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How does a neuron vary its mean output �ring rate if the input changes
from random to oscillatory coherent but noisy activity? What are the crit-
ical parameters of the neuronal dynamics and input statistics? To answer
these questions, we investigate the coincidence-detection properties of an
integrate-and-�re neuron. We derive an expression indicating how coin-
cidence detection depends on neuronal parameters. Speci�cally, we show
how coincidence detection depends on the shape of the postsynaptic re-
sponse function, the number of synapses, and the input statistics, and we
demonstrate that there is an optimal threshold. Our considerations can
be used to predict from neuronal parameters whether and to what extent
a neuron can act as a coincidence detector and thus can convert a temporal
code into a rate code.

1 Introduction

Synchronized or coherent oscillatory activity of a population of neurons
is thought to be a vital feature of temporal coding in the brain. Oscilla-
tions have been observed in the visual cortex (Eckhorn et al., 1988; Gray &
Singer, 1989), the sensorimotor cortex (Murthy & Fetz, 1992), the hippocam-
pus (Burgess, Recce, & O’Keefe, 1994), and the olfactory system (Freeman,
1975; Davis & Eichenbaum, 1991; Wehr & Laurent, 1996). Coherent �ring
of neurons might be used for solving the problems of feature linking and
pattern segmentation (von der Malsburg & Schneider, 1986; Eckhorn et al.,
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1988; Wang, Buhmann, & von der Malsburg, 1990; Ritz, Gerstner, Fuentes,
& van Hemmen, 1994; Ritz, Gerstner, & van Hemmen, 1994) and could also
support attentional mechanisms (Murthy & Fetz, 1992).

Another prominent example where coherent or phase-locked activity
of neurons is known to be important is the early auditory processing in
mammals, birds, and reptiles (Carr, 1992, 1993). Spikes are found to be phase
locked to external acoustic stimuli with frequencies up to 8 kHz in the barn
owl (Köppl, 1997). In the barn owl and various other animals, the relative
timing of spikes isused to transmit informationabout the azimuthal position
of a sound source. In performing this task, the degree of synchrony of two
groups of neurons is read out and transformed into a �ring rate pattern,
which can then be used for further processes and to control motor units. The
essential step of translating a temporal code into a rate code is performed
by neurons that work as coincidence detectors.

Similarly, if neural coding in the cortex is based on oscillatory activity,
then oscillations should lead to behavioral actions. Motor output requires
a mean level of activity in motor efferents of the order of, say, a hundred
milliseconds. But then somewhere in the brain, there must be a neural “unit”
that transforms the temporally coded oscillatory activity into a rate-coded
mean activity that is suitable for motor output. We do not want to speculate
here what this “unit” looks like. It mightbe composedof an array of neurons,
but it is also possible that single neurons perform this transformation.

Here we focus on the question of whether the task of transforming a
spike code into a rate code can be done by a single neuron. The issue of how
neurons read out the temporal structure of the input and how they transform
this structure into a �ring rate pattern has been addressed by several authors
and is attracting an increasing amount of interest. König, Engel, & Singer
(1996) have argued that the main prerequisite for coincidence detectors is
that the mean interspike interval is long compared to the integration time
that neurons need to sum synaptic potentials effectively. The importance of
the effective (membrane) timeconstant ofneurons has also been emphasized
by Softky (1994). In addition, Abeles (1982) has shown that the value of
the spike threshold and the number of synapses are relevant parameters
as well.

Some general principles have already been outlined, but a mathematical
derivation of conditions under which neurons can act as coincidence detec-
tors is still not available. In this article, we will substantiate the statements
we have already made and show explicitly the dependence of the preci-
sion of neuronal coincidence detection on the shape of the postsynaptic
potential, the input statistics, and the voltage threshold at which an action
potential is generated. Speci�cally, we tackle the question of whether and to
what extent a neuron that receives periodically modulated input can detect
the degree of synchrony and convert a time-coded signal into a rate-coded
one.
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2 Methods

This section speci�es the input and brie�y reviews the neuron model.

2.1 Temporal Coding of the Input. We consider a single neuron that re-
ceives stochastic input spike trains through N independent channels. Input
spikes are generated stochastically and arrive at a synapse with a time-
dependent T-periodic rate lin(t) D lin(t C T) ¸ 0. The probability of having
a spike in the interval [t, t C D t) is lin(t)Dt as D t ! 0. In this way we obtain
a nonstationary or inhomogeneous Poisson process (cf., e.g., Tuckwell, 1988,
Sec. 10.8) where input spikes are more or less phase locked to a T-periodic
stimulus. According to the de�nition of Theunissen and Miller (1995), this
kind of input is a temporal code. The average number of spikes that arrive
during one period at a synapse will be called p. The time-averaged mean
input rate is Nlin :D 1/T

R t0 CT
t0

dt0 lin(t0) and equals p/T.
To parameterize the input, we take the function

lin(t) :D p
1X

mD¡1
Gs (t ¡ mT), (2.1)

where Gs (.) denotes a normalized gaussian distribution with zero mean
and standard deviation s > 0. In Figure 1 we present a few examples of
spike trains generated by the time-dependent rate in equation 2.1.

We assume that the neuron under consideration receives input from
N À 1 presynaptic terminals. At each input terminal, spikes arrive inde-
pendently of the other terminals and with a probability density given by
equation 2.1. We note that equation 2.1 is an idealization of biological spike
trains because there is no refractoriness.

The degree of synchrony of the input is parameterized by the jitter s 2
[0, 1), the standard deviation of the gaussian distribution. In the case s D 0,
the input spikes arrive perfectly phase locked and occur only at the times
tm D mT with integer m, and the number of spikes arriving at time tm has
a Poissonian distribution with parameter p. Instead of s, we often consider
another measure of synchrony, the so-called vector strength rin (Goldberg &
Brown, 1969). This measure of synchrony can be de�ned as the amplitude
of the �rst Fourier component of the periodic rate in equation 2.1 divided
by the Fourier component of order zero. For the input (see equation 2.1) we
�nd

rin D exp

"
¡

1
2

³
2p

T

´2

s2

#
. (2.2)

By construction, we have 0 · rin · 1.
Many neuron models start from a gain function where the mean output

�ring rate increases with increasing mean input rate. This is certainly cor-
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Figure 1: Input spikes are phase locked with period T (horizontal bar) and
temporal jitter s. The upper part of the �gure shows the time-dependent rate
lin (t) (solid line) given in equation 2.1 of a single input channel with parameters
p D 1 and s D T/4, the width of the underlying gaussian (dashed line). In
the lower part of the �gure, we present four samples of spike trains (vertical
bars) generated by a Poisson process with the time-dependent rate speci�ed
above. The times t D mT with integer m where the rate lin (t) has its maxima are
indicated by vertical dotted lines.

rect for most biological neurons. For integrate-and-�re (I&F) neurons, this
property has been studied by Stemmler (1996). In this article, we go at least
one step further. We vary the input under the constraint of a constant mean
input rate, Nlin D const. The assumption of a constant mean input is not a
limitation of our approach but a simpli�cation we make here in order to
illustrate our main point. We want to show that even with a constant mean
input rate, the mean output rate Nlout varies as a function of the temporal
structure of the input, parameterized, for example, by rin. In other words,
the neuron can “read out” a temporal code. This property is essential for
coincidence detection.
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2.2 Neuron Model and Spike Processing. We describe our neuron as an
I&F unit with membrane potential u. The neuron �res if u(t) approaches the
threshold # from below. This de�nes a �ring time tn with integer n. After
an output spike, which need not be described explicitly, the membrane
potential is reset to 0. Between two �ring events, the membrane voltage
changes according to the linear differential equation,

d
dt

u(t) D ¡
1

tm
u(t) C i(t), (2.3)

where i is the total input current and tm > 0 the membrane time constant.
The input is due to presynaptic activity. The spike arrival times at a given

synapse j are labeled by t f
j where f D 1, 2, . . . is a running spike index. We

assume that there are many synapses 1 · j · N with N À 1.
Each presynaptic spike evokes a small postsynaptic current (PSC) that

decays exponentially with time constant ts > 0. All synapses are equal
in the sense that the incoming spikes evoke PSCs of identical shape and
amplitude. The total input of the neuron is then taken to be

i(t) D
1
ts

NX

jD1

X

f

exp

0

@¡
t ¡ t f

j

ts

1

Ah (t ¡ t f
j ), (2.4)

where h (.) denotes the Heaviside step function with h (s) D 0 for s · 0 and
h (s) D 1 for s > 0. We substitute equation 2.4 in 2.3 and integrate. This yields
the membrane potential at the hillock,

u(t) D
X

j

2

4
X

f

2 (t ¡ t f
j )

3

5 C
X

n
g(t ¡ tn). (2.5)

The �rst term on the right in equation 2.5,

2 (s) D
tm

tm ¡ ts

µ
exp

³
¡ s

tm

´
¡ exp

³
¡ s

ts

´¶
h (s), (2.6)

describes the typical time course of an excitatory postsynaptic potential
(EPSP). If ts D tm, we have instead of equation 2.6 the so-called alpha func-
tion, 2 (s) D (s/tm)¢ exp(¡s/tm)h (s). The argument below does not depend
on the precise form of 2 . The second contribution to equation 2.5,

g(s) D ¡# exp
³

¡ s
tm

´
h (s), (2.7)

accounts for the reset of the membrane potential after each output spike and
incorporates neuronal refractoriness.
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3 Analysis of Coincidence Detection

We are going to examine the coincidence detection properties of our model
neuron. To study the dependence of the output �ring rate on the temporal
structure of the input and to answer the question of how this is in�uenced
by neuronal parameters, we use the I&F model and the temporally coded
spike input already introduced. Qualitative considerations, useful de�ni-
tions, and illustrating simulations are presented in section 3.1. They explain
the gist of why, and how, coincidence detection works. We then return to
a mathematical treatment in section 3.2 and �nish with some examples in
section 3.3.

3.1 The Quality of a Coincidence Detector. We now explain how the
ability of a neuron to act as a coincidence detector depends on the leakiness
of the integrator (section 3.1.1), the threshold # (section 3.1.2), the time
constants tm and ts (section 3.1.3), and the number N of synapses as well as
the mean input rate Nlin (section 3.1.4).

3.1.1 Leaky or Nonleaky Integrator? The most important parameter of
the neuron model is the membrane time constant tm. If we take the limit
tm ! 1, we are left with a simple nonleaky integrator (cf. equation 2.3).
In this case, the mean output rate can be calculated explicitly. Integrating
equation 2.3 from the nth output spike at tn to the next one at tnC1 we obtain

# D
R tnC1

tn dt i(t). A summation over M spikes yields

# D
tnCM ¡ tn

M
N Nlin C

1
M

tnC MZ

tn

dt [i(t) ¡ N Nlin], (3.1)

where we have separated the right-hand side into a �rst term that represents
the contribution of the mean input current N Nlin and a second term that is the
�uctuation around the mean. In order to calculate the mean output rate Nlout,
we have to consider the limit M ! 1. We introduce the mean output rate
by de�ning Nlout :D limM!1 M/(tnCM ¡ tn). As M ! 1, the contribution
from the second term in the right-hand side of equation 3.1 vanishes, and
we are left with Nlout D N Nlin/#. The mean output rate is independent of the
explicit form of the time-dependent input rate lin(t), especially rin, which
is demonstrated graphically by Figure 2a.

Hence we must have a �nite tm and thus a leaky integrator, if we want to
end up with a coincidence detector, whose rate varies with rin. But what is
meant by a “�nite” tm? The answer depends on the value of the threshold #.

3.1.2 Voltage Threshold. We address the problem of how to adjust the
threshold so that an I&F neuron can be used as a coincidence detector. Let
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Figure 2: Membrane potential u of an I&F neuron as a function of time t. The
neuron receives input from 400 synapses with noise parameter p D 0.5 and
vector strength rin D 1 (perfectly phase-locked input: solid lines) and rin D 0
(completely random input: dashed lines); cf. eq. 2.1. There is a spike at t D 0. The
time constant of the synaptic input current is ts D T. (a) For an in�nitely large
membrane time constant tm , the intervals between output spikes are nearly
independent from the vector strength in the input. Such a neuron is a “bad”
coincidence detector. (b) For a �nite membrane time constant (here: tm D T),
the mean interval between output spikes does depend on the vector strength
in the input, if the threshold is chosen appropriately. For a threshold # D Nu1 /2
(lower dotted line), the �rst spike would have occurred, nearly independently
of the input vector strength rin , somewhere near t D T, whereas for a threshold
# D Nu1 (upper dotted line) the time to the �rst spike depends strongly on rin .
For rin D 1, the �rst spike appears near t D 3 T (left arrow) and a second spike
near t D 7 T (middle arrow). For rin D 0 an output spike occurs at t D 8 T (right
arrow).
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us assume for the moment that the �ring threshold is very high (formally,
# ! 1), and let us focus on the temporal behavior of the membrane voltage
u(t) with some input current i. The membrane potential cannot reach the
threshold so that there is neither an output spike nor a reset to baseline, and
the membrane voltage �uctuates around the mean voltage Nu1 D N Nlin tm; see
Figure 2b. (The voltage Nu1 equals u(t) as t ! 1, provided the total input
current is equal to its mean value i D N Nlin.) We now lower the threshold
so that the neuron occasionally emits a spike. The coincidence-detection
properties of this neuron depend on the location of the threshold # relative
to Nu1.

We analyze the dependence of the output �ring rate on the threshold and
the input vector strength rin. As shown in Figure 3a, the mean output �ring
rate Nlout is rather insensitive to the input vector strength rin for # < Nu1.
We therefore get a poorly performing coincidence detector. In contrast, a
threshold # > Nu1 leads to a large variation of the mean output �ring rate as
a function of the input vector strength rin. Consequently we seem to obtain
a better coincidence detector.

The underlying mechanism of this improvement is illustrated by Fig-
ure 2b, where the trajectory of the membrane voltage u(t), after a reset at
time t D 0, is shown for two cases: random and phase-locked input. Let us
imagine a threshold # well below Nu1, say, at Nu1 /2. In this case, the next
spike following the one at t D 0 is triggered after a short time interval, the
length of which depends only marginally on the degree of synchrony in the
input. We are close to the regime of a nonleaky integrator. Formally, this can
be seen from eq. 2.3. Between two �rings, the membrane potential always
stays below threshold, u(t) < #. If the average current is much larger than
#/tm, then the �rst term in the right-hand side of equation 2.3 can be ne-
glected, and we do have a nonleaky neuron. In contrast, let us consider the
case # > Nu1. The threshold # can be reached only if the �uctuations of u(t)
are large enough. The �uctuations consist of a statistic contribution, due to
spike input (shot noise), and periodic oscillations, due to phase-locked (co-
herent) input. The key observation is that with increasing synchrony in the
input, the periodic oscillations get larger and therefore the output �ring rate
increases. In order to quantify this effect, we introduce a new parameter.

De�nition 1. The ratio of the mean output �ring rate Nlout for coherent input
with vector strength rin > 0 to the rate for completely random input with vanishing
vector strength is called the coherence gain E.

E(rin) :D
Nlout(rin)
Nlout(0)

, with E(rin) ¸ 1. (3.2)

A coherence gain E(rin) ¼ 1 means that the I&F neuron does not operate
as a coincidence detector, whereas E(rin) À 1 hints at good coincidence
detection.



Extracting Oscillations 1995

0.0 0.5 1.0
r

in

10
-2

10
-1

10
0

l o
ut

J 0

J 1

J -1

J 2

10
-1

10
0

10
1

E
(1

)-
1

J -1 J 0=u  J 1 J 2

J

0.0

0.1

0.2

g 

oo

J opt



1996 R. Kempter, W. Gerstner, J. L. van Hemmen, and H. Wagner

With the above de�nition of the coherence gain, the four graphs in Fig-
ure 3a can be summarized by Figure 3b, where the dependence of E(rin)
on the threshold is shown for the special case rin D 1. The coherence gain
E(1) increases with increasing threshold #. From Figure 3b also E(rin) for
any desired rin can be estimated. Since in �rst approximation Nlout depends
linearly on rin, we can use the approximations

Nlout(rin) ¼ Nlout(0) C rin £Nlout(1) ¡ Nlout(0)
¤

(3.3)

and

E(rin) ¼ 1 C rin [E(1) ¡ 1] . (3.4)

Equation 3.4 tells us that E(rin) increases with increasing input vector
strength rin. Furthermore, E(rin) inherits from E(1) the property that it in-
creases with #.

The measure E(rin) is useful but not suf�cient for characterizing the per-
formance of a coincidence detector because the output of a coincidence
detector must convey a signal concerning the nature of the input (coherent
or not coherent) in a �nite amount of time. Neurons with E(1) À 1 but with
a very low mean output rate are basically useless as coincidence detectors.

Figure 3: Facing page. Coincidence-detection properties depend on the value of
the spiking threshold. We show numerical results (solid lines) and approxima-
tions (dashed lines) based on equation 3.21 with tdec D 3/2 tm, t ref D 2 tm , and r

determined from equation 3.15 with A
p

t D
p

tm /2. (a) Mean output �ring rate
Nlout (in units of spikes per period T) as a function of the input vector strength
rin for four different values of the threshold (#¡1 D Nu1 ¡ Dustoch, #0 D Nu1, #1 D
Nu1 C Dustoch, #2 D Nu1 C 2Dustoch). The mean voltage is Nu1 D 200 (as in Fig-
ure 2b) and Dustoch D 10/

p
2; cf. equation 3.9. For large # (e.g., #2) the output

rate varies by an order of magnitude if the temporal coherence of the input
increases from rin D 0 to rin D 1. On the other hand, for # D #¡1 the rate Nlout

hardly depends on the temporal structure of the input. With rin �xed, the rate
Nlout increases with decreasing # in all cases. (b) E(1) ¡ 1 is plotted against the
threshold #. The coherence gain E is de�ned in equation 3.2. For the �ts in b
and c we have r D 0.70 (for rin D 1) in equation 3.21. (c) The parameter c (in
units of T¡1/2I1/2) that indicates the quality of a coincidence detector shows a
maximum at #opt, which is above the mean voltage Nu1 D #0. The value of #opt is
the optimal choice for the threshold of this coincidence detector. In practical sit-
uations, it is immaterial, though, whether we take #opt or, for example, #1 . That
is, the choice of the threshold is not critical. Points have been obtained through
a combination of equation 3.6 and data from a and b. Simulation parameters in
a, b, and c: tm D ts D T, Np D 200. Data points have been obtained by measuring
time intervals that were needed to produce 104 output spikes.
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This is the case, for example, for leaky I&F units with a voltage threshold
well above Nu1 (cf. Figure 3a). In this regime the mean output rate is very
low. If there is (even for rin D 1) hardly any output spike in a certain time
interval, then decisions about the neuron’s input can be made only with
great error. The other extreme case is a high mean output rate, which im-
plies a threshold well below Nu1. In this regime E(1) is low; we are in the
regime of a nonleaky integrator where neurons are not able to perform a
coincidence detection either (cf. Figure 2a). Between the above two limits is
an intermediate regime with an optimal threshold for coincidence detection.
It is “optimal” in the sense that both the spike rate and the coherence gain
are high.

The reason that we need a high spike rate is that the number n of output
spikes in a �nite interval I, from which the rate has to be estimated, is a
random quantity. This is because of the noisy input. Here we assume that
n is Poisson distributed, an approximation that is very good if spiking is
driven by the variance of the neuron’s input (Troyer & Miller, 1997). For
two different input vector strengths, for example, rin D 0 and rin D Orin > 0,
we have two different distributions P(rin). The task is to distinguish the two
cases based on a single measurement of the number of output spikes in I.
We therefore need a number n0 as a decision boundary. If n ¸ n0 , then we
classify the input to have rin D Orin > 0; if n < n0 , then we classify rin D 0.
Clearly the probability for the correct decision depends on n0 . In general,
the optimal choice for the decision boundary n0

opt is the point where the two
spike distributions P(rin D 0) and P(rin D Orin) cross (see, e.g., Duda & Hart,
1973).

In order to be able to distinguish reliably the two alternatives, the two
respective distributions should not overlap too much. The error increases
with decreasing “distance” between them. The distance is a helpful quantity
that measures the probability of error or the discriminability between the
two possibilities. The quality factor for coincidence detection is de�ned as
follows:

De�nition 2. Let the number n of output spikes of a neuron in an interval of
length I be Poisson distributed with parameter Nn(rin) D Nlout(rin)I, where Nlout(rin)
is the mean output �ring rate given an input vector strength rin. The normalized
distance between the distribution for random input with vanishing vector strength
and the distribution for coherent input with some rin > 0 is de�ned to be the quality
factor c for coincidence detection. It is obtained by dividing the difference of the
distributions’ mean values by the sum of their standard deviations,

c :D
Nn(rin) ¡ Nn(0)

p
Nn(rin) C

p
Nn(0)

D
p

Nn(rin) ¡
p

Nn(0). (3.5)

Using the de�nition of the coherence gain E in equation 3.2, we obtain



1998 R. Kempter, W. Gerstner, J. L. van Hemmen, and H. Wagner

from equation 3.5

c D
q

I Nlout(0)
±p

E(rin) ¡ 1
²

. (3.6)

Equation 3.6 shows how the quality factor c increases with increasing I,
Nlout(0), and E(rin). It is important to realize that Nlout(0) and E(rin) are not
independent variables.

Stemmler (1996) has related a quantity similar to c to more sophisti-
cated signal-detection quantities such as the “mutual information between
the spike counts and the presence or absence of the periodic input” and
the “probability of correct detection in the discrimination between the two
alternatives,” both of which can be expanded in powers of c . We do not
calculate these quantities here as a function of c . To classify the quality of
coincidence detection, c itself suf�ces.

In Figure 3c we have plotted c as a function of the threshold #. This
graph clearly shows that there is an optimal choice for the threshold #opt that
maximizes c . The quality factor c as a function of the threshold # generally
exhibits a maximum. We argue that c (#) approaches zero for # ! 0 and
also for # ! 1. Thus, there must be at least one maximum in between. The
case # ! 0 corresponds to an in�nitely high membrane time constant. This
means that the neuron is effectively a nonleaky integrator. For this kind of
integrator, the mean output rate does not depend on the input structure.
Thus, E D 1 and c (#) ! 0 as # ! 0 (cf. equation 3.6). In the case # ! 1,
we argue that Nn(rin) ! 0 for # ! 1. Since Nn(rin) > Nn(0) it follows from
equation 3.5 that c ! 0 as # ! 1.

The value of the optimal threshold for coincidence detection will be esti-
mated in section 3.2. As we will show there, for a high-quality factor c , it is
not necessary that the threshold be exactly at its optimal value #opt. Since c

depends only weakly on the threshold, the latter is not a critical parameter
for coincidence detection. In contrast to that, c varies strongly if we change,
say, neuronal time constants.

3.1.3 NeuronalTime Constants. Wenow pointout brie�y the dependence
of the coherence gain E in equation 3.2, the rate Nlout(0), and the quality factor
c on the time constants tm and ts for the special case tm D ts. Figures 4a–c
show that shorter neuronal time constants yield better coincidence detectors
for each of the four different threshold values around #opt. The reason for
this effect will be clari�ed in section 3.2.

3.1.4 Number of Synapses and Mean Input Rate. Since we have N identical
and independent synapses receiving, on the average, p spike inputs per
period and a linear neuron model (except for the threshold process), the
variables N and p enter the problem of coincidence detection only via the
product Np, the total number of inputs per period. The quantity Np will be
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Figure 4: The coherence gain E(1) as de�ned in equation 3.2 for rin=1, the mean
output rate Nlout(0) for random input in units of spikes per period T, and the
quality factor c in units of T¡1/2 I1/2 (cf. equation 3.5) depend on neuronal pa-
rameters. Here we illustrate the dependence on the membrane time constant tm

(left graphs) and the number Np of input spikes per period (right graphs) for
four different threshold scenarios in each graph. For the EPSPs we have used
equation 2.6 with ts D tm. To indicate the position of the threshold, we have
assigned the numbers ¡1, 0, 1, and 2 to each trace (solid lines) that correspond
to the indices of the threshold values. We have #¡1 D Nu1 ¡ Dustoch, #0 D Nu1 ,
#1 D Nu1 C Dustoch , and #2 D Nu1 C 2Dustoch , respectively, where Nu1 D Np tm /T
and Dustoch D

p
Nu1 /2 (cf. also equation 3.9). Fits to the numerical results (dashed

lines) are based on equation 3.21 with tdec D 3/2 tm and t ref D 2 tm. (a–c) The de-
pendence on tm is shown. To get a reasonable coincidence detector for Np D 200,
the time constant tm should be at least of the same order of magnitude as T. In
fact, this �gure has a plain message: The smaller tm , the larger E(1), Nlout(0), and
c . The nonmonotonous part near tm D 0.35 T is due to resonance effects that
occur for widths of EPSPs of the order of T. (d–f) The performance of a coinci-
dence detector also depends on the number Np of input spikes per period. With
�xed parameters tm D ts D T, the number Np has to exceed 1 substantially so as
to get a reasonable coincidence detector. All data points have been obtained by
measuring the number of output spikes in a time interval of width 105 T.
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treated as a single degree of freedom. The dependence of E(1), Nlout(0), and
c on Np is shown in Figures 4d–f. The larger Np, the better is the neuron’s
performance as a coincidence detector (cf. section 3.2).

To summarize this section, two quantities determine the quality of a
coincidence detector neuron: (1) the rate Nlout(0) and (2) the coherence gain
E(rin), which both enter the quality factor c in equation 3.6. Both quantities
depend on neuronal parameters. If, for example, the threshold is increased,
then the coherence gain E is enhanced, but at the same time the rate Nlout(0) is
lowered. We note that both the coherence gain E(rin) and Nlout(0) are, at least
in the frame of an I&F model, determined by the neuron’s time constants
tm and ts, the period T, the mean number Np of inputs per period, and the
threshold #.

3.2 MathematicalTreatment. To transfer the observations fromI&Fneu-
rons to biological neurons, the quantities tm, ts, T, and Np have to be de-
termined experimentally. To draw conclusions about the quality of a coin-
cidence detector, knowledge about the spontaneous rate Nlout(0) and, thus,
the threshold # is necessary (cf. equation 3.6). But usually there is no direct
access to E(rin) or c . To close this gap, we present a method of estimating
E(rin) and c from experimentally available parameters.

The mathematical analysis that we present in this subsection is not lim-
ited to the I&F model introduced above. We derive our results for a more
general class of threshold neurons whose response to an input spike can
be described by an EPSP. This class of neuron models has been called the
SpikeResponse Model (SRM) (Gerstner & van Hemmen, 1992, 1994) and can
emulate other neuron models, such as the Hodgkin-Huxley model (Kistler,
Gerstner, & van Hemmen, 1997).

3.2.1 Signal-to-Noise Ratio Analysis. We perform a signal-to-noise anal-
ysis of the membrane potential. Let us assume that the neuron has �red at
times ftmI m · ng. We study the trajectory for tn < t < tnC1 and set

u(t) D Nu(t) C dustoch(t) C duper(t), (3.7)

where Nu(t) D
Pn

m g(t ¡ tm) C Nu1 is the reference trajectory of a neuron that
receives a constant input current N Nlin. The membrane potential u(t) follows
the trajectory Nu(t) Cduper(t) if it is driven by an input current N lin(t). There-
fore, dustoch(t) and duper(t) are the stochastic �uctuations and the periodic
oscillations, respectively.

For the signal-to-noise ratio analysis, we de facto presuppose that the
noise is gaussian. A normal distribution is the only one that is determined
by its �rst and second moment, which will be used in the following anal-
ysis. For a large number N of independent synapses, this is an excellent
approximation, as is shown in detail in section A.3.
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We have seen before (cf. Figure 2b) that “good” coincidence-detection
properties require a threshold # above Nu1. In this case, spike generation
is driven by the �uctuations, not by the mean trajectory. The magnitude
of the stochastic �uctuations is determined by the mean number of input
spikes per period and the shape of the EPSP. The amplitude of the periodic
�uctuations depends, in addition, on the amount rin of synchrony of the
signal. Roughly speaking, the neuron will be able to distinguish between
the coherent (rin > 0) and the incoherent case (rin D 0), if the total amount of
�uctuation is different in the two cases. The typical amplitude of the �uctu-
ations will be denoted by Dustoch and Duper. We de�ne an order parameter

r :D
Duper(rin)

Dustoch(0)
, (3.8)

which will be related to the coherence gain E and the quality factor c . The
parameter r can be considered as a signal-to-noise ratio, where the signal is
given by the periodic modulation and the noise as the stochastic �uctuation
of the membrane potential. For r ¼ 0 a low-coherence gain E and quality
factor c is to be expected; for r À 1 there should be a large E and c . To
con�rm this conjecture, we relate Dustoch and Duper to the parameters of the
input and the neuron model.

The calculation of Dustoch for rin D 0 and Duper for rin ¸ 0 is carried out
for a class of typical EPSPs. The only requirement is that EPSPs should, as
in equation 2.6, vanish for s · 0, rise to a maximum, and decay thereafter
back to zero (at least exponentially for s ! 1). The amplitude of an EPSP
will be called A. The time window preceding any particular point in the
neuron’s activity pattern during which a variation in the input could have
signi�cantly affected the membrane potential is called t (without a lower
index, in contrast to tm and ts). This is the de�nition of the integration
window of a neuron given by Theunissen and Miller (1995), which can be
approximated by the full width at half maximum of the EPSP.

The variance of the stochastic �uctuations is then proportional to the
average number of inputs the neuron receives in a time interval t times the
amplitude A of the EPSP (for details see appendix A). For N Nlin t À 1 the
standard deviation is to good approximation

Dustoch(0) ¼ A

s
N Nlin t

2
. (3.9)

Using, for example, equation 2.6 in equation A.8, we obtain A
p

t D tm /p
tm C ts.
To determine the amplitude of periodic oscillations, we average over the

Poisson process of the membrane voltage in equation 2.5 and denote the
average by angular brackets h.i. From equation 3.7 we have hu ¡ Nui(t) D
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hduperi(t), since hdustochi(t) D 0, and thus

hduperi(t) D N

1Z

0

ds
h
lin(t ¡ s) ¡ Nlin

i
2 (s). (3.10)

The amplitude Duper of the T-periodic oscillations will be estimated by the
absolute value of the �rst Fourier coef�cient of hduperi(t). The kth Fourier
coef�cient of a T-periodic function x(t) is de�ned by

Qxk :D
1
T

tCTZ

t

dt0 x(t0 ) exp(¡i k v t0 ), with v :D
2p

T
. (3.11)

Now the amplitude of the periodic oscillations can be written as

Duper D
­­­
D
d Quper

1

E­­­. (3.12)

To calculate the right-hand side of equation 3.12, we also have to introduce
the Fourier transform of quadratically integrable functions, for example, of
the response kernel 2 de�ned in equation 2.6,

Q2 (v) :D

1Z

¡1

dt0 2 (t0 ) exp(¡i v t0 ). (3.13)

Carrying out the Fourier transform in equation 3.12 and using equation 3.13,
we obtain Duper D N | Qlin

1 Q2 (v)| , where Qlin
1 D p/T rin D Nlin rin is the �rst

Fourier coef�cient of lin de�ned in equation 2.1. The �nal result for the
signal amplitude is then

Duper D N Nlin rin | Q2 (v)|, (3.14)

where the de�nition of the vector strength rin in equation 2.2 has been used.
The order parameter r in equation 3.8 can be rewritten with equations 3.9
and 3.14 in terms of experimentally accessible parameters of the input and
neuronal parameters:

r ¼ rin
p

2 N Nlin t
| Q2 (v)|
A t

. (3.15)

One has to keep in mind that equation 3.15 contains the signal-to-noise
ratio in the membrane potential and concerns only one of two aspects of
coincidence detection. The second aspect is related to the mean output �ring
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rate and, thus, the threshold, which should be chosen appropriately, as we
discussed in section 3.1 (see also section 4). The order parameter r alone
can be used only to derive necessary conditions for coincidence detection.
For small r , it seems unlikely that a neuron acts as a coincidence detector,
but a small r could be compensated for by a pool of such neurons (see also
sections 3.3 and 4). We think that as a rule of thumb, one can exclude that a
neuron is a coincidence detector if r < 0.1.

Taking advantage of equation 3.15, we now derive an expression for the
mean output rate Nlout(rin) and for c .

3.2.2 Mean Output Rate. As we stated in the previous section, in the
absence of a �ring threshold, the neuron’s membrane voltage �uctuates
around a mean value Nu1 with a standard deviation Dustoch, which is due to
noisy input. From appendix A, we also know that, to excellent approxima-
tion, the voltage �uctuations are gaussian. Then the probability that at an
arbitrary time the membrane voltage u is above # can be estimated by

w(#) D
1

p
2p Dustoch

1Z

#

du exp
µ

¡
(u ¡ Nu1)2

2 (Dustoch)2

¶
, (3.16)

which can be rewritten in terms of the error function,

w(#) D
1
2

µ
1 ¡ erf

³
# ¡ Nu1p
2 Dustoch

´¶
. (3.17)

If # > Nu1, the average time that a voltage �uctuation stays above #
is called t dec, which is expected to be of the order of the width t of the
integration window. The time t dec is needed for a decay of any voltage
�uctuation. Therefore, the mean time interval between two events u > #
can be approximated by t dec /w(#).

A neuron’s dynamics is such that �ring occurs if the membrane volt-
age reaches the threshold # from below. After �ring, there is a refractory
period t ref during which the neuron cannot �re. This prolongs the mean
waiting time t dec /w(#) until the next event u D # by an amount of t ref.
Taking refractoriness into account, the mean interspike interval t isi can be
approximated by

t isi ¼ t dec /w(#) C t ref. (3.18)

The mean output rate is Nlout D 1/t isi. Substituting equation 3.17 into
3.18, we obtain the mean output rate for a random input,

Nlout(0) D
»

2t dec
h
1 ¡ erf

±
#0 /

p
2
²i¡1

C t ref
¼ ¡1

. (3.19)
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Here we have introduced the normalized threshold,

#0 D (# ¡ Nu1)/Dustoch. (3.20)

If the neuron’s input has a periodic contribution, then the output rate
is increased. We now calculate the rate Nlout(rin) for arbitrary rin ¸ 0. The
key assumption is that we are allowed to take the oscillatory input into
account through a modi�ed threshold #0 only. The periodic contribution
enhances the standard deviation of the membrane potential around its mean
value. Thus, the threshold is lowered by the normalized amplitude of the
periodic oscillations r (rin) of the membrane potential (cf. equation 3.8). A
generalization of equation 3.19 leads to

Nlout(rin) ¼
»

2t dec
h
1 ¡ erf

±
#0 ¡ r /

p
2
²i¡1

C t ref
¼ ¡1

. (3.21)

Since we have an expression for the mean output rate in equation 3.21, we
also have an expression for the coherence gain E and the quality factor c

(cf. equations 3.2 and 3.6). In Figure 3 the numerical results for Nlout, E, and
c can be �tted at least within an order of magnitude by using tdec D 3/2 tm
and t ref D 2 tm.

3.2.3 Quality Factor. To arrive at a better understanding of the depen-
dence of the quality factor c on the normalized threshold #0 and the signal-
to-noise ratio r, we have plotted the result forc (#0 ) in Figure 5 while taking
t dec D 3/2 tm and t ref D 2 tm (as in Figures 3 and 4) for different values of
r . The graphs illustrate that c varies only weakly as a function of #0 , if r is
held constant. The maximum value is, at least for 0 < r < 1, close to #0 D 1.
This con�rms the result of Figure 3c and the conjecture that the optimal
threshold lies above the mean voltage by an amount equal to the amplitude
of the stochastic �uctuations.

To get a handy expression for c , we use an approximation of the error
function (Ingber, 1982),

1
2

[1 ¡ erf(x)] ¼
1

1 C exp
¡
4 x/

p
p

¢ , (3.22)

which is better than 2% for all x. At least for 0 < r ¿ 1 we are able to derive
a simple expression for c . Using the de�nition for c in equation 3.6 and a
linearization in r , we obtain

c D r

r
2
p

I
t dec

h
1 C exp O# C t ref/t dec

i¡3/2
exp O#, (3.23)
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Figure 5: The quality factor c (in units of t
¡1/2
m I1/2) de�ned in equation 3.6 for

the model of Nlout in equation 3.21 as a function of the dimensionless threshold
#0 de�ned in equation 3.20. The quantity c has been plotted (solid lines) for
six different values of r, as indicated in the graph. The time constants in equa-
tion 3.21 have been chosen to agree with numerical results from simulations
of an I&F model when EPSPs are “alpha” functions. Thus, it is reasonable to
assume t ref D 2 tm (cf. equation 2.7) and tdec D 3/2 tm (see also Figures 3 and 4).
For each value of r , the quantity c (#0 ) is a smoothly varying function of #0 and
shows a single maximum. The dashed line connects the maxima. The value of #0

at the maximum is the optimal threshold for coincidence detection. For r < 1,
the optimal threshold is approximately at #0 D 1. Since the maxima are broad,
the threshold value is not critical for coincidence detection.

where we have used O# D 4 #0 /
p

2p . For 0 < r ¿ 1, the quality factor has a
maximum as a function of the threshold at

O#opt D ln
h
2 (1 C t ref/t dec)

i
. (3.24)

Substituting O#opt to equation 3.23 and inserting r from equation 3.15, we get
an upper bound for the quality factor, which is the key result of this article:

c · c opt D rin
p

2 N Nlin t
| Q2 (v)|

A t
¢

s
I

t dec C t ref

4
p

54p
. (3.25)

3.3 Examples. We are using the response kernel 2 (s) D (s/tm) exp(¡s/tm)¢
h (s) in equation 2.5. The absolute value of the Fourier transform is | Q2 (v)| D
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tm /
¡
1 C v2t 2

m

¢
. From equations 3.15 and A.8 (see also the remark after equa-

tion 3.9), we then obtain the signal-to-noise ratio,

r D
q

N Nlin tm
2 rin

1 C v2t 2
m

. (3.26)

Let us calculate r for cortical neurons. Due to background activity, the
(effective) membrane time constant for voltages in the neighborhood of the
threshold can be as low as 10 ms (Bernander, Douglas, Martin, & Koch,
1991; cf. also Rapp, Yarom, & Segev, 1992). We assume EPSPs as “alpha”
functions and N D 104 synapses �ring at Nlin D 5 Hz. If the input has a
periodic component of 40 Hz (T D 25 ms), we calculate from equation 3.26
a value of r D 6.1 rin. The vector strength rin can be related to the relative
modulation amplitude Arel ofalmostperiodiccorrelogramsby rin ¼

p
Arel /2

(see appendix B), which is a good approximation for small Arel. A value of
Arel ¼ 0.3 is reasonable (Gray & Singer, 1989). We �nd rin ¼ 0.4, and a signal-
to-noise ratio of r ¼ 2.4. Therefore cortical neurons possess all prerequisites
necessary for coincidence detection.

As a further application of equation 3.26, we turn to neurons in the nu-
cleus laminaris of the barn owl. Model studies have shown that the laminar
neurons can indeed act as coincidence detectors (Gerstner, Kempter, van
Hemmen, & Wagner, 1996). These neurons have (almost) no dendritic trees.
A set of parameters N D 200, tm D ts D 0.1 ms, Nlin D 0.5 kHz, Nlout D 100 Hz,
and rin D 0.5 for T¡1 D 5 kHz is reasonable (Carr & Konishi, 1990; Carr &
Boudreau, 1991;Reyes, Rubel, & Spain, 1996). From equation 3.26, we obtain
r D 0.29. This value should be compared to the much better signal-to-noise
ratio r ¼ 2.4 that we �nd for cortical neurons.

We now compare the values of the upper bound of the quality factor c opt
in equation 3.25 for the two types of neurons. We take an interval of, say,
I D 100 ms to get some numerical values that can be interpreted, though
the length of I is not important for the comparison. For cortical neurons
we assume t dec D 3/2 tm and t ref D 2 tm, the parameters used through-
out the whole article. From equation 3.25, we then obtain c opt D 1.2. For
laminar neurons, we also assume t dec D 3/2 tm and t ref D 2 tm, whereby
tm D 0.1 ms, and obtain c opt D 1.5. We conclude that both types of neurons
have comparable coincidence-detection properties. In laminar neurons, the
relatively low number N of synapses is compensated by a high mean input
rate Nlin in order to achieve the same performance as cortical neurons. In
both examples, the ratio tm/ T and the input vector strength rin were almost
identical.

What does a quality factor of, say, c D 1.5 mean? We remind readers
of the de�nition of c in equation 3.5. The quality factor is a quantity that
measures the distance between the spikecount distributions for random and
coherent input. Forc D 1, the two distributions are just distinguishable, and
for c À 1 they are well separated. The error probability or, better, the extent
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to which random and coherent input can be discriminated can be calculated
from c . The corresponding algorithm is the subject of further investigation.

4 Discussion

This study demonstrates the in�uence of the parameters of an I&F neuron
on the capability of the neuron to work as a coincidence detector for pe-
riodically modulated spike input. The dependence on the membrane time
constant tm has been demonstrated in Figures 2 and 4a–c, the in�uence of
the number of inputs per period Np was treated in Figures 4d–f, and the
relation to the threshold # has been shown in Figures 3 and 5. An order
parameter r for coincidence detection has been de�ned in equation 3.15 by
dividing the amplitude of the periodic oscillations (when the neuron re-
ceives phase-locked input) by the amplitude of the stochastic �uctuations
of the membrane voltage (when the neuron receives random input). Finally,
r has been related to the quality factor c for coincidence detection.

Our reasoning is not limited to I&F neurons. It can be applied directly to
neurons whose excitatory synapses have almost equal strengths and evoke
similar EPSPs that sum up linearly, at least below the threshold. The ex-
tension to a distribution of synaptic strengths and forms of EPSPs is also
straightforward. With some additional effort, phase-locked inhibitory in-
puts could also be incorporated. Our model does not include, though, non-
linear effects in the dendritic tree (Softky, 1994).

The shape of the EPSP plays the most important role for coincidence
detection. More precisely, the relevant parameter is the absolute value of
the Fourier component of the response kernel 2 at the frequency of the
external stimulus (cf. equation 3.15), which expresses the (low-pass) �ltering
property of synaptic transmission. Nevertheless, the rule of thumb holds
that the briefer the EPSPs, the better are the coincidence-detection properties
of the corresponding neuron. The width of the EPSP has to be at least of
the same order of magnitude as the minimal temporal structure it should
resolve (cf. Figure 4a).

In addition, the number of synapses and their mean activity determine
whether a neuron is able to perform coincidence detection. With T-peri-
odically modulated input, our results show that the more input spikes per
time, the easier is coincidence detection (cf. Figure 4b). This is due to the
fact that the ratio between the signal (D oscillations of membrane volt-
age) and the noise (D random �uctuations) increases with increasing mean
input rate. The contribution of many synapses also enhances coincidence-
detection properties, which is extremely important for neurons receiving
a large number of inputs, such as cortical pyramidal cells with about 104

synapses or cerebellar purkinje cells with approximately 2 ¢ 105 synapses.
One can summarize the in�uence of the width t of an EPSP and the

number of inputs per time a neuron receives on coincidence detection as
follows. The neuron’s “memory” extends over an interval t back in time,
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so the neuron cannot “see” earlier input spikes. They have little in�uence
on the membrane potential because the corresponding tails of the EPSPs
are small and decay exponentially in time. (For the moment, we neglect
refractory effects.) Hence, the number of inputs in the neuron’s integration
time window of length t determines the state (the membrane potential) of
the neuron. If the number of inputs in this shifting time window shows
a signi�cant T-periodic oscillation, then it is in principle possible that the
neuron is able to performcoincidencedetection. This isa rate-coding scheme
where the �ring rate has to be measured within an averaging time window.
This argument shows that the width of an EPSP, which corresponds to the
averaging time window, should be small. If it greatly exceeds one period,
then averaging will be of no use at all.

For coincidence detection there is an optimal threshold value, as illus-
trated by Figures 3c and 5. For optimal coincidence detection, the threshold
# has to surpass the mean membrane voltage Nu1 D N Nlin tm of the neuron by
an amount equal to the noise amplitude. A higher threshold implies a lower
mean output �ring rate, which destroys the advantage of a high-coherence-
gain E. A lower threshold leads to the regime of a nonleaky integrator, which
is not at all suited to coincidence detection. Thus coincidence detection in
“real” neurons requires an adaptive mechanism to control the threshold.
There are several different possibilities for that. First, we could imagine a
control loop that adjusts the threshold in the appropriate regime. This might
be dif�cult to implement but could be achieved, for example, if each spike
is followed by a long-lasting hyperpolarizing afterpotential. Alternatively,
we could envisage a feedback loop of inhibitory neurons that adjust the
mean input. A control of input strength is also possible through synaptic
changes (Tsodyks & Markram, 1997; Abbott, Varela, Sen, & Nelson, 1997).
Finally, it has been shown in a model study (Gerstner et al., 1996) that po-
tentiation and depression of synaptic weights can balance each other so that
the effective input strength is always normalized (see also Markram, Lübke,
Frotscher, & Sackmann, 1997). However, the threshold is not a critical pa-
rameter for coincidence detection, as is illustrated by the broad maximum
of c as a function of the threshold in Figures 3c and 5. The threshold also
determines the mean �ring rate of a neuron. For reasonable �ring rates, the
quality factor remains of the same order of magnitude as its optimal value
c opt (cf. equation3.25).

The existence of an optimal threshold can be related to the phenomenon
of stochastic resonance (Wiesenfeld & Moss, 1995) in that in the presence of
noise, the detection of weak signals can be enhanced and there is an optimal
noise level. It seems unlikely, though, that neurons are able to change the
level of noise in their input. A neuron has potentially the chance of adapting
its threshold to an optimal value, as we have discussed before. We have
shown that the optimal threshold for coincidence detection is, similar to
stochastic resonance, always above Nu1 by an amount that is of the same
order of magnitude as the noise amplitude.
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Having the parameter c at hand, one still has to be careful with rash
conclusions about a neuron’s task. Let us consider a neuron whose c is
small. One might argue that such a neuron cannot function as a coincidence
detector, and this is certainly correct if we consider the neuron as a single
unit. But if there is a pool of neurons operating in the same pathway and
receiving the same type of input, the output of all these neurons together
could provide a secure cue for a decision. Also, the waiting time, which is
necessary to make a correct decision with high reliability, can be reduced
by using a pool of neurons. That is, the following two counting methods
are equivalent: a system can use either the output spike count of a single
neuron in an interval I or the number of spikes of L statistically independent,
identical neurons operating in the same pathway during a period of time
I/L.

Although we have considered the transition from spike to rate coding,
the output spikes remain phase locked to a periodic input. This means that
the neuronal transmission always retains some of the temporal information,
an aspect that we think is important to signal processing in the brain.

Appendix A: Inhomogeneous Poisson Process

In this appendix we de�ne and analyze the inhomogeneous Poisson pro-
cess. This notion has been touched on by Tuckwell (1988, pp. 218–220) and
others (e.g., Ash & Gardner, 1975, pp. 28–29), but neither of them explains
the formalism itself or the way of computing expectation values. Since both
are used extensively, we do so here, despite the fact that the issue is treated
by Snyder and Miller (1991, secs. 2.1–2.3). Our starting assumptions in han-
dling this problem are the same as those of Gnedenko (1968, sec. 51) for the
homogeneous (uniform) Poisson process, but the mathematics is different.
Neither does our method resemble the Snyder and Miller approach, which
starts from the other end, equation A.11. In the context of theoretical neu-
robiology, an analysis such as this one, focusing on the local behavior of a
process, seems to us far more natural. We proceed by evaluating the mean
and the variance and �nish this appendix by estimating a third moment,
which is needed for the Berry-Esseen inequality, that tells us how good a
gaussian approximation to a sum of independent random variables is.

A.1 De�nitions. Let us suppose that a certain event, in our case a spike,
occurs at random instances of time. Let N(t) be the number of occurrences
of this event up to time t. We suppose that N(0) D 0, that the probability of
getting a single event during the interval [t, t C Dt) with D t ! 0 is

PrfN(t C Dt) ¡ N(t) D 1g D l(t) D t , l ¸ 0 , (A.1)

and that the probability of getting two or more events is o(D t). Finally,
the process has independent increments; events in disjoint intervals are
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independent. The stochastic process obeying the above conditions is an
inhomogeneous Poisson process.

Under conditions on l to be speci�ed below, there are only �nitely many
events in a �nite interval. Hence, the process lives on a space V of mono-
tonically nondecreasing, piecewise constant functions on the positive real
axis, having �nitely many unit jumps in any �nite interval. The expecta-
tion value corresponding to this inhomogeneous Poisson process is simply
an integral with respect to a probability measure m on V, a function space
whose existence is guaranteed by the Kolmogorov extension theorem (Ash,
1972, sec. 4.4.3). A speci�c realization of the process, a function on the pos-
itive real axis, is a “point” v in V. The discrete events corresponding to v

are denoted by tf (v) with f labeling them.
As we have seen in eq. 2.5, spikes generate postsynaptic potentials 2 . We

now compute the average, denoted by angular brackets, of the postsynaptic
potentials generated by a speci�c neuron during the time interval [t0, t),

*
X

f

2 (t ¡ tf (v))

+
. (A.2)

Here it is understood that tf D tf (v) depends on the realization v and
t0 · tf (v) < t. We divide the interval [t0, t) into L subintervals [tl, tlC1) of
length D t so that at the end D t ! 0 and L ! 1 while L D t D t ¡ t0. We
now evaluate the integral (see equation A.2), exploiting the fact that 2 is a
continuous function.

Let #ftl · tf (v) < tlC1g denote the number of events (spikes) occurring
at times tf (v) in the interval [tl, tlC1) of length D t. In the limit D t ! 0, the
expectation value (see equation A.2) can be written

Z

V

d m (v)

"
X

l

2 (t ¡ tl) #ftl · tf (v) < tlC1g
#

, (A.3)

so that we are left with the Riemann integral,

Z t

t0

d s l(s) 2 (t ¡ s) . (A.4)

We spell out why. The function 1If...g is to be the indicator function of the
set f. . .g in V; that is, 1If...g(v) D 1, if v 2 f. . .g and it vanishes if v does not
belong to f. . .g, so it “indicates” where the set f. . .g lives. With the bene�t
of hindsight, we single out mutually independent sets in V with indicators
1Iftl ·tf (v)<tlC1g and write the expectation value (see equation A.2) in the form

Z

V

d m (v)
X

l

1Iftl ·tf (v)< tlC1g 2 (t ¡ tl) #ftl · tf (v) < tlC1g . (A.5)
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Each indicator function in the sum equals

1Iftl ·tf (v)<tlC1g D 1IfN(tlC 1 )¡N(tl)D0g C 1IfN(tlC1 )¡N(tl )D1g

C1IfN(tlC1 )¡N(tl )¸2g. (A.6)

In view of equations A.2 and A.5, we multiply this by 2 (t ¡ tl) #ftl · tf (v) <
tlC1g, interchange integration and summation in equation A.5, and integrate
with respect to m . The �rst term on the right contributes nothing; the second
gives l(tl)2 (t ¡ tl)D t and thus produces a term in the Riemann sum leading
to equation A.4; and the last term can be neglected since it is of order o(D t).
The proof of the pudding is that only a single event in the interval [tl, tlC1)
counts as Dt ! 0. Since 2 (t) is a function that decreases at least exponentially
as fast as t ! 1, there is no harm in taking t0 D ¡1.

A.2 Second Moment and Variance. It is time to compute the second
moment,

*
[
X

tf < t
2 (t ¡ tf )]

2

+
. (A.7)

In a similar vein as before, we obtain, in the limit D t ! 0,
*

X

tf ,t0
f
< t

2 (t ¡ tf )2 (t ¡ t0
f )

+

D
Z

V

d m (v)
X

l,m

1Iftl ·tf (v)< tlC1g1Iftm ·t0
f
(v)< tmC1g2 (t ¡ tf (v))2 (t ¡ t0

f (v))

D
X

l 6Dm

[l(tl)Dt l(tm)Dt] 2 (t ¡ tl)2 (t ¡ tm) C

Z

V

dm (v)
X

l

1I2
ftl ·tf (v)<tlC1g 2

2(t ¡ tl)

D
Z t

t0

Z t

t0

d t1d t2 l(t1)l(t2)2 (t ¡ t1)2 (t ¡ t2) C
Z t

t0
d s l(s)2 2(t ¡ s)

D
µZ t

t0
d s l(s)2 (t ¡ s)

¶2

C
Z t

t0
d s l(s)2 2(t ¡ s). (A.8)

Hence the variance is the last term on the right in equation A.8. It is a simple
exercise to verify that when l(t) ´ l and 2 (t) ´ 1 in equations A.4 and A.8,
we regain the mean and variance of the usual Poisson distribution.

We �nish the argument by computing the probability of getting k events
in the interval [t0, t). For the usual, homogeneous Poisson process it is

PrfN(t) ¡ N(t0) D kg D exp[¡l(t ¡ t0)] ¢
[l(t ¡ t0)]k

k!
. (A.9)
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Wenow break up the interval [t0, t) into many subintervals [tl, tlC1) of length
Dt and condition with respect to the �rst, second, . . . , arrival. The arrivals
come one after the other, and the probability of a speci�c sequence of events
in [t1, t1 C D t), [t2, t2 C Dt), . . . , [tk, tk C D t) is made up of elementary events
such as

PrfFirst spike in [t1, t1 C D t)g
D Prfno spike in [t0, t1)g Prfspike in [t1, t1 C Dt)g
D [1 ¡ l(t1)D t][1 ¡ l(t2)D t] . . . [1 ¡ l(t1 ¡ D t)D t] l(t1)D t

D exp
µ

¡
Z t1

t0

d t l(t )
¶

l(t1)Dt. (A.10)

Here we have exploited the independent-increments propertyand taken the
limit Dt ! 0 to obtain the last equality. Repeating the above argument for
the following events, including the no-event tail in [tk C Dt, t), multiplying
the probabilities, and summing over all possible realizations, we �nd

PrfN(t) ¡ N(t0) D kg

D exp
µ

¡
Z t

t0

d t l(t )
¶ Z t

t0

d tk l(tk) . . .
Z t3

t0

d t2 l(t2)
Z t2

t0

d t1 l(t1)

D exp
µ

¡
Z t

t0

d t l(t )
¶

¢
1
k!

µZ t

t0

d s l(s)
¶k

. (A.11)

In other words, N(t) ¡ N(t0) has a Poisson distribution with parameterR t
t0

d s l(s). If l(s) ´ l, one regains equation A.9. We now see two things.
First, the appropriate condition on l is that it be locally integrable. Then
PrfN(t) ¡ N(t0) < 1g D 1 as the sum of equation A.11 over all �nite k
adds up to one. Furthermore, N(t) ¡ N(t0 ) with t0 < t0 < t has a Poisson
distribution with parameter

R t
t0 d s l(s). Second, by rescaling time through

t :D
R t d s l(s) one obtains (Tuckwell, 1988; Ash & Gardner, 1975) a homoge-

neous Poisson process with parameter l D 1. This also follows more directly
from equation A.1. It is of no practical help for understanding neuronal co-
incidence detection, though. For instance, if we use a spike train generated
by an inhomogeneous Poisson process with rate l(t) to drive, such as a
leaky I&F neuron, its mean output �ring rate does depend on the temporal
structure of l(t), as we have argued. This effect cannot be explained by sim-
ply rescaling time. Another example is provided by the auditory system,
where l(t) is taken to be a periodic function of t, with the period determined
by external sound input. The cochlea, however, produces a whole range of
frequency inputs, whereas time can be rescaled only once.

A.3 Berry-Esseen Estimate. Equation 2.5 tells us that the neuronal input
is a sum of independent, identically distributed random variables corre-
sponding to neighboring neurons j. Neither independence nor a common
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distribution is necessary, but both are quite convenient. The point is that,
according to the central limit theorem, a sum of N independent random
variables1 has a gaussian distribution as N ! 1. In our case, N is de�nitely
�nite, so the question is: How good is the gaussian approximation? The an-
swer is provided by a classical, and remarkable, result of Berry and Esseen
(Lamperti, 1966, sec. 15).

We �rst formulate the Berry-Esseen result. Let X1, X2, . . . be independent
with a common distribution having variance s2 and �nite third moment.
Furthermore, let SN D

PN
jD1(Xj ¡ hXji) be the total input, the Xj stemming

from neighboring neurons j as given by the right-hand side of equation 2.5
with N as the number of synapses, and let Ys be a gaussian with mean 0 and
variance s2. Then there is a constant (2p )¡1/2 · C < 0.8 such that, whatever
the distribution of the Xj and whatever x,

­­­­Pr
»

SNp
N

· x
¼

¡ PrfYs · xg
­­­­·

Ch|X1 ¡ hX1i|3i
s3

p
N

. (A.12)

In the present case, s2 directly follows from equation A.8. Computing h|X1 ¡
hX1i|3i is a bit nasty but it is simpler, and also provides more insight, to
estimate the third moment directly by Cauchy-Schwartz so as to get rid of
the absolute value,

h|X1 ¡ hX1i|3i · h(X1 ¡ hX1i)2i1/2h(X1 ¡ hX1i)4i1/2 . (A.13)

The �rst term on the right equals s; the second is given by

h(X1 ¡ hX1i)4i D
Z t

t0
d s l(s) 2 4(t ¡ s) C 3s4, (A.14)

where s2 D
R t

t0
d s l(s)2 2(t ¡ s). Collecting terms, we can estimate the right-

hand side of equation A.12, the precision of the gaussian approximation
being determined by 1/

p
N as N becomes large.

Appendix B: Cross-Correlograms and Degree of Synchrony

Here we outline the relationship between the relative modulation Arel of
cross-correlograms and the underlying degree of synchrony, rin.

A spike input generated by equation 2.1 leads to a periodic cross-corre-
lation function,

C(t) /
1X

mD¡1
Gs

p
2(t ¡ mT). (B.1)

1 This N directly corresponds with the number of synapses that provide the neuronal
input. There is no need to confuse it with the stochastic variable N(t) of the previous
subsection.
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The relative amplitude Arel of C is to be de�ned below. It is estimated from
the Fourier transform of C, which is de�ned in equation 3.11. The Fourier
coef�cients of equation B.1 are

QCk / exp
h
¡(k s v)2

i
with v D

2p

T
. (B.2)

For s v > 1 the �rst Fourier component dominates, all higher coef�cients
can be neglected, and we can approximate equation B.1 by

C(t) ¼ QC0 C 2 QC1 cos(t), (B.3)

where 2 QC1 is the amplitude of the �rst-order oscillation. Then Arel, de�ned
as the relative modulation of the cross-correlogram (cf., e.g., König, Engel,
& Singer, 1995), is approximated by

Arel ¼
2 QC1

QC0
. (B.4)

Substituting equation B.2 into B.4, we obtain

Arel ¼ 2 exp
h
¡(s v)2

i
. (B.5)

Using the de�nition of the vector strength (see equation 2.2) in B.5 and
solving for rin, we �nd

rin ¼

s
Arel

2
. (B.6)

The restriction s v > 1 corresponds to rin < 0.6 or Arel < 0.7.
The oscillation amplitude of the cross-correlation function C(t) for spike

activity as found in various brain areas decays to zero with increasing |t|
(cf. Gray & Singer, 1989) because neuronal activity is not strictly periodic.
Most of the cross-correlograms can be �tted by using generalized Gabor
functions of the form (cf., for example, König et al., 1995)

C(t) / 1 C Arel cos(t) exp
³

¡ t2

l2

´
, (B.7)

where l is a time constant. In this case we obtain a measure of the degree
of synchrony rin also from equation B.6, which originally was derived for
the periodic case only. The transfer of the arguments from the periodic to
the nonperiodic case is reasonable if l is of the order of a few oscillation
periods T or longer. For coincidence detection, only correlations within the
integration time t of a neuron are important. For neurons that are able to
act as coincidence detectors, t has to be at least of the order of T, so that
reasonable coincidence detectors do not “see” the decay of the correlation
function.
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