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Abstract— Underwater vehicle “Snookie” will serve as a test
platform to investigate how fish detect, localize, and avoid
objects under water. Fish measure local water velocity changes
through their mechanosensory lateral-line system. Obstacles
change water velocity on the skin of the fish. Fish use these tiny
velocity changes to detect and navigate around objects. Snookie
shall mimic its biological archetype by using hot-thermistor
anemometry to measure water velocities around its nose.

We have built a simulation environment to test Snookie’s be-
havior. The simulation contains a movement model for Snookie,
given the motor forces. The water velocities on Snookie’s nose
are calculated approximately and change when Snookie comes
near to a wall or cylindrical obstacles. Water velocity changes
induce voltage changes in the simulated sensors that Snookie
uses to detect obstacles and react accordingly.

Index Terms— submarine simulation, artificial lateral line,
autonomous underwater vehicle (AUV), object avoidance

I. INTRODUCTION

Fish often use their lateral-line system as their only means
of navigation, especially under poor visual conditions. An
example is the blind Mexican cave fish that, though without
vision, is able to navigate around objects. It appears to
“perceive” the objects as it passes by [1]–[3]. It does so by
detecting tiny water velocity changes on its skin that occur
when the fish passes nearby obstacles.

Fields of possible applications for an underwater vehicle
equipped with an artificial lateral-line system could be turbid
water with very poor vision as in canalization, pits filled up
with water, swamped buildings, and deep sea. Even under
good visual conditions, the lateral-line system may prove
useful to avoid collisions and to relieve some burden from a
camera or sonar system. Future applications of an underwater
vehicle equipped with a lateral-line system could therefore
be surveying and mapping of waters where humans cannot
dive, e.g., because of poor vision, narrow space, or danger of
collapse. Object detection by a lateral-line system requires
only passive sensors, which has the advantage that sensors
do not interfere with each other, e.g., in a swarm of vehicles.

Underwater vehicle Snookie has been built to mimic fish
navigation; cf. Fig. 1. It shall avoid objects by measuring
water velocity at different positions on its nose. Artificial
lateral-line systems are under research [4], but have not yet
been used as a robotic sensory system. Instead of using
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mechanoreceptors, Snookie will use hot-thermistor anemom-
etry to measure water velocities. The novel sensor concept
has been verified for its object detection capability in past
experiments with a sphere dragged through the water in the
vicinity of a wall [5].

Fig. 1. Prototype of underwater vehicle “Snookie”, here without the semi-
sphere on its back. Water velocity sensors will be mounted onto the yellow
nose. Lower right: Velocity sensor consisting of a thermistor (small black
dot, diameter 0.36 mm) sitting under a protective bow. The thermistor is
heated by a current and simultaneously, power dissipation is measured,
which in turn depends on water velocity.

For stationary objects, the lateral-line system only works
in a very close-up range to the objects to be detected, say,
in a distance of about one length of the fish’s body [6].
Moving objects, however, often generate wakes and mark
their trajectories through a vortex street [7] - a strategy which
could be pursued by a technical system as well.

The contribution of this paper is the approach to utilize
a lateral-line sensor for object avoidance in a simulated
environment. The simulation serves as a test bed for con-
trol strategies and object-detection algorithms by simulating
Snookie’s movement, water velocity changes due to the
presence of obstacles, voltage changes of velocity sensors
mounted on Snookie’s hull as well as Snookie’s evasive
reactions. The simulation environment has been custom built
because most existing submarine simulations [8] are specifi-
cally designed for one type of vehicle or lack the possibility
to integrate water velocity calculations. C++ source code is
available on request.

The remainder of this paper is organized as follows.
First, we introduce the various components of underwater



robot Snookie as far as they are necessary to understand
the simulation requirements. Then models for the water
velocity sensors and for vehicle movement are described,
and simulated sensor output is compared with experiments.
Finally, we report on Snookie’s simulated object avoidance
behavior.

II. THE UNDERWATER VEHICLE “SNOOKIE”

Snookie has approximately cigar form, a diameter of
25 cm and an overall length of 74 cm. Six water-tight en-
capsulated thrusters driven by brushed DC-motors generate
thrust up to 7 N each. Four motors face in forward direction
and can thus control forward speed, yaw and pitch; cf. Fig. 1.
Two motors generate upward and downward forces and thus
directly control depth as well as roll. The motors enable
direct control over 5 out of 6 degrees of freedom, making
the robot highly maneuverable.

A 60 MHz ARM7 processor drives the main processing
board, which is equipped with an inertia measurement unit
and a pressure sensor (Ascending Technologies). The inertia
measurement unit fuses and preprocesses sensor data from
three MEMS gyroscopes, a three-axis acceleration sensor,
a three-axis magnetometer and the pressure sensor. The
command unit therefore gets stable and reliable angular and
translational data.

The following section describes the sensor model.

III. HOT THERMISTOR SENSOR MODEL

If a thermistor has temperature T , the surrounding water
has temperature T∞ and moves with velocity v, then thermal
energy dissipation Pϑ at the thermistor is approximately [9]–
[11]

Pϑ(v, T ) = [A+Bvn](T − T∞) (1)

where A, B and n are constants depending on size and shape
of the thermistor and the surrounding medium. Thus, the
faster water velocity v, the higher is energy dissipation Pϑ

and therefore it can be used to measure water velocity.
The sensors contain very small glass-bead thermistors with

0.36 mm diameter (Honeywell 111 Series); cf Fig. 1. Power
dissipation of these thermistors, when mounted on a small
PCB board, fits well the above power law with n = 0.34,
A = 1.03 mW/K, and B = 0.74 mW/[K(m/s)n] [12]. The
same parameters have been used for simulations.

Given the thermal capacity C of the thermistor and the
electrical power Pel, the temperature change of the thermistor
is

C
dT
dt

= Pel − Pϑ(v, T ) . (2)

In independent measurements, the thermal capacity of the
thermistor has been determined as C = 9 · 10−5 J/K [13].

Given the current I through the thermistor and its resis-
tance Rϑ, dissipated electrical power equals

Pel = I2Rϑ . (3)

The resistance Rϑ of the thermistor depends in turn on its
temperature. Given the resistance R0 at temperature T0, the

resistance Rϑ of a thermistor is about [14], [15]

Rϑ = R0 exp
[
βϑ ·

(
1
T0
− 1
T

)]
(4)

where the constant βϑ ≈ −3090 K and R(20◦C) ≈ 2 kΩ for
the type of thermistor used here. In the thermistor simulation
a constant current of I = 19 mA heats the thermistor, which
causes a temperature of about 70◦C in experiments [12] as
well as in simulations for water velocity v = 0. For each
time step, given the current temperature T of the thermistor,
the simulation first calculates the resistance Rϑ (4) of the
thermistor, the electrical power Pel (3), and the dissipated
thermal power Pϑ (1) and then integrates (2) by applying
one Euler integration step with a time step of 0.01 ms. The
sensor output, namely, the voltage U at the sensor, is then

U =
Rϑ

I
. (5)

To calculate the voltage at the thermistor sensors, we need
the water velocity v at each point on Snookie’s hull where a
sensor sits. The next section describes how to calculate water
velocity at Snookie’s hull, given Snookie’s velocity.

IV. MODEL OF THE FLOW AROUND THE
VEHICLE

Say Snookie propagates with constant velocity V. As we
are only interested in the flow around Snookie’s nose where
the water velocity sensors are located, we approximate the
whole vehicle by a sphere with radius a = 12.5 cm. At the
Reynolds numbers we are interested in (Re = 2aV/ν ≈
26000 for velocity V = 0.1 m/s with kinematic viscosity ν
of water) the boundary layer is very thin. The thickness B
of the boundary layer on Snookie’s nose is less than B ≈
a/
√

Re ≈ 1 mm [16]. Thus we are in the Euler flow regime
outside the sphere and can neglect viscosity there. A sphere
with radius a moving with velocity V in a nonviscous fluid
generates a so-called dipole velocity field. If the sphere is at
the origin of the coordinate system, the water velocity v at
position r generated by the sphere is [17]

v(r,V) =
a3

2|r|5
[3(V · r)r− |r|2V] .

This velocity field fulfills the continuity equation

∂xvx + ∂yvy + ∂zvz = 0

as well as the Euler boundary condition that fluid at the
boundary moves with the same velocity as the boundary in
direction perpendicular to the boundary.

Now let Snookie approach a wall. An infinite wall intro-
duces another boundary condition, viz., that the fluid at the
wall cannot move perpendicularly to the wall. As described
in [5], we can fulfill the additional boundary condition by
introducing another “mirror” sphere; cf. Fig. 2. We get the
mirror sphere by mirroring the original’s sphere position and
velocity by using the wall as a mirror. Because of mirror
symmetry, the velocity field generated by both spheres at the
wall is then parallel to the wall, as it should be according to
the Euler boundary conditions.



Fig. 2. Snookie, here simplified to be a sphere, moves with velocity V
towards a wall at distance |D|. The mirror sphere moving with velocity V′

serves to fulfill the boundary condition at the wall. A water velocity sensor
sits at position r on the sphere’s surface.

Let the original sphere be at the origin of the coordinate
system and let the wall be at distance |D|, with the vector D
pointing from the wall to the center of the sphere, perpendic-
ularly to the wall. If the velocity of the sphere is V, then the
velocity of the mirror sphere is V′ = V− 2D(D ·V)/|D|2.
The center of the mirror sphere is at −2D.

The velocities caused by the moving sphere and by its
mirror sphere add up linearly so that the overall water
velocity at position r, in the laboratory coordinate system, is

v = v(r,V) + v(2D + r,V′) . (6)

As v is not necessarily tangential to the surface, this velocity
has still to be projected onto the surface to get an estimate
of the velocity at the surface. As the thermistor sensors sit
under a protective bow, each sensor has a preferred direction
s, with |s| = 1 and s parallel to the surface of the sphere. In
addition, the sphere itself is moving with velocity V. Thus
the water velocity vs measured by a sensor on the surface
of the vehicle is

vs = (v −V) · s . (7)

This approach is an approximation insofar as the boundary
condition at the surface of the first sphere is disturbed
by the presence of the second sphere and thus boundary
conditions on the spheres are only satisfied approximately.
The approximation is exact for the limit case a → 0 or
|D| → ∞. The approximation becomes an exact solution by
using an infinite series of mirror spheres [17].

In the case when Snookie is passing a cylindrical object,
we have approximated the surface of the object by a wall
parallel to the cylinder surface. This approximation is good if
the radius of the cylinder is large enough. For approximations
that are accurate even for small obstacles and account for fish
bodies other than spheres, see [18]. Moreover, for the case of
a rotationally symmetric fish-like body approaching a wall
and gliding alongside a wall, approximations for the resulting
flow exist [19], [20]. In our simulations, however, we decided
to use the simplest approximations described above as these
were easy to implement and describe the general case of ar-
bitrary attack angles between Snookie and wall. Moreover, in

our case with relatively high Reynolds numbers Re ≈ 26000
one can expect turbulence approximately where the half-
spherical nose is attached to the cylindrical body of Snookie
[16, Figure 14.15h]. Hence approximations that take into
account body shapes other than spherical by simultaneously
assuming rotation-free Euler flow like [19], [20] would be
inadequate in our case anyway.

To calculate the water velocity at Snookie’s hull using (7)
and (6), we of course need Snookie’s velocity V. The next
section describes how the simulation calculates Snookie’s
movement given the motor forces acting on Snookie.

V. SIMULATION OF VEHICLE MOVEMENT
A. Drag Force on a Steadily Moving Object

Let % be the density of an incompressible fluid, V the
velocity of the moving object, A the frontal area, and Fd the
drag force, then the drag coefficient

cd =
Fd

1
2%V

2A
(8)

depends only on the Reynolds number Re = V l/ν where
l is a characteristic length of the object (e.g., its diameter)
and ν is the dynamic viscosity [21]. For a sphere cd ≈ 0.3
between Re ≈ 1000 and Re ≈ 100000 [21].

Of course Snookie does not only move steadily, but
should also decelerate and turn to avoid objects. Thus the
simulation has to predict the outcome of so-called zero-
velocity maneuvers where inertial forces dominate. Inertial
forces not only stem from accelerating Snookie’s body itself,
but also from accelerating the water around it. Inertial forces
dominate over viscous forces if V 2 � V̇ l [21].

Snookie is equipped with a total propulsive force of
Ftot = 4 × 7 N. Its radius is a = 12.5 cm and its overall
length, together with the front and back half-spheres, is L =
74 cm. Thus, neglecting the motors, with neutral buoyancy
its mass is m ≈ %π[4a3/3 + a2(L− 2a)] = 32 kg. With the
acceleration V̇ being of the order of Ftot/m = 0.9 m/s and
setting l = a, inertial forces dominate for vehicle velocities
V � 0.3 m/s, thus inertial forces clearly have to be taken
into account when simulating Snookie’s object-avoidance
behavior. The next section describes how to calculate forces
acting on a body that accelerates in a nonviscous fluid.

B. Drag Force on an Accelerating Object

With pressure p, surface S of the vehicle, normal vector n
of the surface and vector r describing points on the surface,
the force F that the fluid exerts on the moving object and
the moment M are

F =
∮

S

pn dS ,

M =
∮

S

p(r× n) dS .

To calculate forces arising from acceleration, we neglect vis-
cosity. In a rotation-free nonviscous fluid, the time-dependent
Bernoulli equation

p+ %
∂Φ
∂t

+
1
2
%v2 = const.



holds and the velocity v can be expressed by a velocity
potential Φ through v = − grad Φ so that

F = −%
∮

S

[
∂Φ
∂t

+
1
2

(grad Φ)2
]

n dS .

After some calculations [21] one obtains

F = %
d
dt

∮
S

Φn dS ,

M = %
d
dt

∮
S

Φ(r× n) dS .

The overall velocity potential

Φ(r, t) =
6∑

i=1

Ui(t)ϕi(r)

caused by a moving and turning object as illustrated in Fig. 3
is linear in the velocity V =: (U1,U2,U3) and the angular
rotation Ω =: (U4,U5,U6) of the vehicle around a point fixed
in the body. Provided that V is the velocity of the object in
a coordinate system that rotates with the body, force and
moment then become

F =
6∑

i=1

[
%

dUi

dt

∮
S

ϕin dS (9)

+%UiΩ×
∮

S

ϕin dS
]

M =
6∑

i=1

[
%UiV ×

∮
S

ϕin dS − %dUi

dt

∮
S

(ϕi × n) dS

− %UiΩ×
∮

S

ϕi(r× n) dS
]
. (10)

The moment is to be taken relative to a fixed point in the
body, which is assumed to be the origin 0.

Fig. 3. Underwater vehicle Snookie moving with velocity V =
(V1, V2, V2) and turning with angular velocity Ω = (Ω1, Ω2, Ω3).

The assumptions for deriving (9) and (10) are the follow-
ing [21]. First, the fluid is ideal and irrotational. Second, the
body is rigid and does not change shape. Third, the fluid
is unbounded and of infinite extent. In our case, the fluid
can taken to be ideal only for low Snookie velocities V.
We will discuss viscous corrections later on. The second
assumption is fulfilled because indeed Snookie does not
change shape. The third assumption is fulfilled when Snookie
is maneuvering in sufficient depth and sufficiently far away
from walls or other obstacles.

With the added-mass tensor [21]

mij := −%
∮

S

ϕi
∂ϕj

∂n
dS (11)

where mij = mji, mij > 0, and εijk being the fully
antisymmetric tensor, equations (9) and (10) can also be
written (i = 1, . . . , 6; j, k, l = 1, . . . , 3)

Fj = −
∑

i

mjiU̇i −
∑
ikl

εjklmliUiΩk ,

Mj = −
∑

i

mj+3,iU̇i −
∑
ikl

εjklml+3,iUiΩk

−
∑
ikl

εjklmliUiUk .

If V′ is the velocity of the moving object in a fixed
coordinate system and V is the velocity of the moving object
in a body-fixed coordinate system, then

V̇′ = V̇ + Ω×V .

If %B is the mass density of the body, which is a function
of position inside the body, the inertial force is the change
of momentum

F =
d
dt

∫
B

%B(V′ + Ω× r′) d3r′

and the moment is the change of angular momentum

M =
d
dt

∫
B

%Br′ × (V′ + Ω× r′) d3r′ .

These equations may be written (i = 1, . . . , 6; j, k, l =
1, . . . , 3)

Fj =
∑

i

MjiU̇i +
∑
ikl

εjklMliUiΩk ,

Mj =
∑

i

Mj+3,iU̇i +
∑
ikl

εjklMl+3,iUiΩk

+
∑
ikl

εjklMliUiUk

where the Ui with 1 ≤ i ≤ 6, are again the velocities and
angular velocities in a body-fixed coordinate system. If c is
the center of gravity and Iij are the moments of inertia, the
“mass matrix” M is

M =
(

m1 −mc×
mc× I

)



where m is the mass of the body, 1 is the 3 × 3 identity
matrix, and the matrix

c× :=

 0 −c3 c2
c3 0 −c1
−c2 c1 0


is defined so that (c×)x = c× x. The equations of motion
for an object in an ideal fluid are therefore (i = 1, . . . , 6,
j, k, l = 1, . . . , 3) [21]

Fj =
∑

i

µjiU̇i +
∑
ikl

εjklµliUiΩk , (12)

Mj =
∑

i

µj+3,iU̇i +
∑
ikl

εjklµl+3,iUiΩk (13)

+
∑
ikl

εjklµliUiUk

where the so-called virtual masses are

µij = Mij +mij . (14)

C. Total Drag Force on a Moving Object
In a viscous fluid, we have to take into account additional

viscous forces acting on the vehicle. To avoid a full hydrody-
namic simulation by exploiting simplicity and computational
efficiency, the simulation accounts for viscous drag forces
using (8) and thus setting the forward drag force equal to

Ffd = −1
2
%cfdAf |V1|V1 (15)

and taking the sideward drag force to be

Fsd = −1
2
%csdAs

(
V2

V3

)√
V 2

2 + V 2
3 (16)

where cfd and csd are the forward and sideward drag co-
efficients and Af = a2π and As = a2π + 2a(L − 2a)
the respective cross-sections with L = 74 cm being the
overall length and a = 12.5 cm the radius of the vehicle.
In absence of measurement data and better assumptions, the
authors have set forward and sideward drag coefficients to
be cfd = csd = 0.3, i.e., to those of a sphere.

The resulting system of equations (12), (13), (15), and (16)
is equivalent to the “revised standard equations of motion”
[8], [22], [23] for submarines, except that viscous damping of
angular velocities and viscous coupling of transversal veloc-
ities to angular velocities are neglected as no good estimates
for the respective coefficients exist yet. In future experiments,
it is planned to determine the coefficients of the system
of equations experimentally. Of course the assumption that
viscous drag forces just add linearly to inertial forces and
that viscous forces can be decomposed into forward and
sideward forces as described above is only an approximation.
The decomposition is correct in the extreme cases that the
vehicle moves straightforward (V2 = V3 = 0) or sidewards
and up or down (V1 = 0). The equations of motion described
above are, however, widely used in marine hydrodynamics
and can explain ship maneuvers fairly well [21].

The next section describes how the simulation of
Snookie’s aquatic motion works by solving the system of
differential equations (12) and (13).

D. Simulation of Movement

For the simulations, it is assumed that the inertia mea-
surement unit provides the controller with exact depth, 3-
dimensional orientation, and angular velocity. To simulate
the movement of the vehicle, during each time step the
simulation computes data coming from a simulated inertial
measurement unit, that emulates the data structure of the real
hardware. The data are the input to the closed-loop position
and orientation control. The closed-loop position and orienta-
tion control consists of separate proportional and derivative
(PD) controllers for the roll, pitch, and yaw axis (Ω1,Ω2

and Ω3), the depth and the forward velocity (V1, V2, V3) as
described in detail in [24]; cf. Fig. 3. The resulting control
output is fed into the motor controllers in the same format as
in the real hardware, thus the control parameter sets found
in the simulation can be used for the hardware as well. The
resulting forward and reverse motor forces directly depend
on the motor commands. For more accurate simulations, the
authors intend to include a motor model later. Using the
motor forces, the simulation calculates the forces Fi and
the moments Mi acting on the vehicle. Then the simulation
code solves the linear system of equations (12) and (13) for
U̇ = (V̇1, V̇2, V̇3, Ω̇1, Ω̇2, Ω̇3).

The linear and angular accelerations U̇ are defined with
respect to the body-fixed coordinate system in Fig. 3, thus
integrating the accelerations (V̇1, V̇2, V̇3) leads to a velocity
V, which has to be rotated accordingly to get the current ve-
locity in the world coordinate system. Similarly, integrating
the angular accelerations (Ω̇1, Ω̇2, Ω̇3) leads to the current
angular velocities (Ω1,Ω2,Ω3) in a body-fixed coordinate
system. Thus the current change of angular orientation of the
vehicle has to be calculated by first rotating (Ω1,Ω2,Ω3) into
the world coordinate system while using the current angular
orientation of the vehicle.

Specifically, let the columns of the rotation matrix E =
(e1, e2, e3) be the unit vectors that point into forward,
sideward and upward direction; cf. Fig. 3. Then in each
time step with duration ∆t, the center of mass position c
is updated according to

c(t+ ∆t) = c(t) + E(t)V(t) ∆t ,

the velocity V according to

V(t+ ∆t) = V(t) + V̇(t) ∆t ,

the angular velocity Ω according to

Ω(t+ ∆t) = Ω(t) + Ω̇(t) ∆t ,

and the columns ei, i = 1, . . . , 3, of the rotation matrix E
according to

ei(t+ ∆t) = ei(t) + E(t)Ω(t) ∆t× ei(t) .

For ∆t → 0, the rotation matrix stays orthogonal, as it
should, but due to ∆t > 0, it does not. Thus the simulation
re-orthogonalizes E by setting ei to ei/|ei| and e3 to e1×e2.

We do not know the added-mass tensor mij (11) for
Snookie’s body, but for an ellipsoid of revolution (spheroid),



it can by calculated analytically [21]. Thus we have approx-
imated Snookie’s shape by an ellipsoid of revolution with
the same length and diameter as Snookie. For an ellipsoid
of revolution around the x-axis with length L = 2b and
maximum diameter 2a, m11 = 4

3π%ba
2m′11, m22 = m33 =

4
3π%ba

2m′22, m44 = 0 and m55 = m66 = 4
15πba

2(a2 +
b2)m′55. The m′ij depend on the ratio b/a and are given in
[21, Figure 4.8].

Simulation data are displayed in real time on the screen
and parameters (e.g., desired bearing and depth, controller
gains) can be adjusted during the simulation with a graphical
user interface. Fig. 4 shows a screen shot of the simulator.

Fig. 4. A screen shot of the submarine simulation program. It is
programmed in C++ and uses Qt for the graphical user interface. The graphs
with blue background display the current position of Snookie in the three
main coordinate plains. The graphs in the right column show time-dependent
roll, pitch, yaw, depth and forward velocity. The user can adjust desired
values, e.g., depth and velocity, online during the simulation and can tune
various control parameters.

E. Estimation of Maneuvering Capabilities

As the water velocity detectors on Snookie’s hull are near-
range sensors and can only detect obstacles that are about one
nose radius away, Snookie has to be able to maneuver very
fast. Ship are known to maneuver very slowly, so why should
Snookie be able to avoid obstacles that are detected right in
front of its nose? The reason is that Snookie lives underwater
and that every buoyancy-neutral underwater vehicle can stop
in about one body length.

In the following, we calculate the range d that an underwa-
ter vehicle with motor force F needs for stopping in a worst
case. Given the virtual mass µ (14) of the vehicle and its
velocity V , the accelerating force from (12) is F = µV̇ . We
neglect viscous forces here, which help the vehicle to stop
even faster. With the density % of the fluid and the radius a
and length L of the vehicle, its virtual mass is µ ∼ %a2L.
The range the vehicle needs to decelerate from speed V is
d ∼ V 2/V̇ . For the fastest possible speed V , according to
(8),

F ∼ 1
2
%cdV

2a2 ,

thus the distance d the vehicle needs to stop,

d ∼ F

%cda2

%a2L

F
=
L

cd
,

is independent of motor force F and front section area
a2. Thus, independently of motor force, the distance an
underwater vehicle needs to stop is proportional to its length.
As Snookie is far longer than wide, it has to use excess motor
force to stop in time. We therefore run Snookie with 0.1 m/s
when doing object avoidance although its maximum speed
is faster than 1 m/s according to simulations.

VI. WALL-DETECTION AND AVOIDANCE
ALGORITHM

When Snookie approaches a wall, it has to first detect that
a wall is present, then estimate where the wall is, and finally
start its avoidance maneuver. During the avoidance maneu-
ver, self-movement disturbs velocity measurement, thus no
update of wall position data is possible. Therefore, Snookie
has to remember the wall position after it has detected a
wall and then perform the wall avoidance maneuver without
feedback. In the current simulations, Snookie uses eight
sensors positioned as indicated in Fig. 5.

Fig. 5. When Snookie detects a wall, it estimates the direction to the object
(red arrow) by a population vector depending on the voltages at its sensors
(red dots). The new desired velocity Vdesired is computed by mirroring
Snookie’s current velocity Vrobot at the estimated plane parallel to the
wall (dashed black).

The signal to the sensors is exponentially high-pass filtered
with a time constant of 2 s since very slow changes of
water velocity and thus voltage probably do not indicate the
presence of a wall. A double criterion has been used to detect
a wall. First, the voltage difference between any two sensors
must exceed 1 mV. Second, the square root of the sum of
squares of the high-pass filtered voltages Ūi, 1 ≤ i ≤ 8,
of the sensors must exceed 1 mV. As soon as both criteria
are fulfilled, the algorithm estimates the direction to the wall
by a so-called population vector code [25]. Estimated wall
direction Dest is the sum of the positions ri of the sensors
relative to the center of the nose, weighted by the high-pass



filtered voltage Ūi of each sensor,

Dest =
8∑

i=1

Ūiri .

The resulting vector Dest roughly indicates the direction to
the wall. New desired velocity is computed by mirroring the
current velocity at the estimated surface of the wall that is
perpendicular to Dest; cf. Fig. 5.

Snookie remembers desired velocity to use it later on
during its maneuvers. First, after detecting that a wall is
present, Snookie stops as fast as it can by switching its
motors to full reverse speed. When it reaches a backwards
velocity of 0.5 m/s, the desired value of forward velocity is
set to zero. Desired bearing is set equal to the direction of
the value calculated for the new velocity before so that, if
Snookie approached the wall before its maneuver, it is now
turning away from the wall. When Snookie has reached its
new bearing, the absolute value of desired forward velocity
is reset to 0.1 m/s.

VII. RESULTS OF OBSTACLE DETECTION
SIMULATIONS

Experiments have been done where a sphere with a ther-
mistor sensor mounted on it was dragged past a cylindrical
obstacle as in Fig. 6, and the voltage at the thermistor sensor
was recorded [12].

Fig. 6. Experimental setup used for object detection. A sphere (diameter
15 cm, velocity 10 cm/s) with the bow-protected thermistor sensor (dashed
red circle) is dragged along a linear axis past a cylindrical object (diameter
9 cm). The minimal distance between sensor and cylinder is 1.5 cm and is
reached at the position indicated by the red line.

The simulation started with the same parameters as in the
experiment that lead to a voltage response shown in Fig. 7.
The overall voltage is significantly higher than the measured
voltage stemming from inaccuracies in the model equations
(1), (6), and (7). The simulated change of voltage turned
out to be much lower than the change of voltage actually
measured when passing a cylindrical obstacle. This suggests
that the actual water velocity increase due to presence of
objects is even higher than assumed in the simulation, which

would make obstacle avoidance easier. Further experiments
have to be carried out to clarify the issue.
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Fig. 7. Solid black line: Measured voltage response U of the thermistor
sensor of Fig. 1 with the experimental setup of Fig. 6. The minimal distance
between sensor and cylinder is reached at the time indicated by the red line.
The body is clearly detectable by the present apparatus (voltage increases in
the vicinity of the red line) although there is still some noise mainly due to
the power source and a non-constant velocity of the linear axis. The bow-
protected sensor has a resistance R0 = 1790 Ω and was heated by a constant
current of 18 mA. Dashed blue: Voltage response U of the simulated sensor
as given by (5) with the parameters matching the experiment.

Fig. 8 shows simulated voltage responses of the sensors
when Snookie passes an object at different distances.
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Fig. 8. Simulated voltage responses U of Snookie’s left and right sensor
when Snookie is passing by a cylindrical obstacle as in Fig. 6 in different
distances. The minimal distance of the sensor to the surface of the cylindrical
obstacle is indicated in the legend. Snookie itself is simulated by a sphere
with the same radius as Snookie’s nose (12.5 cm).

Fig. 9 shows an example simulation where Snookie is
heading towards a wall, detects that a wall is near, and
then avoids the wall. To simulate Snookie’s behavior, the
simulation solved the equations of motion (12) and (13) and
calculated the water velocities on Snookie’s hull (6), (7),
given the distance D to the wall. The voltage response (5) of
eight equidistant water velocity sensors mounted at the left-
and right-hand side of Snookie’s nose has been calculated.



Snookie acted according to the wall-detection and avoidance
algorithm described above and managed to avoid the wall.

Fig. 9. Illustration of object avoidance. The blue curve indicates Snookie’s
path during a simulation run (ideal sensory data, no environmental noise)
where Snookie is heading with 0.1 m/s towards a wall with an incidence
angle of 45◦. The robot starts at (0,0), detects the wall, comes to a full stop
after 0.34 m, drives backwards and turns to avoid the wall.

VIII. CONCLUSION AND FUTURE WORK

By simulating the whole vehicle together with the sensors
on a physical level in a closed-loop wall-avoidance scenario,
we have seen that object avoidance is feasible using the
technique of measuring water velocities on an underwater
vehicle’s hull. The sensors have the necessary short time
constants and suitable sensitivity. Snookie’s main controllers
keep depth and bearing stable and smoothly react to new
set values. Snookie has sufficient maneuvering capabilities
to stop in time and avoid walls.

Further experiments have to be performed to identify miss-
ing parameters in Snookie’s equation of motion. Underwater
recordings of sensory data will be performed to test and
improve the physical modeling of the influence of walls and
cylindrical obstacles on water velocity. Also, the performance
of the wall detection and direction estimation algorithm has
to be investigated systematically. When object detection and
avoidance is indeed possible, another area of research will
be how Snookie can map its environment and keep track of
its position relative to the obstacles detected.
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