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Two groups of snakes possess an infrared detection system that is used to create a heat image of their
environment. In this Letter we present an explicit reconstruction model, the ‘‘virtual lens,’’ which explains
how a snake can overcome the optical limitations of a wide aperture pinhole camera, and how ensuing
properties of the receptive fields on the infrared-sensitive membrane may explain the behavioral
performance of this sensory system. Our model explores the optical quality of the infrared system by
detailing how a functional representation of the thermal properties of the environment can be created. The
model is easy to implement neuronally and agrees well with available neuronal, physiological, and
behavioral data on the snake infrared system.
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Two groups of snakes, pit vipers and boids, possess a
sensory system to detect infrared (ir) radiation [1] which
allows them to perceive a 2-dimensional image of the heat
distribution in their surroundings. The detection system
consists of a set of cavities called pit organs. In pit vipers,
a pit organ is located on each side of the snake’s head near
the eyes. Suspended in each cavity is a heat detecting
membrane, which is sensitive to mK temperature differ-
ences [2,3]. The optical principle underlying the detection
of ir radiation is that of a pinhole camera (Fig. 1). Radiation
entering through the pit hole hits the membrane at a certain
spot depending on the source direction. The resulting
temperature change at this spot is detected by heat-
sensitive cells distributed throughout the membrane.
There are about 40� 40 sensory cells on the membrane
[1] and the field of view is about 100� wide, which implies
that input to the organ could be represented in the brain
with a resolution of approximately 2.5�. Since the radiation
flux entering the organ must be large enough to quickly
detect moving prey, the aperture of the organ is wide,
approximately 1 mm, and comparable to the organ depth.
Thus incoming radiation from a point source does not
strike a pointlike region on the membrane, as in an ideal
pinhole camera, but rather a large disc-shaped region
[Fig. 1(b)]. It is nonetheless possible to determine the
direction of the incoming radiation if the boundary of the
disc-shaped region remains narrow enough. This approach
breaks down if multiple or non-pointlike heat sources (as in
Fig. 2) are present. Then the resulting heat distribution on
the membrane will be heavily blurred (see Fig. 3, left),
allowing no direct evaluation of the input.

The ir detection system of snakes presents a paradox.
The optics of the pit organ as pinhole camera ensure that
images on the membrane will be distended and blurry. Yet
the information from the ir system, combined with input
from the ‘‘normal’’ visual system, allows formation of a
neuronal map [4] in the brain’s optic tectum [5–7]. This
map is sharp enough to serve as a topological representa-
tion of the outside world, in that neighboring neurons

represent neighboring regions of the outside world.
Experimental studies have shown that a snake’s orientation
to a point source of heat varies, but that an accuracy of 5� is
nevertheless attainable [5], which approximates our rough
estimate above. We are thus faced with a paradox, in that
the optical quality of a pit organ is low but the neuronal
performance is high. How does that happen?

The paradox involves the optical quality of ir ‘‘vision.’’
We therefore explore this optical quality by presenting an
explicit model which reconstructs the original heat distri-
bution in space using only the given heat distribution on the
membrane. Our model can be implemented straightfor-
wardly as a neuronal network. Furthermore, it explains
several experimentally determined characteristics of ir de-
tection in snakes.

The mathematical model describing the ir system con-
sists of two parts. We first calculate the heat distribution on
the membrane for a given heat distribution in space.
Starting from this membrane image, the second step is
reconstructing the original spatial heat distribution. We
develop a virtual lens which replaces the oversized pin-
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FIG. 1 (color online). (a) Head of a pit viper with nostril,
(large) pit hole, and eye, left to right. Photograph courtesy of
Guido Westhoff. (b) A pit viper’s infrared-sensitive pit organ
works like a pinhole camera. Radiation entering through the
opening (left) hits a heat-sensitive membrane, suspended freely
so as to minimize heat loss to the surrounding tissue. To ensure a
large enough energy influx, the aperture has to be quite large (�
1 mm). The image of a pointlike source thus forms a disc-shaped
image on the membrane.
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hole. Since a snake has limited computational resources
(all ‘‘calculations’’ must be realizable in neuronal ‘‘hard-
ware’’) the reconstruction model must be simple. Our
model thus uses only one computational step (it is non-
iterative) to estimate the input image from the measured
response on the pit membrane. It resembles a Wiener filter
and is akin to, but different from, some of the algorithms
used in image reconstruction [8]. It has to be constantly
borne in mind that the optical device discussed here has
very limited imaging capabilities in comparison to human-
devised detection systems; cf. Figure 1(b). Nonetheless, as
we will show, it is still capable of reconstructing the spatial
heat distribution.

The input to a pit organ consists of a 3-dimensional
spatial heat distribution. To strike his prey, the snake needs
a 2-dimensional projection, or image, of this heat distribu-
tion. This image is reconstructed using the response from
the ir receptors on the pit membrane. Calling the true
projection of the heat distribution I�, we write the heat
intensity S� as it is measured by the sensory cells in the pit
membrane

 S� � T���I� �  �� � ��: (1)

Here we use tensor notation and imply summation over
repeated upper and lower indices. Simultaneous raising
and lowering the indices of a tensor is equivalent to trans-
position in matrix notation. The tensor T�� is the transfer
matrix (containing the point-response functions) that re-
lates input intensity at the spatial location � to intensity at
the membrane location �. It is determined solely by the
geometry of the pit organ.  � and �� are stochastic terms
taking into account noise in the input signal and measure-
ment errors, respectively.

In snake ir reception � and � represent the two spatial
dimensions of the input image and the pit membrane
surface. We represent the reconstruction Î� of the input
I� as a linear combination of the measured intensities,

 Î � � R��S�: (2)

To find the coefficients of the reconstruction tensor R�� we
define the quadratic error of our estimate (2) as

 Eq � h�Î
� � I���Î� � I��i (3)

where the expectation value is taken over all possible input
 � and detector �� noises. The noise-free part of the input
I� is, of course, deterministic, but since the snake does not
‘‘know’’ beforehand what the heat distribution looks like,
we treat the input itself as a stochastic variable from a
reconstruction point of view. If real input, i.e., a specific
realization of some stochastic process, is presented to the
sensory system, our model reconstructs an optimal input
configuration for a given sensory response S�. To this end
we minimize the error (3) with respect to the coefficients of
the reconstruction tensor (�Eq=�R�� � 0). In doing so,
we encounter expectation values of correlations between
the two different noise terms ( and �) and the pure input

I, which we must specify. We take all cross correlations to
be zero (the noise terms are independent of each other and
the input strength) and autocorrelations to be given by

 h����i � �2
����; h � �i � �2

 ���;

hI�I�i � �2
I ���;

(4)

with ��� as Kronecker delta. The first two equalities define
the autocorrelation of the noise terms. Noise at different
positions on the input or receptor manifold is taken to be
independent with standard deviation��= . Input noise may
be caused by small movements of prey animals, or by
environmental disturbances such as vegetation moving in
the wind. Detector noise may originate from physiological
processes in the heat-sensitive cells in the pit membrane.

The third equality in (4) describes the autocorrelation of
the input signal. We assume the correlation hI�I�i of the
input at different points� � � in space vanishes. Knowing
the value of the input at one particular point does not tell us
anything about its value at other points. In reality, this
assumption will not hold. Neighboring points in space
tend to have heat intensities that are alike since neighbor-
ing points will often be part of the same object and thus
have nearly equal temperatures. Assuming the input corre-
lations as in (4) to be independent makes reconstructing the
input more difficult, since a potential source of information
for the reconstruction (correlation in the input signal) is
disregarded.

Minimizing (3) and using the correlations (4) and the
definitions for the dimensionless parameters � :� ��=�I,
� :� � =�I, we find for the components of the reconstruc-
tion tensor the following:

 R�		T�
�T	��1� �

2� � �2�	�
 � T�
�: (5)

We note that �, the noise-to-signal ratio of the input, will
generally be small. Since it relates noise on the membrane,
where input from many directions converges, to mean
input intensity, � need not be small. Solving (5) for R��

and using (2), we have a reconstruction of the original heat
panorama with only the measured intensity on the mem-
brane as input. The values of � and � can still be adjusted
to get an optimal reconstruction. For the snake it is proba-
bly impossible to dynamically tune � and � to get the best
reconstruction, but they may be determined to correspond
to typical inputs and thereby give good results for most
heat configurations the system encounters.

From (5) we see that the presence of noise in the input
has no large effect on the value of the components of the
reconstruction tensor. Since �� 1, we can effectively
ignore the input noise in (5). The value of �, however,
does influence the reconstruction tensor. Because of the
large organ aperture, every membrane point receives input
from many input points. Conversely, information from one
membrane point influences many pixels of the recon-
structed image. A small measurement error may therefore
have a large impact on the reconstruction.
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We now turn to the transfer function T��, a geometri-
cally determined quantity. A typical prey, such as a mouse
or a rabbit, has a surface temperature of about 300 K.
According to the Planck radiation law as an approximation
of the emitted heat intensity, 99% of the radiation is
emitted at wavelengths under 75 �m and the radiation
intensity is maximal at 
 � 9:5 �m, which is within the
8–12 �m ir atmospheric transmittance window [9]. Here
the wavelength is much smaller than the organ aperture,
such that we can use geometrical optics and ignore bending
and refraction of the light rays. If the radiation intensity
hitting the membrane at some point is larger than the
emitted thermal radiation of the membrane itself, the
membrane heats up at that location. In the converse situ-
ation, the membrane cools down locally.

The tensor T�� determines how effectively a heat source
at position � outside the snake can heat up a pixel � on the
pit membrane. We find

 T�� �
�

r�2
�� cos��� if � is visible from �;

0 otherwise:
(6)

Here r�� is the distance between the world point � and
the membrane point �, and ��� is the angle of incidence
of the radiation on the membrane. If there is no line-of-
sight between the points � and � (the pit organ boundary
may be in the way) there is no heat transfer and T�� � 0.
For a circular input source the membrane heat distribu-
tion can be calculated analytically, as was first done by
de Cock Buning [10]. Our approach generalizes his calcu-
lations to cope with arbitrary input and aperture.

To illustrate the abilities of our model, we presented the
pit organ with a discretized version of Albrecht Dürer’s
famous hare; see Fig. 2. In the next step, we calculated the
heat distribution on the membrane using the transfer func-
tion (6). Opinions on the exact dimensions of the pit organ
and the number of heat receptors differ [1]. We have
chosen conservative but realistic values that combine a
relatively wide organ aperture and a moderate number of
heat receptors. The calculated heat distribution on the
membrane is shown in Fig. 3 (left).

Application of the reconstruction algorithm to the mem-
brane image results in Fig. 3 (right). The quality improve-

ment is spectacular, provided there is not too much detector
noise. The information needed to reconstruct the heat
panorama is still present in the membrane image (Fig. 3,
left). This illustration is not biologically realistic; the ob-
ject is far too large and the distributed gray levels do not
correspond to a realistic thermal profile. This does not
influence the performance of the algorithm, however,
which would work just as well if the input object is nearly
a point source, such as the warmth produced by the eyes of
mammals relative to their body surface and surroundings.

The model has a fairly high noise tolerance. For input
noise levels up to 50%, the hare is recognizable. Sensitivity
to measurement errors is larger. In our calculations, one
pixel of the reconstructed image corresponds to about 3�.
For detector noise levels up to about 1% of the membrane
heat intensity, a good reconstruction is possible, meaning
that the edge of the hare may be determined with about one
pixel accuracy. At detector noise levels beyond about 1%,
the image is not so easily recognizable, but the presence of
an object is still evident.

If the input is not very complicated (say, a small warm
animal in front of a cold background) reconstruction may
still be possible at higher detector noise levels. The low
noise tolerance of the detection process results from the
large impact of � in (5) as discussed above. That is, the
snake does need accurate detectors to get a reasonable
reconstruction quality. Indeed, the experimentally deter-
mined membrane precision is high (1 mK) [2,3].

Changing the shape of the pit organ produces differ-
ent characteristics. A narrow and deep organ has a much

FIG. 3. On the left, this figure displays the membrane heat
intensity as captured by the ‘‘pithole camera’’. On the right are
reconstructions for four different membrane noise levels.
Image quality of the reconstruction is spectacularly enhanced
if little noise is present. The pit membrane was taken as a
flat square containing 41� 41 receptors. The model works
equally well if applied to other membrane shapes. The mem-
brane noise term �� was taken to be Gaussian with �� � 25,
100, 200, and 500 from left to right and top to bottom, corre-
sponding to 0.25%, 1%, 2%, and 5% of the maximal mem-
brane intensity. As input noise we took a Gaussian distribu-
tion with � � 10, amounting to 10% of the input. Further
parameter values are organ aperture �circular shape��0:8 mm,
organ depth�0:8 mm, membrane size � 1:2� 1:2 mm, � �
0:8, and � � 0:1.

FIG. 2. The famous hare by Dürer (left) was converted into 8-
bit gray levels at a resolution of 32� 32 (right). The result was
presented to a pit organ at a distance of 1 m, its range [3], so as to
fill the view field (dashed line, corresponding to 100�) of the
organ.
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better resolution than a wide and shallow one, but both
view field and sensitivity will be limited. There is always
a compromise between image quality and sensitivity.
de Cock Buning [11] has suggested that in boids, such as
pythons, a variety of differently formed pit organs exists,
each adapted to a specific biological function.

A neuronal implementation of the model is fairly
straightforward. The tensor R�� would correspond to a
network of synaptic connections between the membrane
ir detectors and neurons building a map in, for instance, the
optic tectum. The strength of the individual connections
would just be the value of the corresponding entry in R��,
based on a rate coding [12]. Optimization of the coeffi-
cients (i.e., the synaptic strengths) can be obtained by
comparing the information from the ir system with the
visual map in the optic tectum, thus learning the proper
synaptic strengths, e.g., through supervised spike-timing-
dependent plasticity [13].

The neurons in the topological map receive excitatory
(positive) as well as inhibitory (negative) input from the
membrane receptors. The spatial distribution of these ex-
citatory and inhibitory regions on the membrane (the re-
ceptive field of a neuron) in our model is shown in Fig. 4.
Ringlike structures arise that detect the edges of projected
images corresponding to the position that the map neuron
encodes. A similar system (called lateral inhibition) is
found in mammalian neurons receiving input from the
retina [14], although the excitation-inhibition pattern there
is disc-shaped rather than ringlike.

Hartline et al. [6] have found that the visual map and the
ir map in the optic tectum are not aligned properly. They
speculate that inhibitory interaction between the neurons
might be diminished during anesthesia, and this may well
have been the case [15]. If we repeat our model calcula-
tions with slightly diminished inhibitory components of
R�

�, the neuronal reconstruction map shifts away from its
normal position in such a way as to explain the offset found
by Hartline et al. [6] This finding suggests that our model

contains at least the essential characteristics of neuronal ir
processing.

Ultimately, a snake’s ability to utilize information from
the pit organs depends on its capability to detect edges in
the image produced on the pit membrane. If the snake
performed no reconstruction, but instead simply targeted
bloblike ‘‘hot spots’’ on the membrane, it would still have
to be able to discern the edge of the blob. The present
model performs edge detection for all spatial positions and
hence automatically creates a full reconstruction. A level
of neuronal processing beyond what is represented in our
model is unlikely to be beneficial since the quality of the
system is fundamentally limited by the relatively small
number of heat receptors.

In summary, it is possible to reconstruct the heat input to
a snake’s infrared-sensitive pit organ by only using the
blurred heat distribution image from the pit membrane.
The organ’s large aperture does not prohibit formation of a
clear neuronal image of the spatial heat distribution, but
resolution is limited by the small number of heat receptors.
This limitation agrees well with the reported accuracy of
snake ir vision.
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FIG. 4 (color online). Receptive field of a map neuron showing
a ringlike structure. The excitatory (light/yellow) and inhibitory
(dark/purple) input from the membrane receptors ‘‘filters’’ the
membrane response so as to find the position the map neuron
encodes.
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