverse of the metric tensor g = (g�). The final equalities in (59) and (60)
are a direct consequence of (51). Gaussian curvature K is geometrically intrinsic in that it is invariant under isometric
mappings, i.e., it is a bending invariant. As for K = det g−1h = det h/ det g, this is quite surprising since the second
fundamental tensor h occurs as well. It was Gauss who provided a general proof of K’s invariance in 1826 and dubbed
it ‘Theorema Egregium’ so as to stress its importance. For a succinct proof we refer to the appendix.

It is good to realize that for a two-dimensional manifold in three-dimensional space H = �1 + �2 and K = �1�2
are quantities that depend on a manifold’s shape only and have nothing to do with the specific parametrization we are
using to compute them. Due to Meusnier and Euler, we now see that the �i are maximum and minimum of curvatures
�′ determined as in Fig. 7. Sophie Germain already proved that one can even take two arbitrary but orthogonal planes
through the normal vector, determine the curvatures �′

i of the intersections, and add them so as to get H = �′
1 + �′

2.
Mean and Gaussian curvature H and K are the fundamental geometrical quantities that determine the energy asso-

ciated with the bending rigidities kc and kg of a biomembrane. This becomes obvious by casting a brief look at (16)
and the full energy functional (19).

Gauss–Bonnet theorem. Even more than isometric invariance of K is true. If we integrate K over a finite closed
two-dimensional surface M in R3 with respect to its natural surface area df = dq1dq2√det g taken from (31) with
n = 2. Then it can be shown (Gauss, 1827; Bonnet, 1848)∫

M
df K = 4�(1 − p) (61)

for a manifold of genus p, that is, the surface of a (generalized) doughnut with p holes or, better, handles; a sphere has
p = 0 and for a torus p = 1, meaning that a torus can be deformed smoothly into, say, a sphere with one handle. To be
fair, relation (61) is more ‘egregious’ in the sense of outstanding than the Theorema Egregium. The only important thing
is the number of handles, a truly topological invariant. The proof is tricky (Millman and Parker, 1977), or worse, and
at least involved (Struik, 1961). For an in-depth analysis regarding physical implications we refer to Kamien (2002).

In spite of its rather involved proof (Millman and Parker, 1977; Struik, 1961), the Gauss–Bonnet formula (61) is
nevertheless an extremely helpful tool to investigate the energy functional (19) of a biomembrane. The point is that the
integral

∫
M df K, the curvatura integra or integral (total) curvature, by which name Gauss introduced it, becomes a

topological constant and hence can be dropped as long as no “handles” are added to or removed from the membrane.

5. Nearly flat membrane

It is time for an application that will play a clarifying role. A doughnut or torus would certainly have been a nice
equilibrium shape but, since it has inherent curvature, it is not ideal to start with. We therefore take a “torus” with
metric tensor g = 1, which is just a square of size L × L with periodic boundary conditions, the academic example of
a vesicle.

Monge representation. The nearly flat membrane is ideally parametrized by the simplest representation of a two-
dimensional surface M in three-dimensional space: the Monge representation (1795) reading x = (x, y, z = �(x, y))

with parameters (q1, q2) = (x, y). We have already met it in example (22). The metric tensor g = (x�x) with, as
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always, x� = ��x and the normal vector n at x ∈ M readily follow from

x1 =
( 1

0
�x�

)
, x2 =

( 0
1

�y�

)
, x1 × x2 =

(−�x�−�y�
1

)
.

Putting W := ‖x1 × x2‖ and herewith n = W−1x1 × x2, we obtain

g = (g�) =
(

1 + (�x�)
2 (�x�)(�y�)

(�x�)(�y�) 1 + (�y�)
2

)
(62)

so that W 2 = 1 + (�x�)
2 + (�y�)

2 = det g, the last equality being the result of a simple computation. We henceforth
drop W and use the shorthand g := det g.

The second fundamental tensor is another easy by-product in that h� = x�n = g−1/2�2
��. We now invert g in (62),

note (59) and (60), and find after a bit of algebra

H = g−3/2{�2
x� + �2

y� + [(�y�)
2�2

x� − 2(�x�)(�y�)�x�y� + (�x�)
2�2

y�]}, (63)

K = g−2[�2
x��

2
y� − (�x�y�)

2] (64)

for the mean and Gaussian curvature H and K.
The Monge representation is particularly important to membrane physics since a great deal of experimental work

is devoted to nearly flat membranes. In the upcoming paragraph we therefore derive energy spectrum and dispersion
relation for this experimentally important situation. As we will see, elementary excitations from the flat equilibrium
are simple: plane waves.

Undulating flat membrane. Because of (19) and its BCM equivalent, the general energy functional F reads

F = 1

2
kc

∫
df H2 + 1

2
kg

∫
df K + 
A − PV + QM. (65)

It is plain that for an initially flat membrane the Monge representation is most natural. The membrane being flat,
its volume V = 0 vanishes while H = �1 + �2 and M = ∫

df H as the integrated mean curvature readily follow from
Eq. (62) in conjunction with (63). As we do not want to punch holes and have adopted periodic boundary conditions, i.e.,
effectively a torus, the Gauss–Bonnet relation (61) tells us that, for a closed surface,

∫
df K is a topological invariant

and, therefore, can be dropped beforehand.
Instead of ending up with nonlinear partial differential equations it is for the moment simpler, and also more physical,

to first ask whether a sensible approximation is at hand. The answer is affirmative in that we can assume the undulation
amplitudes a to be small. In view of derivatives hanging around all over the place, it seems natural to neglect these as
well in products of order 3 and higher. We can do so once a>� with � as a typical wavelength; cf. Fig. 1(c). If so, life
becomes simple as now g = det g = 1 + (�x�)

2 + (�y�)
2 ≈ 1 so that up to second order in �

F(�) =
∫ ∫

dxdy

[
kc

2
|��|2 + 


2
(∇�)2 + Q��

]
. (66)

Here �=�2
x+�2

y is a Laplacian. Because of (62) the surface tension 
 is to be accompanied by df =dx dyg1/2=dx dy[1+
(�x�)

2 + (�y�)
2]1/2 =: dx dy[1+ (∇�)2/2], where we drop the trivial constant 1 and terms of order three and higher. In

a similar vein, Q is related to M and, through (63), to df H=dx dyg1/2H=dx dy[1+(�x�)
2+(�y�)

2)]−1��=dx dy��.

Embedding our real Hilbert space of quadratically integrable functions L2[−L
2 , L

2 ]2 on the square [−L
2 , L

2 ]2 into a
complex Hilbert space of exactly the same type we directly find that exp(i�k�x) with �k = 2�

L
(m, n) and m, n ∈ Z are

eigenfunctions of all differential operators in sight. For the ensuing arguments we refer to Boal (2002; Chapter 6).
Instead we differentiate (66) twice. Being at a minimum �0 we must have

dF(�0 + t�)

dt

∣∣∣∣
t=0

= 0,
d2F(�0 + t�)

dt2

∣∣∣∣
t=0

> 0, (67)
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whatever � �= 0. The rest is clear sailing. The first derivative vanishing for all � gives (kc�2 − 
�)�0 = 0. The
self-adjoint operators � and �2 have the above L−1 exp(i�k�x) as a complete orthonormal set of eigenvectors. Expanding
�0 with respect to them we find (k2kc +
)k2 =0, so that all coefficients vanish, except for k=0. Hence we are left with
�0 ≡ Cst; there is no harm in taking this constant to be 0. The second derivative equals �2F(�, �)=∫ dx dy[kc(��)2 +

(∇�)2] = ∫

dx dy�(kc�2 − 
�)��0, a quadratic form associated with the linear operator �2F = kc�2 − 
��0.
Stability is evident.

Of course one can do without a complex Hilbert space and use cos(�k�x) and sin(�k�x) instead of exp(i�k�x). The former two
are eigenfunctions of the Laplacian � but not of ∇. By means of the expansion �(�x)=(

√
2/L)[a�k cos(�k�x)+b�k sin(�k�x)]

the energy nevertheless attains the simple form

F =
∑
�k �=0

[(kck
4 + 
k2)/4](a2

�k + b2
�k). (68)

One then considers a�k and b�k as new coordinates and applies the equipartition theorem (Huang, 1987) to each of the
quadratic terms so as to get, e.g., (kck

4 + 
k2)〈a2
�k 〉 = 2kBT for the thermal average 〈a2

�k 〉.
A real cell is neither flat nor “nearly” flat but finite in size, even small (10–40 �m), and thus quite curved. Moreover,

and in contrast to vesicles, it contains a cytoskeleton stabilizing the cell membrane; cf. Section 3 and in particular
(20). Restricting ourselves to normal displacements � and forgetting the cell-membrane’s curvature for the moment we
could add, as pointed out by Gov et al. (Gov et al., 2003; Gov and Safran, 2005), a term ��2/2 to the integrand of (66).
Here the inhomogeneous attachment of the cytoskeleton to the lipid bilayer making up the cell membrane is supposed
to give rise to an overall confinement modeled as a harmonic potential ��2/2. Harmonic potentials are nice as they
always give rise to exact solutions; cf. the quadratic form (3) in Section 2, a generic harmonic potential. Instead of (68)
we then end up with an energy F containing one more term,

F =
∑
�k �=0

[(kck
4 + 
k2 + �)/4](a2

�k + b2
�k). (69)

Accordingly, using the equipartition theorem (Huang, 1987) once again, we find for example the thermal average

〈a2
�k 〉 = 2kBT (kck

4 + 
k2 + �)−1. (70)

For � > 0 there is no divergence anymore as, for fixed integers m and n, �k = (m, n)2�/L → 0 for large system size
L → ∞. Removing the divergence looks good but is fake as it makes no sense to discuss long-wavelength (�k → 0)
elementary excitations in a finite closed cell membrane with typical diameter of 10–40 �m.

So let’s turn to real cells. That is, we then have to do at least two things. First, showing that for a full description of
elementary excitations in a biomembrane with inherent curvature normal deviations such as � suffice. Furthermore, we
will have to gain additional insight into the analytical formalism of differential-geometric calculus on a curved surface,
viz., covariant differentiation, so as to be able to quickly differentiate the energy functional of a curved cell membrane.

6. Why normal deviations suffice

To find the elementary excitations of a (bio)membrane, we proceed as in the case of a harmonic crystal. Instead of
the potential V we now have to handle the energy functional F defined on a smooth manifold. Analogously to �qV =0,
we start with an equilibrium shape characterized by �F = 0 and, in complete analogy to �q�qV , we study its stability

and linearized dynamics through the (spectrum of the) operator �2F associated with the second derivative. How to
compute all this?

For differentiation we need to subtract but, facing shapes of manifolds, the question is: What? Suppose we are
given an equilibrium shape M with energy F0. We decompose deviations from equilibrium at the point x ∈ M into a
tangential part and a normal part proportional to the normal vector n. The tangential part does not change energy and
only leads to an uninteresting reparametrization so that it will not be considered here any further.

Normal deviations are described by �(x)n for some smooth real function � defined on the manifold. We can add
and subtract functions and only have to require that they do not get too unwieldy while being on M so as to guarantee
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Fig. 8. Katsushika Hokusai (1760–1849): Under the Wave, off Kanagawa, woodblock print, 1830–1833. As common as overhanging waves are to our
experience of fluids, these shapes are energetically highly improbable on the surfaces of cell membranes. This is particularly true for finer structure
like the white curls at the wave crest. Deformations like famous Mount Fuji (background) are equally unlikely because of the kink at the summit.

x–

y

x

y(x) =   (x/t)1
2

2

x

–

Fig. 9. Small shape fluctuations x̄ that cannot be described by normal deviations from the equilibrium form x (dashed line) lead to a divergent energy
contribution as t → 0. In this limit, the ‘dip’ in the overhang is approximated by the parabola y = (x/t)2/2.

a finite energy. Equipped with our surface measure df = √
g d�q with g = det(g�) we therefore require �2F to live on

a suitable domain D in the real Hilbert space

L2(M) =
{
�

∣∣∣∣
∫
M

df |�(x)|2 < ∞
}

(71)

with scalar product 〈�|�〉 = ∫
df �(x)�(x). So the problem is solved. Well, is it?

What actually guarantees that � is a uniquely defined function on the given manifold M instead of describing a
surface as in Fig. 8 where the overhang needs an at least three-valued �? The simple answer is that a single-valued � is
energetically more favorable. We now prove that life is that simple. In view of (67) we study F(x + t�n) with x ∈ M
and t → 0. There is no harm in restricting the surface to the intersection of the manifold and the plane of the paper,
which is the solid line in Fig. 9, and assume translational invariance orthogonal to it.

To estimate the energy it suffices to study
∫

ds�2(s) of the parabola y = x2/2 underneath y = 1 and perform the
transformation x �→ x/t in the limit t → 0; cf. Fig. 9. Using the exact expression for the (radius of) curvature one
finds asymptotically t−2

∫
dz(1 + z2)−5/2 ∼ t−2, as announced.

That is, we henceforth analyze normal variations � as smooth functions on M and study the behavior of the energy
functional F(x̄) under normal variations

x̄ = x + t�n. (72)
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Differentiating F(x + t�n) with respect to t once or twice on a given manifold with x ∈ M means differentiating
F in the direction �. [Technically we obtain a Gâteaux derivative, which is weaker than the Fréchet derivative with
respect to the norm. In our Hilbert space (71), however, (n + 1) times Gâteaux differentiable means n times Fréchet
differentiable (Liusternik and Sobolev, 1961).]

As for stability we finish the argument by noting that the second derivative is of the form �2F(�, �) := 〈�|�2F|�〉.
In complete analogy to q�q > 0 for the harmonic crystal we obtain stability, if �2F(�, �) > 0 for all � �= 0; in other
words, if �2F is a positive operator on L2(M). We are now going to compute �2F. To do this efficiently we need
covariant differentiation.

7. Fundamentals of covariant differentiation

In the analysis of undulation phenomena and on several other occasions in physics (Frankel, 1997) an elementary
knowledge of covariant differentiation is very helpful. It is therefore explained here. Physical laws should be form-
invariant under a coordinate transformation; one also calls this ‘covariant’. Covariant differentiation does, so to speak,
the job. Furthermore, it brings the derivative of a tangent vector field back into tangent space.

Let us first check the effect of a coordinate transformation q� �→ q�′
on a vector in tangent space,

a = a���x = (a���q�′
)��′x =: a�′

��′x. (73)

That is, a�′ = a���q�′
. To save space we define T

�′
� := ��q�′

with, for an n-dimensional manifold, 1��, �′ �n.

Coordinate transformations being invertible, T is invertible as a matrix and its inverse T −1 corresponds to the inverse
transformation q�′ �→ q�. To see why, we use the chain rule and find ��

 = �q
�({q�′ }) = �′q��q

′ = T
�
′ T ′

 . In
summary, we have

q� �→ q�′ → T
�′
� = ��q�′ ⇔ q�′ �→ q� → T

�
�′ = ��′q�. (74)

A cautionary remark: T
�
�′ is not ��q�′ .

To finish the argument we insert the Gauss formula (40) into (73) and obtain

��a = ��(ax) = (��a)x + ax�

= (��a� + ��
�a

)x� + h�a
n, (75)

which shows two things. First, Eq. (75) is not covariant. Second, though a is in tangent space, ��a in general is not.
How, then, can we eliminate these two drawbacks?

Focusing e.g. on the geodesic curvature �G = ‖Pd2
s x‖ as given by (45), we see a differentiation ds is followed by a

projection P onto the tangent space Tx at x ∈ M. Since this order will turn out to be important we define

D• := Pd• with P = |x�〉〈x�| = |x�〉〈x�|, (76)

projecting onto Tx. One calls D a covariant differentiation. It puts the final result of differentiation starting in tangent
space back into tangent space. Here we take for d• either ds or ��. For example, we read the coefficients for Dsu with

u = dsx = ux with respect to the basis {x�} from u = dsq
 in conjunction with

x�Dsu = x�ds(u
x) = dsu

� + ��
�u�u. (77)

For an arbitrary tangent vector a = ax we get

x�D�a = ��a� + ��
�a

. (78)

To see all this in an optically different way, we start from the Gauss formula x� = ��
�x� + h�n with Christoffel

symbol ��
� = x�x� and let P operate on

��a = ��(ax) = (��a)x + ax�

= (��a� + ��
�a

)x� + h�a
n. (79)
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Accordingly, the geodesic equation (44) now reads Dsu = 0, which is a more precise way of saying that we take a
“straight” line on a curved surface.

Geodesics are not a mere mathematical peculiarity. They are in fact of high physical relevance. To see why, we
consider a ‘fluid’ lipid bilayer as a two-dimensional liquid supporting a large variety of proteins floating in this “sea”.
Proteins are electrically charged or at least are dipoles. Electromagnetic interactions thus strongly influence the motion
of proteins on a membrane surface. In contrast, however, to charged particles in vacuo they do not “swim” along
straight lines, if they were alone, or follow similar curves that are well-known from classical electrodynamics but
follow perturbed geodesics that are determined by the specific shape of the membrane they are in.

It is time to list a few properties of covariant differentiation. To this end we consider differentiable vector fields a
and b on M, i.e., a(x), b(x) ∈ Tx, and assume � to be a smooth real function on M.

(i) After a coordinate transformation a covariant derivative in terms of the new coordinates q�′
reads: D�′a =

(P��a)T
�
�′ = T

�
�′D�a where T

�
�′ = ��′q�. This is D’s covariant transformation behavior.

(ii) D�(a + b) = D�a + D�b, due to linearity of the operators in sight.
(iii) ��(a�) = (��a)� + a��� ⇒ D�(a�) = (D�a)� + a���.
(iv) Being a projection operator, P is self-adjoint, i.e., a(Pb) = (Pa)b. Furthermore, Pa = a, whatever a ∈ Tx. Hence

we obtain, for a & b ∈ Tx,

��(ab) = (��a)Pb + Pba(��b) = P(��a)b + aP(��b)

= (D�a)b + a(D�b).

By construction, covariant differentiation transforms a tangent space into itself. We therefore define its covariant and
contravariant coefficients, transforming under coordinate transformations as �� and �� respectively, by

∇�a := xD�a ⇔ D�a = (∇�a)x, (80)

∇�a := xD�a ⇔ D�a = (∇�a)x. (81)

Tensors. In view of (80) and (81) it is timely to introduce the tensor notion. We have seen how tangent vectors
a = ax transform under a coordinate transformation. Equation (74) tells us q �→ q′ ⇒ a′ = a�q

′ = T ′
 a.

Referring to this ‘covariant’ transformation behavior one therefore says a is a tensor of rank (1, 0). More generally, a
tensor of type (m, n) is a quantity of the form t

1...m
�1...�n

of which the upper and lower indices transform according to

t
′

1...
′
m

�′
1...�

′
n

= T
′

1
1 . . . T

′
m

n
T

�1
�′

1
. . . T

�n

�′
n
t1...m
�1...�n

.

As an illustration we return to (80) and note that, due to (i), we have obtained a tensor of rank (1, 1),

∇�′a′ = x′
D�′a = T ′

 T
�
�′xD�a = T

�
�′T ′

 ∇�a.

Invoking (74) and herewith T
�
′ T ′

 = ��
 we recognize the ‘contraction’ ∇�a� as a quantity that is invariant under

coordinate transformations, a most valuable property.
Equally natural and hardly more difficult is generalizing covariant differentiation from tangent vectors such as in

(80) and (81) to tensors of arbitrary type. To keep our notation simple we stick to type (1, 1), as in g
�
 . A tangent vector

t = t�x�, more in particular, t�, has been declared to be a tensor. We now generalize this through the tensor product ⊗
as a bilinear (or multilinear) map into product space: a ⊗ (b + c) = a ⊗ b + a ⊗ c, �(a ⊗ b) = (�a) ⊗ b = a ⊗ (�b), and
analogously for a1 ⊗ a2 ⊗ · · · ⊗ am. A zeroth-order tensor is a scalar t = t , invariant under coordinate transformations.

For bases x� and x in tangent space Tx we could rewrite the metric tensor g, of which we meanwhile know the
transformation behavior rather well, in the form g = g�x� ⊗ x. We then define a tensor t of type (1, 1) to be
the quantity t = t

1
�1

x1 ⊗ x�1 . It exhibits the “right” behavior under a coordinate transformation and thus is a tensor in
the above sense. By the very nature of tensor product we can evaluate �u[a(u) ⊗ b(u)] as if it were a normal product,
for which the product rule holds. To wit, we can write it as a sum of two terms, [a(u+h)⊗b(u+h)−a(u)⊗b(u+h)]
and [a(u) ⊗ b(u + h) − a(u) ⊗ b(u)], divide by h, and send h → 0 so as to get

lim
h→0

�u[a(u) ⊗ b(u)]/h = (�ua) ⊗ b + a ⊗ (�ub). (82)
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Given the projection operator P, we define the covariant derivative for an arbitrary tensor t to be

D�t := P ⊗ · · · ⊗ P��t. (83)

Generalization of the rules (i)–(iv) to a general tensor is straightforward.
After this detour we focus on Christoffel symbols, defined by (41), prove their isometric invariance, and in so doing

derive a useful expression for proving Lemma C.

Lemma B. Christoffel symbols are determined by the inner geometry of a manifold, i.e., its metric tensor only,

��
� = g��(��g� + �g�� − ��g�)/2. (84)

In other words, Christoffel symbols are isometric invariants. From a classical point of view, a “Riemannian” geom-
etry is defined by its metric tensor (g�) being positive-definite. According to a modern definition it is a geometry
satisfying (84).

Proof. Because of the Gauss formula (40) we get

��g� = x��x + x�x� = g��
�
�� + g���

�
�.

A cyclic permutation of the indices then gives

��g� = g���
�
� + g��

�
��, �g�� = g���

�
� + g���

�
�.

We add the final two and subtract the first equation, multiply by g��, and find (84). �

Lemma C (Ricci, 1888). The covariant derivative commutes with the metric tensor, [∇�, g�] = [∇�, g�] = 0, and
even stronger ∇�g� = ∇�g� = 0.

Proof. The proof is a simple consequence of (80) and (81),

g�∇�a = g�xD�a = ∇�a� = ∇�(ag�).

Vanishing of ∇�g� is now obvious since

0 = g�∇�a − ∇�(g�a
) = −(∇�g�)a



for vectors a �= 0. �

As we have seen in (78), covariant differentiation transforms a tangent vector ax into

∇�a = ��a + �
��a�. (85)

In a similar vein, ax gives rise to

Lemma D. The covariant derivative of tensor coordinates with lower index is given by

∇�a = ��a − ��
�a�. (86)

Proof. To understand why, we start by computing ��g� = ��(��x�x) = ��
��g� + ��

�g��, and obtain

��a = ��(a�g�) = (��a�)g� + a���
��g� + ��

�a�.

Lemma C and (85) provide us with

∇�a = (∇�a�)g� = (��a�)g� + ��
��a�g� = ��a − ��

�a� − (a���
��g� − ��

��a�g�).

An interchange of the dummy indices � and � in the final term finishes the argument. �
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Covariant differentiation of tensors. Using Lemma D in conjunction with (85), (80), (81), and (82) we find for a
(1, 1) tensor D�t� = ��t� + �

��t
�
� − ��

��t� , and with a bit more work for an (m, n) tensor

D�t1...n
�1...�m

= ��t1...n
�1...�m

+
n∑

i=1

�i

��t
1...�...n
�1...�m

−
m∑

j=1

��
��j

t
1...n

�1...�...�m
. (87)

Lemma E. Let us define g := det g = det(g�). Then a ‘contraction’ of the Christoffel symbols gives

��
�� = ��

√
g

√
g

⇒ ��(
√

ga�) = √
g∇�a�. (88)

Proof. To convince oneself of the truth of this statement, it is best to start on the left and verify differentiation of a
determinant first. Let adj(g) denote the adjugate matrix (Horn and Johnson, 1985) of g = (g��). Writing out its key
property g adj(g) = g1 in terms of components, we get g��adj(g)� = g�

� and thus, since adj(g)� does not depend on
g��,

�g
�g�

= adj(g)� = gg�. (89)

A direct consequence is

��
√

g
√

g
= 1

2
g���g� = 1

2
g�(g��

�
�� + g����

�) = 1

2
(��

�� + �
�).

By the very nature of a Christoffel symbol ��
� = x�x�, it is symmetric in the lower indices. This, then, gives the first

half of (88). To finish the argument we insert (85) into ��(
√

ga�) = √
g(��a� + ��

��a�) = √
g∇�a� and are done. �

The last equality in (89) is of particular importance since, due to df = √
g dq1 dq2, it assures Green’s integral

equations to apply to curved surfaces as well. One has to realize, however, that for surfaces with boundaries the
boundary terms have to be multiplied by

√
g in order to take into account the length changes induced by curvature; see,

for example, Struik (1961, p. 153).

8. Gradient, divergence, Laplace–Beltrami operator

We are going to introduce gradient, divergence, and Laplace–Beltrami operator as physically covariant quantities that
are independent of the specific coordinate system we are working with. Finally, we will see how integrated expressions
such as (19) and (120) below are invariant under conformal transformations.

Gradient. A scalar function � : M �→ R assigns a real number to each point on the manifold. It is evidently
form-invariant as long as we do not disrupt M. Taking such a function � we define its gradient to be a vector in tangent
space Tx such that

grad � ≡ ∇� := (���)x�. (90)

A function � on M is meant to be �(x({q�})), so effectively a function of the q�. We now take a curve C :=
{x({q�(s)})} ⊂ M and compute the derivative of � in the direction of the tangent vector e = dsx = x�dsq

� =: x�e�,
a unit vector (Section 4.3),

ds�(x({q�(s)})) = (���)dsq
� = e grad �. (91)

While traveling along the manifoldM, we see that� changes most when∇� and e are parallel, a coordinate-independent
property.

Divergence. Using covariant derivatives we define the divergence of a vector field in tangent space to be

div v := ∇�v�. (92)
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As a contraction of a (1, 1) tensor it is coordinate-invariant. In addition, we get through (78) and (88)

∇�v� = ��v� + ��
��v� = ��v� + (��

√
g/

√
g)v� = (

√
g��v� + v���

√
g)/

√
g,

and hence a most useful expression for partial integration in the style of Green, as is exemplified by (94) below,

div v = 1√
g
��(

√
gv�). (93)

Laplace–Beltrami operator. Following Beltrami (1864) we construct the symmetric bilinear function ∇�∇� =
(���)g�(��) out of two tangent vectors ∇� and ∇�. Performing a partial integration with respect to q� and starting
with df = d�q√

g we find the Laplace–Beltrami Operator �,

−
∫

df ∇�∇� = −
∫

d�q√
g(���)g�(��)

NB=
∫

df �

[
1√
g
��(

√
gg��)�

]

=:
∫

df ��� (94)

provided there are no boundary terms, as on a vesicle surface. Throughout what follows, this condition is denoted by
NB. Though the above expression for � looks forbiddingly complicated, it is not. First, it is an old friend. In R3 with
g=1 it is the usual Laplacian �=��

. Equation (94) also tells us that, on a unit sphere with spherical coordinates � and
	, � is nothing but another old friend, the angular momentum operator h̄−2L2 = −(sin �)−1��(sin ���) − (sin �)−2�2

	
with (2l + 1)-fold degenerate eigenvalues l(l + 1), l = 0, 1, 2, . . . and the spherical harmonics Ylm, −l�m� l, as
eigenfunctions (Dirac, 1958, Section 38). In general the following lemma holds.

Lemma F. The Laplace–Beltrami operator � looks the same in all coordinate systems, viz.,

� = (
√

g)−1��[√gg��] = div grad = ∇�∇�. (95)

Proof. For a tangent vector v := ∇� = ��x� we have v� = ��� = �� or, if desired, v� = g����. Lemmas C and D
give in conjunction with definition (92) that divgrad� = ∇�g�� equals

div(∇�) = g�∇�� = g�(��� − ��
����), (96)

which is a handy expression for performing explicit calculations. We now return to (95) and invoke (93) to directly
verify that (div grad) equals � as defined by (94) and showing up in (95) on the left. Putting a� := ��� ≡ ∇�� &
��� ≡ ∇�� and combining (96) with Lemma D we find div(∇�) = g�∇�a = ∇�g�a = ∇�a� = (∇�∇�)�. �

The Laplace–Beltrami operator � and the mean curvature H = tr g−1H are closely related: �x = Hn ⇔ H = n�x.
To see why, we combine (96) with Lemma D once again and use the Gauss formula (40) reading ��x = ��

�x� + h�n

so as to get �x = g�∇�x = g�(��x − ��
�x�) = g�h�n = Hn.

9. Conformal invariance of energy functionals

The integral
∫

df H2 occurring in many energy functionals of membranes is invariant under conformal transforma-
tions, i.e., angle-preserving mappings (Willmore, 1982). Translations and rotations in R3 are angle-preserving and so
are constant scale-factor transformations. Translations, rotations, and constant scale-factor transformations are called
similarities. In addition to similarities, in R3 and more generally in Rn with n�3 only inversions, viz., reflections,
in spheres are conformal; cf. Fig. 10. Since the classic proof of Liouville (1850) for the n = 3 case, which is what
interests us here, does not give too much insight we will skip it and simply refer to Blair (2000). Instead we clarify
why inversions are conformal transformations.

Let Sa(x0) = {x ∈ Rn|‖x − x0‖ = a} be the sphere centered at x0 with radius a. The inversion in Sa(x0) is the
mapping ™ : Rn\x0 �→ Rn defined by

™(x) := x0 + a2 x − x0

‖x − x0‖2
. (97)
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Fig. 10. Inversion in a sphere is a conformal transformation preserving angles. In this lithograph by, and of, the Dutch artist Escher (1946), one
discerns how the artist is positioned mid-sphere on the weakly reflecting surface of a desk and joined on the right and left by two more reflecting
spheres. Though distances are distorted, it is clearly seen that inversion in a sphere is angle-preserving. Taken from M.C. Escher’s “Three Spheres
II” �2007 The M.C. Escher Company—the Netherlands. All rights reserved. www.mcescher.com.

We note that x and ™(x) are on the same ray starting from x0, that the product of the distances of x and ™(x) from x0
equals a2, and that ™2 is the identity. In addition, there is no harm in assuming that x0 = 0 is not on our manifold M
so that the map ™ from M onto M̃ := ™(M) is one-to-one and we may identify the parameters describing x and ™(x).
Finally, we will simplify the notation further by calling x̃ := ™(x) so that with r := ‖x‖ Eq. (97) reappears in the form
x̃ := a2x/r2.

Following Willmore (1982) we start with an arbitrary variation of x̃ := ™(x) with x ∈ M,

dx̃ = a2

r2
dx − 2a2

r3
dr x (98)

where x dx = r dr . Hence the scalar product reads

dx̃ dx̃ = a4

r4
dx dx − 4a4

r5
dr x dx + 4a4

r6
r2 dr2. (99)

Since the last two terms on the right in (99) cancel we are left with

dx̃ dx̃ = a4

r4
dx dx ⇒ df̃ = a4

r4
df . (100)

In so doing we have related the surface elements df̃ and df as well; cf. (31) and (102) below.
After inversion the normal vector is given by

ñ = 2

r2
(nx)x − n (101)

as one verifies by simple inspection using (98): ñ is orthogonal to any dx̃. Moreover, ññ = 1. From (98) we can derive
the tangential basis x̃� = a2/r2x� − 2a2/r4(xx�)x. By means of (28) we then easily determine the first fundamental
tensor

g̃� = x̃�x̃ = a4

r4
g� (102)

http://www.mcescher.com
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Fig. 11. Conformal deformation of a genus-2 vesicle with two handles, as observed in experiment (top). As time proceeds by steps of 30 s the vesicle
evolves at no cost of energy through the conformal deformation (a) → (e), a “conformal diffusion” (Jülicher et al., 1993). The horizontal scale bar
stands for 10 �m. In the bottom row numerical shapes belonging to the corresponding family of absolute minimal surfaces are shown. They strongly
resemble their experimental counterparts. Picture based on that of Michalet and Bensimon (1995, Fig. 5).

and its inverse

g̃� = r4

a4
g�.

After straightforward differentiation of (101) and applying xn = 0 we arrive at the somewhat unwieldy expression

�ñ = −�n + 2

r2

[
x(nx) + x(�nx) − 2

r2
x(nx)(xx)

]
,

which as a reward directly gives the second fundamental form

h̃� = −x̃��ñ = −a2

r2

[
h� − 2

r2
(nx)g�

]
as it follows from (42); equivalently,

h̃
�
 = g̃��h̃� = − r2

a2

[
h

�
 − 2

r2
(nx)��



]
.

Taking advantage of (59) and (60) for a two-dimensional manifold we then find

H̃
2 − 4K̃ = r4

a4
(H2 − 4K) (103)

and because of (100) we end up with

(H̃
2 − 4K̃)df̃ = (H2 − 4K)df . (104)

Integrating (104) over M and its mirror image M̃ and invoking the Gauss–Bonnet Theorem (61) we obtain the desired

invariance
∫
M̃ df̃ H̃

2 = ∫
M df H2.

For interesting physical applications we refer to Jülicher et al. (1993) and Seifert (1997, Section 5). A rather surprising
experimental confirmation of conformal diffusion as introduced by the former paper is due to Michalet and Bensimon
(1995); see Fig. 11.

The problem of minimizing
∫
M df H2 for a closed surface M is meanwhile a famous one; solutions M are called

Willmore surfaces. Jülicher (1996) discusses conformal invariance in the context of this Willmore problem, which we
will soon turn to. Before doing so we make a small detour to get a better understanding of the invariance properties
of energy functionals used to describe conformal diffusion and a wealth of other phenomena such as those depicted in
Figs. 1–3.
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10. Models of energy functionals and their invariances

In this section we reconsider the three energy functionals of Section 3 as we now have good reasons for doing so. The
two more involved ones are going to be derived in greater detail and discussed in the new light of conformal invariance.
Let us therefore return to Section 3, Eq. (19), from which we find the energy of a membrane surface to be described by
the functional

F = 1

2
kc

∫
M

df (H − �0)
2 + 
A − PV. (105)

Here, H = �1 + �2 is the local mean curvature and A is the total area, which is taken to be constant in time, so that
the surface tension 
 plays the role of a Lagrange multiplier (Segel, 1977) for fixing the total area of the manifold M
describing, say, our cell membrane. In a similar vein we have taken a constant volume into account by adding −PV to
(105) with V as volume and P as pressure. Finally, the term

∫
M df K containing the Gaussian curvature K =�1�2 has

been dropped from (19) as we assume no additional holes and thus “handles” are introduced so that the Gauss–Bonnet
theorem (61) holds and the integral stays constant, whatever M. Then the resulting functional (105) is that of Helfrich
(1973) with �0 as fit parameter, called “spontaneous curvature”. The model represented by (105) is henceforth named
spontaneous-curvature model. As we have seen near (17), for �0 = 
 = P = 0 it dates back to Thomson and Tait
(1878).

Bilayer coupling model (BCM). Evans (1974) was the first to note that a biomembrane is a lipid bilayer with
the inner leaf of the lipid bilayer being slightly different from the outer one so that their areas may well differ by
�A �= 0. For instance, by fixing the distance between the two leaves to be � := � we find from (128) below that
�A := A(�) − A(0) = �

∫
df H. In other words, by fixing �A we get the bilayer coupling model (BCM)

FBCM = 1

2
kc

∫
M

df H2 + QM + 
A + PV (106)

with vanishing spontaneous curvature �0 = 0 but with an extra term QM instead, which is to be added to (105) with Q
as Lagrange multiplier and M = ∫

M df H as integrated mean curvature. In view of the derivation of (16) in Section
3 this argument is quite appealing. In both cases, Helfrich’s spontaneous curvature model and BCM, we have a bunch
of (fit) parameters and by writing out (105) and redubbing them we can directly prove equivalence of the two models
(105) and (106).

There is also an interesting scale invariance of (106) and, thus, (105). Though
∫

df H2 is invariant under whatever
similarity, the quantities M, A, and V are not if we perform the scale transformation x �→ �x with � �= 1. We then find

M �→ �M, A �→ �2A, V �→ �3V . (107)

The functional (105) stays invariant if Q, 
, and P transform according to

Q �→ Q

�
, 
 �→ 


�2
, P �→ P

�3
. (108)

If, accordingly, x(q1, q2) is a solution to the variational problem of minimizing (105) for given (M, A, V ), then
�x(q1, q2) is another solution for (�M, �2A, �3V ). To characterize the solution it therefore suffices to work with only
two, dimensionless, parameters. Say we put R0 := √

A/4� and

m := M/(4�R0), v := V/(4�R3
0/3) (109)

so that for a sphere m=v=1. Reducing a three-dimensional parameter space given by (M, A, V ) to a two-dimensional
one given by (m, v) we are left with a degeneracy characterized by a one-dimensional manifold, i.e., a line.

Using the above scale invariance of (106) we can understand the conformal diffusion that has been found by Jülicher
et al. (1993) and is based upon an idea of Seifert (1991). In the present context ‘conformal diffusion’ means that the
system wanders along the line of degeneracy in parameter space at no cost of energy. In so doing it is thermally driven
but, because such a process requires a global change of shape and, hence, of fluid contained therein, it will evolve on a
long hydrodynamic time scale of tens of seconds. The time elapsed between the different (top row) images of Fig. 11
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is 30 s and in clear contrast to the fast subsecond thermal fluctuations of the cell membrane, the key issue of the next
section. We now turn to the mathematics underlying conformal diffusion.

First we note that
∫
M df H2 is invariant under any conformal mapping so that we can concentrate on the other terms

in (106). Let us call a transformation (97) with a = 1 and x0 = 0 a ‘simple’ inversion; it is simply a reflection in the unit
sphere at the origin. A special conformal transformation SCTt is defined to be a composition of a simple inversion, a
translation by t, and again a simple inversion. That is,

SCTt(x) = (x/r2 + t)/(x/r2 + t)2 (110)

with r2 := ‖x‖2 = x2. We now start with some free-energy minimum for a given parameter vector p0 = (m0, v0) in
(106) and compute the change under SCTt with t → 0. This gives the Taylor expansion

�p := pt − p0 = At (111)

for some 2 × 3 matrix A. Calling the row vectors of A, which are 3-vectors, am and av and realizing we are at a
minimum and want to stay there, we thus have to require At = 0 as t → 0. The line of degeneracy can be characterized
by its length s and we have dt = (dt/ds) ds where dt/ds is the tangent vector

dt/ds = am × av (112)

pointing into the direction of degeneracy of the energy functional, i.e., where (m, v) = (m0, v0) does not change. Here
× denotes a vector product so that am × av is orthogonal to both am and av . Finding an explicit expression for the
two vectors a1 and a2, though straightforward, is a bit of work but the result is easy to formulate (Seifert, 1991). If we
define the “centers of mass”

RA := A−1
∫
M

df x, RM := M−1
∫
M

df Hx,

RV := V −1
∫

{M}
dV x, (113)

where {M} indicates the region enclosed by M and dV an infinitesimal volume element therein, then we obtain

am = 2(RA − RM), av = 6(RA − RV ). (114)

These vectors are now substituted into (112) and by integrating the resulting expression we directly find the trajectory
of conformal diffusion.

Area-difference elasticity (ADE) model. The third model, the so-called area-difference elasticity (ADE) model, is
based on the idea (Miao et al., 1994, Appendix A) that the total area may well be taken to be constant (in decent
approximation) but area differences need not be because of elasticity. The primary assumption is that certain (small)
pieces of area ah and at of the membrane surface are assigned to each lipid molecule’s head and tail, respectively, and
that the total energy can be expressed in terms of these variables. Local curvatures, described by H and K, modulate
both area portions ah and at so as to give a Taylor expansion

ah/t = a0(1 − zh/tH + z2
h/tK). (115)

Here zh/t denotes the position of heads and tails above or below the neutral plane in the direction of the normal; see
Fig. 4 and Eqs. (128) and (137) below with � := h constant and thus �� ≡ 0. Equation (115) can then be inserted into
an ansatz for the free-energy density f of a lipid monolayer, which assumes a quadratic dependence upon the differences
between the ah/t and their “equilibrium” values ah/t,0 so as to give

f (ah, at ) = 1

2

∑
™=h,t

k™a™,0(a™/a™,0 − 1)2 (116)

with k™ as area-stretching elasticities and a™,0 with ™=h or t (head or tail) as preferred areas dangling in the background.
Eq. (116) already looks plausible and is in principle easy to understand, the more so if we remember the sandwich

plate of (18) in Section 3. The idea behind (116) dates back to Helfrich (1973, Section II) and has been extended slightly
by Marčelja (1974). As we have seen, a biomembrane is a lipid bilayer consisting of two sheets with the hydrophobic,
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lipid, CH-tails or chains (c) inside and the hydrophilic polar groups or heads (h) outside. We now focus on one sheet,
consider it as a sandwich with heads and tails and nothing in between, and apply the elasticity theory of Section 3 to
each of them with their neutral plane in between. Being fluid they are also homogeneous and no direction in a sheet is
preferred.

If a sheet were flat and in equilibrium, ah and at equal ah/t,0, respectively. By bending it we stretch one side and
squeeze the other. This was the essence of Section 3 leading to the functional (19) with �0 = 0. We now proceed
somewhat differently so as to allow a final, tangential, stretching of mono- and bilayers as well. That is, we bend and
stretch the head and tail layer separately. For small changes the monolayer tension �, this time not to be confused with
the Poisson ratio, is supposed to be linear in the relative area per polar head (h) or lipid tail (t),

�(ah/t ) = �h/t,0 + kh/t (ah/t /ah/t,0 − 1). (117)

We note that Eq. (117) can be considered as a higher-order correction to the usual surface tension, the latter being a
simple consequence of �h/t,0. An energy change �E corresponding to an area change �a is of the form �E = ��a;
here � has the dimension N/m and �a that of m2 so that the dimension of ��a is Nm, exactly that of an energy. To
wit, pull at a piece of membrane, a layer, along a bar of length L and called L. Because of the sheet’s homogeneity, the
force we have to exert is normal to L and the work to be done so as to shift L by a distance �s along the normal to L
is �L�s =: ��A where �A := L�s is the area change. Thus the work is ��a in the present units.

Starting with �h/t,0 and integrating we obtain the free-energy densities (™= h/t)

f (a™) = �™,0(a™ − a™,0) + k™
2

a™,0(a™/a™,0 − 1)2. (118)

We finally apply Occam’s razor in that we make the physically simplest choice of putting �h/t,0 := 
 with 
 as
Lagrange multiplier accompanying the surface area A=N(ah + at )/2 in (119) below, where constants can be dropped
and N as the total number of molecules in a monolayer is fixed on time scales we are interested in. In (118) we can
therefore put �h/t,0 = 0. The total (free) energy f (ah, at ) = f (ah) + f (at ) of two head and tail layers that are bent
and constitute a monolayer or ‘leaf’ then equals that of (116).

The rest of the ADE scenario is quite simple in principle but requires a bit of algebra, which we will skip. The idea
is this. We start with (116) as the energy of a monolayer, brush it up, and then compose two of these monolayers so as
to form a bilayer. In a similar vein to the BCM model, we fix the total distance between the two leaves to be D so that
�A := A(D) − A(0) = D

∫
df H := DM due to (128) below, and allow �A to change because of tangential elasticity.

Collecting terms we end up with a free-energy functional of the form (Miao et al., 1994, Appendix A, esp (A17))

FADE = 1

2
kc

∫
M

df (H − �0)
2 + Q̄

2A
(M − M0)

2 + 
A + PV, (119)

where �0, M0, and Q̄ are independent quantities that depend on ah/t,0 and kh/t and can be treated as fit parameters.
Furthermore, M := ∫

M df H while, in view of (116), the second term on the right in (119), with prefactor Q̄/A,
represents the area-difference elasticity,

Q̄

2AD2
(�A − �A0)

2,

hence the name of the model. The ADE model is quite successful in explaining transitions of vesicle forms from, e.g.,
prolate to pear-shaped, and even to budding (Miao et al., 1994). As we have seen in Section 1, it also explains quite
intricate phenomena such as a red blood cell’s full stomatocyte–discocyte–echinocyte transition, part of which has been
depicted in Fig. 3. It was as early as 1948 that Ponder precisely identified the discocyte to echinocyte transition.

11. Differential geometry of elementary excitations

The energy functional describing a cell, or any other, membrane is given by (19) or, more generally, by an integrated
version of (20) and formulated in terms of quantities that are determined by the membrane shape only. To wit, here we
will study the functional

F =
∫

df

(
1

2
kcH2 + kgK

)
+ 
A − PV + Q

∫
df H, (120)
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where A = ∫
df is the surface area and V the volume of a cell whose membrane surface constitutes the manifold M

under consideration. We have to differentiate the functional (120) twice. The first derivative vanishing gives us the
equilibrium shape of the membrane whose energy is given by (120). The second derivative tells us whether or not this
equilibrium is stable and what its elementary excitations look like. It may well be that a stable equilibrium shape has a
certain symmetry, say, it is rotationally invariant, but in performing our first and second derivative we are not allowed
to assume any symmetry since small deviations from symmetry need not have any symmetry. That is, we are facing
the problem of differentiating (120) without any further symmetry assumption. As we will see in Section 11.3, already
by itself the problem of differentiating (120) is a neat challenge whose solution will pay off fully since we will obtain
a solution that is good for any membrane shape. Moreover, the extra money we pay is none.

We follow the notation of Section 6, viz., consider normal variations � of an unperturbed surface {x ∈ M} so that
{x̄=x+t�n|x ∈ M} is the “perturbed” one. Since t is “small” the perturbed and unperturbed manifold can be described
by the same coordinates or parameters. We also define, as in (67), �nF := (dnF/dtn)|t=0 and require that at a minimum
�F = 0 while for stability �2F > 0. As a second derivative, the bilinear form �2F(�, �) =: 〈�|�2F|�〉 in the Hilbert
space (71) is symmetric (Liusternik and Sobolev, 1961) so that the operator �2F is automatically symmetric too. With
a bit more work (Buser, 1992) one can show it is (essentially) self-adjoint; cf. as an illustration, �2F = kc�2 − 
��0
in Section 5. Not only does it look awfully Hermitian, it actually also is.

Before proceeding it may be well to put things in a historical perspective. The first publications presenting the solution
to the variational problems associated with (120) in full generality are due to Peterson (1985); see also Peterson et al.
(1992). In addition, we ought to mention Ou-Yang and Helfrich (1989); further references will be given as we proceed.

The analysis below has been inspired by the wonderful Chapter 7 of Tom Willmore’s Riemannian Geometry (1993).
This chapter is devoted to the ‘Willmore problem’ of finding the infimum of

∫
M df H2 for closed surfaces M of genus

p (Section 4.6) and without self-intersections (as in the Klein bottle). For p = 0 a sphere does the job whereas for p = 1
the stereographic projection of the Clifford torus seems to be the solution; at least a 200-page proof has been submitted.
For each fixed value of the genus p > 1, it is unknown what the minimizer is. That is, the problem is open since 1965.

One of the fruitful ideas practiced by Willmore (1993) is the observation that, as is suggested by (67), ‘variation’ can
be reduced to ordinary differentiation of functions in an integrand. As a consequence the ordinary algebra generated
by product rule and chain rule holds. The first and second derivative of expressions in the integrand of F(x + t�n)

with respect to t at t = 0 will be denoted by � and �2, respectively; for instance, �h�.

11.1. Differentiating once: equilibrium shapes

We start with the first derivative and in so doing with what we will call the Willmore functional,

FW =
∫

df

(
1

2
kcH2 + kgK

)
. (121)

According to the Gauss-Bonnet theorem (61)
∫

df K will not change as long as the manifold’s genus p does not change.
Even for surfaces with border �K will not provide a contribution (Nitsche, 1989) so that we can safely drop K and
concentrate on

∫
df H2,

�FW = kc

2

[∫
(�df )H2 +

∫
df 2H�H

]
. (122)

We know from (51) that H = trg−1h = g�h�. Since we need both �df = d �q�
√

g and �H = �g�h� + g��h� we
have to differentiate the first as well as the second fundamental form g� = x�x and h� = −x�n where, as usual, x�
means ��x, etc.; cf. Sections 4.3 and 4.4 for where g and h come from. For what follows, the third fundamental form
k� := n�n is also helpful.

11.1.1. Metric tensor, surface area, and volume
As we have seen in Section 6, normal variations x̄ = x + t�n suffice and thus

��x̄ = ��x + t (��n + ���n) (123)
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Fig. 12. For volume variations a certain distance t� along the normal vector n is to be specified, where � is a function on the manifold M. With
height t� and base df the first normal variation of a volume element is given by � df . In view of � df =−�H df leading to (128), the second-order
term is then �� df = −�2H df .

gives the modified metric tensor

ḡ� = g� − 2t�h� + t2(��� + �2k�). (124)

We differentiate both (123) and (124) once with respect to t at t = 0 and get

���x = ��n + ���n,

��2
�x = ��n + ���n + ���n + ��2

�n, (125)

as well as

�g� = −2�h�, (126)

a key result. We obtain the derivative of the inverse metric g� through ��
 =g��g� in the form 0=(�g�)g� +g�(�g�)

and, using (126), end up with

�g� = −g��(�g��)g� = 2�h�. (127)

Eq. (126) tells us how to compute �df and hereby the surface variation �A for A = ∫
M df = ∫

M d�q√
g where

g = det(g). Because of (89), differentiating g is easy: �
√

g/�g�� = √
gg��/2. Since �

√
g = (�g�

√
g)�g� we get

� df = −�H df , which is equivalent to

�A = −
∫

df �H. (128)

Variation of surface area, a geometric quantity, can therefore be expressed in terms of other coordinate-independent
quantities such as the mean curvature H and the normal variation of the height �. In passing we note that under normal
circumstances n is to point outwards (cf. Fig. 5) so that � > 0 corresponds to an area increase at positions where the
surface is locally convex (H < 0) and an area decrease for concave (H > 0) parts of the surface. If locally the mean
curvature vanishes, there is no contribution to an area change, e.g., as is the case for lifting a flat piece of paper.

There is an interesting application of (128). For a lipid bilayer the distance � between the inner and the outer leaf
is about constant so that we can take � ≡ �, which is much smaller than the inverse surface curvature, and obtain
�A := A(�) − A(0) = �

∫
df H = M . Requiring this to be fixed means that one puts �0 = 0 in (19) and adds a term

QM with Lagrange multiplier Q, as advertised in deriving the ‘bilayer coupling model’ (BCM) at the end of Section 3.
Computing volume variations is algebraically quite nasty. It is, however, simpler and also more physical to glance

Fig. 12 so as to conclude that normal (= height) variations give rise to �V = ∫
M df �.

11.1.2. Differentiating mean curvature
Once we have obtained �g, computing the variation of the mean curvature H=trg−1h means analyzing h�=(�2

�x)n

in this way we are led to both �2
�x = ��

���x + h�n, which is the Gauss formula (40), and the normal vector n, a unit
vector.

For n life is easy. Since nn = 1 we get n�n = 0 and n��n = 0 so that both �n and ��n are bound to be in tangent
space Tx and �(n��x) = 0. Thus, the effect of � being a differentiation, (�n)��x = −n���x. Inserting ���x from (125)
we get �n’s components (�n)��x = −n���x = −�� with respect to the basis ��x = x� and hereby the extremely
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simple result

�n = −��x� = −��x�. (129)

So far, so good. We now turn to H = g�h�.
Starting this time with (125) and (129) we get

�h� = �2
�x�n + (��2

�x)n = −��
��� + �� + �n�2

�n,

where the Christoffel symbols ��
� = x�x� have been introduced in (41). We now remember (127) and the covariant

derivative ∇��=��−��
��� from (86) of Lemma D, note that differentiating n��n=0 gives n�2

�n=−��n�n=−k�,
where the final equality is just the definition of the third fundamental form k�, and uncover the already fancy looking
expression

�h� = ∇�� − �k�. (130)

We now note H = g�h�, differentiate this, and conjoin (130) and (127) so as to get

�H = g��h� + �g�h� = g�∇�� + �(−g�k� + 2h�h�).

Combining the Laplace–Beltrami expression �� = 1/
√

g��[√gg���] = g�∇��, which is (95) of Lemma F, with

the observation of k� = h��g
��h� implying g�k� = h�h� = tr(g−1h)2 =∑n

h=1�
2
h, which we check in a minute,

we are left with a truly appealing expression containing geometric (i.e., coordinate-independent) quantities only,

�H = �� + �
n∑

h=1

�2
h. (131)

In particular, for the undulation case with n = 2 we have tr(g−1h)2 = �2
1 + �2

2 = H2 − 2K. To finally see why
k� = h��g

��h� holds we return to the Weingarten equations (47), viz., ��n = −h��x� and use the third fundamental

form’s definition k� := n�n, insert the Weingarten equations, find k� = h��x�x�h�, and note we are done since

x�x� = g�� because of Lemma A.

11.1.3. Equation characterizing a Willmore surface
If a closed surface M of genus p minimizes the functional (121) of the Willmore problem, what equation characterizes

it? We can exhibit this equation by invoking the condition �FW = 0 for arbitrary �, as alluded to in the introduction to
this section. We now combine �df = −�Hdf from (128) and �H from (131) so as to find

�FW = kc

2

(∫
�df H2 +

∫
df 2H�H

)
= kc

2

∫
df [−H3 + 2H(� + H2 − 2K)]�. (132)

Assuming as before that no boundary terms (NB) arise during partial integration we obtain the condition

�FW
NB= kc

2

∫
df �[2�H + H(H2 − 4K)] = 0,

for any � and thus

�H + 1
2 H(H2 − 4K) = 0, (133)

where � is the Laplace–Beltrami operator of the Willmore surface under consideration.
The history of Eq. (133) is interesting (Pinkall and Stirling, 1987; Willmore, 1993). It dates back to at least 1922

appearing in a footnote of a paper by Thomsen (1924), who used a different representation and had to admit that
Schadow had outdone him two years earlier. Nothing is known, however, about the person who first discovered this
highly nonlinear equation. A ‘minimal’ surface characterized by H = 0 provides a solution but is in general not closed.

Poisson had already derived (133) in 1812 as solution to the first derivative of (121) vanishing (i.e., as an Euler
equation) but in a truly clumsy form; after all, Beltrami wasn’t born before 1835. According to Pinkall and Stirling
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(1987), Sophie Germain used
∫

df kcH2/2, the main term in (121), as the virtual work in a study of vibrating curved
plates as early as 1810; cf. (15) and (16). It is still unclear “whether she carried this program through”. Poisson did so
in extenso two years later.

11.1.4. General membrane equilibrium
To finish our argument and derive the full equation characterizing membrane equilibrium in general and without

any recourse to symmetry, we return to the functional (120). The first part, FW in (121), gives rise to (133). The terms
with prefactor P and 
 have been taken care of by Fig. 12 together with (128) and (131) while the first variation of
the integrated mean curvature �M = ∫ [(�df )H + df (�H)] is an easy application of both equations. Putting all terms
together we get the following partial differential equation containing geometric quantities only,

2�H + H(H2 − 4K) − 2


kc

H − 4Q

kc

K − 2P

kc

= 0. (134)

In membrane physics all terms must be present (Seifert, 1995). In view of (133) we nevertheless think it is fair to
call (134) the Poisson–Schadow equation since Schadow was the first to derive the essential part of this coordinate-
independent equation, which Poisson forecasted in 1812 and Willmore rediscovered in the early sixties of the last
century. We will analyze an amusing application of (134) in Section 11.3.1 below. First we are going to compute the
second derivative of the full energy functional (120).

11.2. Differentiating twice: undulations

Of course the Willmore functional (121) is the main dish. We differentiate (122) once more and find

�2FW = kc

2

{∫
(�2df )H2 + 2

∫
(�df )2H�H +

∫
df 2[(�H)2 + H�2H]

}
. (135)

So “all” we need is �2df and �2H; the rest is already at our disposal.

11.2.1. Metric tensor, surface area and volume once more
Taking advantage of (124) we directly get

�2g� = 2(��� + �2k�), (136)

where k� is the third fundamental form; so this is done. We now return to (128) and rewrite � df = −�H df ,

�df = d�q�
√

g = d�q/(2
√

g)�g = dfg��g�/2.

Using (126), (127), and (136) and allowing � to operate only on the argument directly following it, we write the second
derivative �2df

�2df = 1

2
(�dfg��g� + df �g��g� + dfg��2g�)

= df

2
[2�2H2 − 4�2h�h� + 2(���� + �2k

�
�)].

For a two-dimensional manifold (n = 2) in R3 we have tr(g−1h)2 = k
�
� = h�h� =∑n

h=1�
2
h = H2 − 2K so that in the

experimentally relevant case we end up with

�2df = df (2K�2 + ����). (137)

For a volume element dV the argument leading to the second derivative is a continuation of �V = ∫
df � as illustrated

by Fig. 12. Differentiating twice we now get �2V = ∫
(�df )� and hence

�2V = −
∫

df H�2. (138)

Alternatively, one can take V = ∫
dx = 1/3

∫
dx div x = 1/3

∫
df nx, which is a consequence of Gauss’ theorem, as

a starting point—and continue.
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11.2.2. Differentiating the mean curvature twice
We will have to devote most of our time to evaluating

�2H = �2h�g
� + 2�h��g� + h��

2g�. (139)

We first turn to �2h� and �2g�. Before doing so, however, it is worth our while to focus on �2
�n =: n�, which stems

from (125), and prove another useful lemma.

Lemma G. A second partial derivative �2
�n of the normal vector n is of the form

n� = (−�h�� + ��
�h��)x

� − k�n.

Proof. We first compute the normal, then the tangential part of n�, and finally put things together. That is,

(i) Weingarten’s equations (47) tell us n = −x�h�.
(ii) Differentiating nn = 1 we get n�n = 0 and then, proceeding as in the argument following (131), n�n =−n�n =

−h��h�
 = −k�.

(iii) Differentiating (42), i.e., n�x� = −h��, we obtain

n�x� = −�h�� − n�x� = −�h�� − ��
�n�x� = −�h�� + ��

�h��.

Since P = |x�〉〈x�| projects onto tangent space Tx, n is a unit vector orthogonal to Tx, and thus 1 = P + |n〉〈n|,
n� = Pn� + n(nn�) is a direct consequence. �

Computing (�2h�)g
�. Exploiting (42) this time in the form h� =n�2

�x together with �2�2
�x=0 as a consequence

of (123), we see

�2h� = 2�x��n + x��
2n (140)

and concentrate on �2n.
Second derivatives of (123) w.r.t. t always vanish, hence �2x� = 0 too. The normal part of �2n follows from

nn = 1 ⇒ n�n = 0 ⇒ �2nn = −(�n)2 = −���� while its tangential part originates from (125) and (129): nx� = 0 ⇒
(�n)x� = −n�x� and thus, after a bit of algebra,

x��2n = −2�n�x� − n�2x� = 2���n�x� = −2��h�.

Pasting the two parts together according to 1 = P + |n〉〈n| we obtain

�2n = −2��h
�x� − ����n. (141)

Combining (140) and (141) with the expression (125) for �x� we get a fairly unwieldy result,

�2h� = 2(��n + n�� + n�� + �n�)(−��x�) − (��
�x� + h�n)(n���� + �h

�x�),

which, however, is simplified by Lemma G so as to read

�2h� = 2��(��h� + �h��) + 2���(h�� − ��
��h� − ��

�h��) − h��
���.

According to (87), the second term between brackets on the right is the covariant derivative ∇h�� so that

�2h�g
� = 4���h

� + 2���∇h
� − ����H. (142)

We are now practically done. The rest is clear sailing.
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Computing h��
2g�. According to (127), �g� = −g���g��g

�. Differentiating this once more we get

�2g� = −�g���g��g
� − g���2g��g

� − g���g���g�.

Collecting terms from (126), (127), and (137) we end up with

h��
2g� = 6�2 tr(g−1h)3 − 2���h

�. (143)

As always in two dimensions (n = 2), tr(g−1h)3 =∑n
h=1 �3

h = H3 − 3KH; cf. Section 4.5.
Computing �2H. We now return to (139), use (130) and (127), conclude

2�h��g� = 4�h�∇�� − 4�2 tr(g−1h)3,

and add this to (142) and (143),

�2H = 2���∇h
� + 4�h�∇�� + 2h���� + 2�2

n∑
h=1

�3
h − H����. (144)

11.2.3. Undulating Willmore surface
We started with (135) and are now in a position to finish our main dish, collecting all the terms that contribute to

�2FW ,

�2FW = kc

2

∫
df [A�2 + B���� + C���� + D�(∇��)� + 2(��)2]. (145)

This would describe an undulating Willmore surface characterized by �FW = 0. For our two-dimensional manifold the
coefficients A − D read

A = 2(H2 − K)(H2 − 4K), (146)

B� = 4H∇�h��, (147)

C� = 4Hh� − H2g�, (148)

D� = 8(Hh� − Kg�). (149)

Though (145) should be a self-adjoint bilinear form, the terms containing B and D do not look very symmetric yet. We
now check they are. Applying the divergence equation (93) in the form d�q ��(

√
gv�) = df ∇�v� to D as it occurs in

(145) we see, through a partial integration that should give no boundary (NB) terms, that
∫

df �D�∇�� is transformed
into ∫

df �∇(D
���) −

∫
df �(∇D�)��

NB= −
∫

df �D��� −
∫

df ���(∇D�).

The first term on the right is already symmetric and the second has the very same structure as the B� term in (145). So
we are left with the latter. Defining C̃

� := C� − D�, B̃
� := B� − ∇�D��, and Ã := A − ∇�/2B̃

�
, invoking (93)

once more, and performing another partial integration that should give no boundary (NB) terms either,∫
df �B̃

�
��

NB= −1

2

∫
df �2(∇�B̃

�
)2,

we arrive at a symmetric form of (145),

�2FW
NB=
∫

df [Ã�2 + C̃
�

��� + 2(��)2]. (150)

The symmetry is evident, except for
∫

df (��)2]. Remembering, however, that the Laplace–Beltrami operator � is
as self-adjoint as you can wish as long as there are no boundary terms in partial integration, we are effectively done.
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More explicitly, applying Lemma F and (93) to the second and third term on the right in (150) we obtain the Willmore
operator �2FW belonging to �2FW := 〈�|�2FW |�〉 = ∫

df �(�2FW)�,

�2FW = [Ã − ∇�C̃
�∇ + 2�2], (151)

under the proviso that no boundary terms occur, as we have indicated explicitly by means of NB accompanying all
equality signs where we had to invoke this condition.

11.2.4. Energy of an undulating membrane surface
The full energy F one has to consider in studying a cell, or any other, membrane is given by (120). Stationary

configurations are characterized by �F = 0 and, hence, by the Poisson–Schadow equation (134). To be a minimum,
and herewith stable, we need its associated ‘Hamilton operator’ �2F to be positive. That is to say, the energy �2FW :=
〈�|�2FW |�〉 for an arbitrary, though smooth, undulation � is to be positive; see Fig. 1 for what � looks like as real time
proceeds.

The Willmore part (151) being at our disposal, we collect the terms related to 
, P, and Q, and see it is advantageous
to redefine Ã → Ǎ and C̃ → Č

�
in (150) and (151) so as to get

Ǎ := kc

2
Ã + P H + 2
K + Q

[
H3 − 2HK + 1

2
�H

]
,

Č
� := kc

2
C̃

� + 
g� + Q(Hg� − 2h�). (152)

Relation (86) of Lemma D and Mainardi-Codazzi (173) derived in the appendix are both helpful in verifying the first
equation. In this way we get, for example, ∇�h

�
 = ∇H.

Furthermore, the stability of a closed membrane surface described by (120) is governed by the condition �2F =
t2〈�|�2F|�〉 > 0 for all fluctuations t�, and thus by its Hamilton operator

�2F = Ǎ − ∇�Č
�∇ + kc�

2 (153)

being positive. General abstract sense (Buser, 1992; Schoen and Yau, 1994) tells us that the operator �2F is self-
adjoint (we did not say > 0) and that on a finite smooth manifold its spectrum consists of isolated eigenvalues of finite
multiplicity only. Since the spectral analogy between a general closed manifold M and a sphere hits the eye, we denote
the eigenvalues by El with l = 0, 1, 2, . . . , and the associated eigenfunctions by �lm with m > 0 labeling the different,
orthogonal, eigenfunctions in case El is degenerate; this being understood, we simply drop the m.

Eqs. (153) and (152) indicate that a membrane shape could become unstable as, for instance, P changes. In Section
11.3.2 we will see that for spherical vesicles there may indeed exist a critical Pc such that they loose their stability for
P > Pc.

Finally, for a given elementary excitation � of a stable configuration (t := 1) we have found its (positive) energy
F(�) is given by

F(t�) − F(0) = 1

2
〈�|�2F|�〉 = 1

2

∑
l

El |〈�|�l〉|2.

As indicated at the end of Section 5, we consider the right-hand side as a Hamilton function determined by (153),
diagonalize it, i.e, consider the coefficients cl := 〈�|�l〉 as new coordinates and perform a canonical transformation
from continuous � to denumerable cl for this (linear) system. The equipartition theorem (Huang, 1987, Section 6.4)
then determines the thermal average 〈c2

l 〉 to be given by El〈c2
l 〉 = kBT where T is the temperature; we will work out

the details in the next subsection. The coefficients cl follow from, e.g., light-scattering experiments.

11.3. Applications

Having the appropriate formalism at one’s disposal work on membrane physics becomes straightforward. The
classical Hamilton operator (153) is certainly a good example since its derivation was long considered to be an
extremely hard task. The literature shows why. We have now seen how to proceed—in fact, without taking recourse



90 J.L. van Hemmen, C. Leibold / Physics Reports 444 (2007) 51–99

to any overly abstract or complicated mathematics. As further illustrations we will consider equilibrium shapes of
rotationally invariant vesicles and the undulating sphere. The former problem has been solved in full generality by
Seifert et al. (1991) in a beautiful and elaborate paper, the latter problem attained its solution rather early through
Safran (1983); see also Milner and Safran (1987).

It is good to realize, though, that rotational invariance may well but need not occur. A nice illustration is provided
by a red blood cell undergoing the stomatocyte–discocyte–echinocyte transition of Fig. 3. It passes through a sequence
of shapes that initially may well be taken rotationally invariant (top-left) but soon break this symmetry. The general
situation of no symmetry is taken care of by the formalism of Section 11. As for the red blood cell, one starts with a
surface of revolution (Peterson, 1992) in the top-left corner but soon ends up with manifolds depicted by the rest of
Fig. 3 and explained in detail by Wortis and coworkers (Lim et al., 2002; Mukhopadhyay et al., 2002).

11.3.1. Rotationally invariant equilibrium shapes
Let us assume our manifold M is rotationally invariant about the z-axis. In this case it suffices to specify its

intersection with the x–z plane; more precisely, we take 0 < x =: �. Following Peterson (1985) we adopt the arc length
s as measured from the “top” of M and the rotation angle 	 as coordinates. Then points on M are given by

x(s, 	) =
(�(s) cos(	)

�(s) sin(	)

z(s)

)
, (154)

where (x, y)=(�(s) cos(	), �(s) sin(	)). We put =̇d/ds so that ż2+�̇2=1. Since 	 and s are orthogonal coordinates the
metric tensor is the diagonal matrix g = diag(1, �2). A simple computation using (154) gives g−1h= diag(−�̈/ż, ż/�)

and, hence, mean and Gaussian curvature,

H = tr(g−1h) = ż2 − �̈�

�ż
, K = det(g−1h) = − �̈

�
. (155)

Except for �	
	s

= �̇/� and �s
		 = −�̇� the Christoffel symbols all vanish. Using (95) of Lemma F we readily find the

Laplace–Beltrami operator,

� = g�∇�∇ = �2
ss + �̇�−1�s + �−2�2

		. (156)

The Poisson–Schadow equation (134) then reads

2(�2
ss + �̇�−1�s)H + H(H2 − 4K) − (2
/kc)H − (4Q/kc)K − (2P/kc) = 0. (157)

Altogether this is a nonlinear fourth-order differential equation for �, provided we eliminate ż from H appearing in
(155). In principle this is easy since ż2 + �̇2 = 1 gives ż = ±(1 − �̇2)1/2 where the sign of ż depends on the situation
at hand. Even for an 8-shaped intersection ż does not change sign; it is and stays �0.

To gain contact with the existing literature (Seifert et al., 1991) and reduce the order of the differential equation
(157) we introduce three auxiliary variables, as is fair enough for a 4th-order equation: k1, k2, and ϑ. First we define ϑ
and k1 through

�̇ = cos(ϑ), ϑ̇ = k1 (158)

and find, using e.g. the Rodrigues formula (53) and Meusnier’s Theorem (Section 4.6), that H and K can be expressed
without any derivative occurring,

H = k1 + sin(ϑ)/�, K = k1 sin(ϑ)/�.

We then introduce k2 through

k2 := �sH = −�−2 cos(ϑ) sin(ϑ) + k1�
−1 cos(ϑ) + k̇1,

which is de facto a first-order differential equation for k1,

k̇1 = k2 + �−2 cos(ϑ) sin(ϑ) − k1�
−1 cos(ϑ). (159)
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It looks as if the first-order differential equation k̇2 = f (�, ϑ, k1, k2) for k2 is still missing. Appearances are deceiving,
however, since this is our friend (157) reappearing in the form

k̇2 = −cos ϑ

�
k2 − 1

2

[
H(H2 − 4K) − 2


kc

H − 4Q

kc

K − 2P

kc

]
. (160)

Eqs. (158)–(160) constitute a system of four coupled first-order differential equations, as advertised. They fully describe
the equilibrium shape of rotationally invariant vesicles, such as the ones in Fig. 2.

11.3.2. The undulating sphere
For a sphere with radius R in R3, a two-sphere, the two principal curvatures are �1 =�2 =1/R. The mean curvature is

simply H=2/R and the Gaussian one equals K=1/R2. The natural coordinates are the spherical ones, (q1, q2)=(�, 	),
despite a few indeterminacy problems, e.g. at the poles. They are orthogonal, viz., g12 = x1x2 = 0. Hence the metric
tensor is g = diag(R2, R2 sin2�). Moreover, since �1 = �2 = 1/R are the principal curvatures and thus eigenvalues of
g−1h, i.e., of the matrix h

�, and principal directions are orthogonal, we have h
� =�

�/R =g
�/R and thus h� =g�/R.

Substituting all this into Eqs. (146)–(149), (152) and finally into (153) while taking into account ∇�h� = 0, we
obtain

�2F = C� − (
 − 2kc/R
2)� + kc�

2. (161)

Here we have put C� := (2P/R+2
/R2 +4Q/R3). For experimental work on the above system exhibiting thermally
excited amplitudes corresponding to flickering as shown in Fig. 1 and confirming our formalism we refer to Peterson
et al. (1992), Zilker et al. (1987, 1992) and Zeman et al. (1990). The recent work of Marx et al. (2002) is more general
in that it also takes into account the substrate a vesicle is on.

As we already noted in Section 7 below (94), � is well-known as angular momentum operator of quantum mechanics,

� = −(h̄R)−2L2 = [(sin �)−1��(sin ���) + (sin �)−2�2
	]

with (2l + 1)-fold degenerate eigenvalues l(l + 1)/R2, l = 0, 1, 2, . . . and the spherical harmonics Ylm, −l�m� l,
as eigenfunctions (Dirac, 1958, Section 38). It is therefore an easy exercise to compute the (2l + 1)-fold degenerate
eigenvalues El of �2F belonging to the eigenfunctions Ylm,

El = 2P

R
+ 


R2
[2 + l(l + 1)] + 4Q

R3
+ kc

R4
l(l + 1)(l2 + l − 2).

The eigenfunctions, e.g., for l=1 the Y10(�, 	)=√
3/4� cos �, and Y11(�, 	)=−√

3/8� exp(i	) sin �=(−1)m=1Y ∗
1,−1,

tell us something on how the spherical shape would change, if El(P, Q, 
) becomes negative as one of the parameters
P, Q, or 
 is varied.

Because we start with equilibrium we use the Poisson–Schadow equation (134) to verify that for a sphere P/2R +

/R2 + Q/R3 = 0, which gives a quadratic equation to determine the radius R◦. We can now eliminate 
 and are left
with

El = 1

2
[l(l + 1) − 2]

[
kc

R4◦
l(l + 1) − Q

R3◦
− P

2R◦

]
. (162)

Interestingly, E1 = 0. The explanation is simple. We take normal deviations from the sphere so that r = R◦ + � with,
e.g., � = �Y10 and 0 < �/R◦>1. It is a bit of work to show this � is equivalent to a uniform translation of the sphere
along the z-axis, which of course costs no energy. Corresponding to 3 independent directions of translation in R3, the
degeneracy is 3 (Peterson, 1989).

This is also true in general and allows a construction of the corresponding eigenfunctions as well. Eq. (153) originates
from a variational problem with the translationally invariant energy functional (120). By a Noether-type theorem
Eq. (153) is bound to have a three-fold degenerate eigenvalue E = 0. Since this kind of excitation has no physical
meaning it is to be excluded.

Because of (162), E1 =0, E0 = (Q/R2◦ +P)/R◦ while for l�2 we have El �E2 as long as sgn(E2)= sgn(6kc/R
3◦ −

Q/R2◦ −P/2)�0. Let us suppose P & Q > 0 and consequently 
 < 0. Q is fixed by the lipid bilayer under consideration.
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P on the other hand is experimentally at our disposal. We see that E2 changes sign and becomes negative, if P > Pc

with Pc given by

(6kc/R
3◦ − Q/R2◦ − Pc/2) = 0. (163)

For P > Pc we get a bifurcation of the shape in the direction of the eigenspace spanned by the {Y2m; −2�m�2}.
One could object that for a normal balloon (kc = Q = 0), a children’s toy, this never happens. Indeed, from the

point of view of energy here P < 0 and its volume is to increase until it is compensated by the surface tension 
 > 0,
which wants to make it smaller. Nevertheless E0 < 0. This argument is faulty, however, since P and 
 are considered
to be Lagrange parameters and not quantities related to the radius R through an equation of state. The radius, however,
changes if fluctuations have a component along Y00.

11.3.3. Experimental verification
Is curvature really important and do we see it in experiment? As has been pointed out by Peterson et al. (1992) and

Zilker et al. (1992) the answer is a univocal yes. Let us try to see why this is so and, to this end, return to the nearly
flat membrane of Section 5. It has no intrinsic curvature and, hence, the metric tensor 1. As a consequence of (68) in
conjunction with the equipartition theorem we have obtained (kck

4 + 
k2)〈a2
�k 〉 = 2kBT for the thermal average 〈a2

�k 〉
of an undulation amplitude a�k .

For a finite square of size L×L we get k��/L whereas distances less than a molecular diameter a are meaningless
so that k��/a. In a real vesicle curvature is not felt for small enough wavelengths � and thus for large enough k so
that asymptotically 〈a2

�k 〉 ∼ (2kBT/kc)k
−4 with information about the bending rigidity kc coming for free (Zilker et al.

1992, Fig. 3). The timescale of undulations in cell membranes is typically 0.1 s and less whereas molecular motors in
the cytoplasm operate on a timescale of 1s and more so that we can handle the latter through an adiabatic treatment.
In passing we note that, as a consequence of fluctuation analysis, both Peterson et al. (1992) and Zilker et al. (1992)
favor the bilayer coupling model (BCM) and shear-free deformations—the latter in agreement with the arguments of
Section 3.

On the other hand, for small enough wave vector length k the quadratic k-dependence of 〈a2
�k 〉 is illusory and

undulations are eigenstates of (153), or linear combinations thereof. The Hamiltonian operator (153) holds for any
closed smooth surface one can think of; e.g., that of (161), a sphere, and we can expect something like (162), which
shows explicitly how and why curvature is important. That is, equipped with (153) life has now become simple: the
low-lying excitation energies El as eigenvalues of a well-defined Hamiltonian operator are discrete, rather far apart,
and thus their distance cannot become arbitrarily small; there are only finitely many of them in any neighborhood of
E = 0. Accordingly, there are no singularities in the total energy (and hence there is no need for k��/L either so as
to avoid a logarithmic divergence). The computation of the eigenvalues El of (153) is straightforward in principle but
may be somewhat involved in practice. Nevertheless elementary excitations of freely moving vesicles and cells are
henceforth completely understood.

As an illustration we take a rotationally invariant, discocytic erythrocyte (Peterson et al., 1992) with equilibrium form
depicted in Fig. 13(a), which directly corresponds to Fig. 2 (left) and, more in particular, to the red blood cell in Fig. 3
(top-left). As follows from a more detailed analysis (Peterson et al., 1992), the membrane itself is a two-dimensional
fluid. The horizontal x-axis is a symmetry axis so that a plot of the upper half of the figure suffices. The cell’s diameter
length is 2R = 7.8 �m, corresponding to cell borders at x = ±3.9 �m; see Peterson et al. (1992) for all other physical
parameters.

The normal variation at a certain site x on the manifold M at time t is given by a positive or negative deviation
�(x, t) along the normal vector n. Throughout what follows · denotes a dummy variable; e.g., x as integration variable.
We write

�(x, t) =
∑

l

�l (x)〈�l (·)|�(·, t)〉, (164)

where the inner product 〈�l (·)|�(·, t)〉 is an integral over x. This inner product, which still depends on the time t, equals
the simple decomposition into real and imaginary parts,

〈�l (·)|�(·, t)〉 = al(t) + ibl(t). (165)
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Fig. 13. Erythrocyte fluctuations: (a) Equilibrium form of the upper half of a model cell shape, a red blood cell of fixed area 135 �m2 and volume
115 �m3; see also Fig. 3 (top-left). The cell is rotationally invariant about the vertical y-axis through the origin at x=0; (b) Flicker amplitude-squared
profile 〈�d2〉, a time average of the normal fluctuations squared, as a function of x, along the diameter of the cell. The solid line is a prediction due
to the spontaneous-curvature model (105), the dashed one follows from the bilayer-coupling model (106), also nicknamed BCM; (c) Experimental
check of the flicker-amplitude profile 〈�d2〉, favoring BCM. The horizontal arrows indicate the cell borders. The above plots (a)–(c) are based on
data of Peterson et al. (1992).

According to (153) the energy of a small normal fluctuation � equals 〈�|�2F|�〉/2. Expanding � = ∑
l�l〈�l |�〉 in

terms of the eigenfunctions �l of �2F as in (164), and noting |〈�l |�〉|2 = a2
l + b2

l because 〈�l |�〉 = al + ibl according
to (165), we end up with an energy of the form

E =
∑

l

(a2
l + b2

l )El/2. (166)

It is nothing but a quadratic expression in the real coordinates al and bl . We can therefore write the energy in terms of
a Hamilton function H =∑

l (a
2
l + b2

l )El/2 and interpret al and bl as independent coordinates; cf. Sections 2 and 5.
Because of rotational invariance, we can invoke (158), (159), and (160) to determine the eigenvalues El of �2F.

Furthermore, (166) is the direct equivalent of (68) with a plain l replacing the index �k in (68). Here too we can apply
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the equipartition theorem (Huang, 1987) to each of the quadratic terms so as to get, e.g., El〈a2
l 〉� = kBT for the

thermal average 〈. . . 〉� at inverse temperature �; the latter equals the temporal average due to ergodicity of the ergodic
component the system is in (van Enter and van Hemmen, 1984). We see from Fig. 13(b) and (c) that BCM gives rise
to a better fit than Helfrich’s spontaneous-curvature model.

What can be measured experimentally is the time average of |�(x, t)|2. Let us define �∗
m to be the complex conjugate

of the eigenfunction �m of �2F. Exploiting (164) and (165) in conjunction with the ergodicity of the thermodynamic
equilibrium the system is in, at least on the undulation time scales we are interested in, viz., < 0.1s, we will obtain the
local mean-square fluctuations 〈�d2〉 at a site x in Fig. 13(b) and (c), viz.,

〈�d2〉 := lim
T →∞

1

T

∫ T

0
dt |�(x, t)|2. (167)

We simply note that because of (164) and (165)

�(x, t) =
∑

l

�l (x)〈�l (·)|�(·, t)〉 =
∑

l

�l (x)[al(t) + ibl(t)], (168)

where x and t have been separated, and substitute this into the right-hand side of (167) so as to find

〈�d2〉 =
∑
l,m

�l (x)�∗
m(x)〈(al + ibl)(am − ibm)〉�

= 2kBT
∑

l

|�l (x)|2/El (169)

since time average equals the canonical-ensemble average 〈. . . 〉� with respect to the Hamilton function H =∑
l (a

2
l +

b2
l )El/2 of (166) at inverse temperature � and

〈albm〉� = 0, 〈alam〉� = 〈blbm〉� = �lmkBT/El . (170)

Eq. (170) is another consequence of the equipartition theorem (Huang, 1987) with al and bm being independent
variables. Finally, we note (Buser, 1992; Schoen and Yau, 1994) liml→∞1/El = 0 so that (169) makes sense, in
contrast to

∑
l |�l (x)|2 itself. Because of

∑
l |�l〉〈�l | = 1 the sum

∑
l �l (x)�∗

l (y) = �(x − y) produces mathematical
nonsense for x=y. Adding, however, the multiplicative factor 1/El we cancel the divergence. That is, we get a weighted
sum of |�l (x)|2 and the larger l, the less important these terms become. It is good to realize as well that |�l (x)|2 reflects
the nature of the cell-surface shape at the site x.

To see why, and how, all this works, we turn to the simple case of a sphere with radius R. It is so to speak the opposite
of the (nearly) flat membrane of Section 5 but typical to any cell membrane. So let us now focus on

∑
l |�l (x)|2/El

on the sphere. We have to estimate the eigenvalues El of �2F as l → ∞. Hence it suffices to study those of the
dominating term kc�2, i.e., �2 where −� on a sphere of radius R equals L2/R2 with L as angular momentum operator.
For the present estimate we drop kc. The spherical harmonics Ylm with −l�m� l for a given l are eigenfunctions of
the Laplace–Beltrami operator −� = L2/R2 on the sphere with eigenvalue l(l + 1)/R2. Using (Messiah, 1961)

l∑
m=−l

|Ylm|2 = 2l + 1

4�

and dropping a prefactor R4 together with the term l = 0 as they are irrelevant for the present estimate we are left with
a sum à la (169) of the form

∑
l �=0,m

|Ylm|2[l(l + 1)]−2 =
∞∑
l=1

2l + 1

4�[l(l + 1)]2
.

The argument on the right being ∼ l−3 the sum is quite convergent, as claimed.
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Because of the high symmetry of a sphere its fluctuation profile 〈�d2〉 does not depend on the position x. For less
symmetric manifolds, however, such as the one in Fig. 13, this is of course no longer true. Quite to the contrary,
the mean-square fluctuations 〈�d2〉 clearly depend on x ∈ M, the position on the manifold M describing the cell
membrane.

It is noteworthy that the fluctuation profile in Fig. 13(b) and (c) is low at the center of the cell and high near the
periphery, contrary to any first guess. Because of alignment problems in the microscope the experimental profile in
Fig. 13(c) is slightly asymmetric with respect to the y-axis. Comparison with (b) shows the bilayer-coupling model
(106) gives a better fit than Helfrich’s spontaneous-curvature model (105); in particular, near the center. Experimental
fluctuation amplitudes at the periphery are expected to be far greater than what is indicated in Fig. 13(c) because of
the ‘finite focus depth effect’ cutting off fluctuations far away from the focus plane. So it is fair to say that the mean
fluctuation amplitude varies between 2 nm at the center and 8 nm at the periphery, as follows from Fig. 13(b) displaying
〈�d2〉.

Fig. 14 shows explicitly that biomembranes on a substrate also experience undulations and, in so doing, open new
avenues leading to as yet unknown vistas. The underlying undulations govern the extent to which adhesion works.
Computing them will be a fascinating challenge for some time to come.

Fig. 14. Contrast-enhanced pictures of thermally excited surface undulations of a DMPC-cholesterol vesicle provided by dynamic reflection in-
terference contrast microscopy (RICM). Temporal distance between the pictures (left-right, top-bottom) is 1 s. The black horizontal bar (top left)
represents 5�m. The vesicle is embedded in an aqueous solution and weakly bound to an underlying glass plate through adhesion. The horizontal
contact area has a circular shape, the thick outer rim, and the membrane is curved upwards in between—a kind of buckling, which is not un-
derstood yet. The interaction between adhesion and gravitation on the one hand and undulations on the other determines how well a vesicle is
bound to the substrate. The vertical distance between two consecutive black and white Newtonian rings is 100 nm = 0.1 �m. Picture courtesy of
Barbara Lorz.
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12. Outlook

We have analyzed undulations as elementary excitations of a flexible membrane such as that of a cell. In so doing we
have used continuum mechanics since it is both general and versatile. Principal curvatures (Section 4.6) of cell shapes
and undulation wavelengths (Section 11.3) being much bigger than typical intermolecular distances, a continuum
mechanics description makes quite a bit of sense and neatly reduces biomembranes to ‘shapes’ governed by an energy
functional in terms of inherently geometric quantities. We are then left with plain shapes, which may be of any
form, and we have seen that classical differential geometry is ideally suited to handle the problem of finding minimal
configurations of the energy functional and determining their stability.

For cells and vesicles on a substrate, governed by adhesion, the above setup is all the more important. For instance,
the explanation of the typical buckling of a cell on a substrate as shown in Fig. 14 is still an open problem. In contrast to
a freely moving cell one now has to take into account boundary conditions of the membrane on the substrate, which give
rise to new phenomena. In the above derivations we have already indicated where boundary conditions are important,
as denoted by NB in some of the equations.

Furthermore, the arguments remain valid if we include the cytoskeleton as a flexible medium inside a cell but
interacting with the cell membrane since the former’s changes are adiabatic with respect to latter’s undulations. Cell
adhesion in conjunction with undulation is highly relevant to biotechnical applications.

Finally, the geometric, nearly picturesque, techniques of classical differential geometry presented here may also aid
more general applications in soft-matter physics where form and shape are important constituents of how and in what
direction processes evolve.
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Appendix Gauss and Mainardi-Codazzi

We prove Mainardi-Codazzi by making a detour via Gauss’ Theorema Egregium. The aim is to see slightly better
how, and why, it all works. We start with the Gauss formula (40) in the form ���x = �

���x + h��n and differentiate

this with respect to q�,

����x = �
����x + ��x���

�
�� + h����n + n��h��. (171)

Taking a scalar product with ��x and remembering the metric tensor g�� = x�x� from Lemma A we get

��x����x = g��[��
��


�� + ���

�
��] − h��h��,

which looks complicated. This does not last for long, if we interchange � and �, use the symmetry of ����x, and subtract
the two equations so as to find the essence of Gauss’ Theorema Egregium

h��h�� − h��h�� = g��R�
��� = R���� (172)

where R�
��� is the famous Riemann tensor,

R�
��� := ���

�
�� − ����

�� + ��
��


�� − ��

��
��.

On the left in (172) we have the second fundamental form, on the right the metric tensor and its derivatives, bending
invariant. It is time to harvest some corollaries.



J.L. van Hemmen, C. Leibold / Physics Reports 444 (2007) 51–99 97

First, let us take �= �= 1 and �=�= 2 for a two-dimensional manifold M in R3. Eq. (172) reads det h=h11h22 −
h2

12 = R1212 so that K = �1�2 = det h/ det g = R1212/ det g is a bending invariant, as announced by Gauss.
Second, we return to (171), interchange � and � in n����x = �

��h� + ��h��, use the symmetry of ����x, and
subtract the two equations so as to find the equations due to Mainardi (1856) and D. Codazzi (1860),

��h�� − �
��h� = ��h�� − �

��h�. (173)

In terms of covariant differentiation and Lemma D Eq. (173) would read ∇�h�� = ∇�h��.
The Gauss formula (40) and the Mainardi-Codazzi equations (173) are so-called integrability conditions. If they

hold and g & h are symmetric matrices with g positive-definite, then (Gerretsen, 1962; Millman and Parker, 1977;
Struik, 1961) there is a two-dimensional surface in R3, unique up to position in space, realizing them. Bonnet was the
first to pose and solve this problem in 1867.
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