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Abstract. In the first part of this paper we discuss a technical visual sensory system, which—
in analogy with the retina—includes some preprocessing of visual information. In so doing,
we use an information-theoretic criterion, the infomax ansatz, to optimize the response of the
sensory system. In particular, it is shown that the lattice structure of the photoreceptor array
has to be taken into account. By a discrete Fourier transformation on a triangular lattice we
derive the frequency response of the infomax filter within the first Brillouin zone. To illustrate
the response properties, infomax filters adapted to different noise levels are applied to images
with different signal-to-noise ratios. This clearly demonstrates the necessity of adaptation of the
filter properties to the given noise level. Furthermore, it is shown how to efficiently implement
infomax-like filters by simple networks with only nearest-neighbour interactions. A two-layered
network topology proves to be very advantageous in implementing the desired high-pass or
low-pass properties. The network topology allows for adaption of the network to low and high
noise levels by simply adjusting the nearest-neighbour couplings.

In the second part of this paper, we compare the previously described information-theoretic
requirements on a visual sensory system with biological facts known from the vertebrate retina.
The substantial physiological response properties of the vertebrate retina are in agreement with
the main features of the infomax filter. Since available experimental data lacks information which
is necessary for a more quantitative comparison, we present suggestions for future experiments.
Some key anatomical features of the retina of many vertebrates compare well with our two-
layered implementation of the infomax filter. The analogy, in particular, concerns the adaption
mechanism. To illustrate this point, we summarize some recent experiments which demonstrate
that in the retina of some species adaption is based on the release of the neuromodulator dopamine
by the interplexiform cells. This causes the horizontal cells to decouple. On the basis of recently
gained understanding of the outer plexiform layer of the retina some further hypotheses about
the functionality of the retina become obvious and possible future experiments to verify or refute
them are suggested.

Finally, we discuss the infomax approach from a more general point of view. In particular,
we show that redundancy is essential to obtaining noise robustness of an internal representation
of the environment as it is produced by a sensory system such as the retina.

1. Introduction

The amount of information which we are permanently receiving through our sensory systems
is considerable. In our eyes, for example, there are about 108 photoreceptors at work [63],
resulting in Giga-bits of visual information per second [56]. The best modern computers
would be vastly overloaded if they had to process this huge stream of information.

In biological sensory systems the processing of information starts in the sensory system
itself as soon as the data is received by the receptor cells. This is particularly evident in
the retina. The phenomenon of Mach bands [46], for example, is commonly attributed
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to retinal information processing. So a first natural question is: what is the purpose
of this early-stage preprocessing? In this paper, we will try to give an answer to this
question using concepts from information theory. Information-theoretic approaches to
sensory information processing have become very popular and are by now nearly a standard
technique. Nonetheless, there is still the need for a better understanding, as will be seen in
this paper.

In the above sentences, the keyword ‘information ’ has occurred repeatedly. If we
could get a quantitative concept instead of this catchword, we would be able to formulate
the requirements for an optimal sensory information processing system. Sensory systems
are mapping the environment onto an ‘internal representation’. By using an ‘information
measure’ we may decide ‘how much information’ concerning our environment is reflected
by the internal representation. This enables us to assess the performance of a sensory system
and to construct an information-theoretically optimal system. An appropriate information
measure is given by the Shannon entropy or by the mutual information, which is a
mathematical expression borrowed from information theory. A corresponding approach
was first formulated by Linsker [41, 43]. It has since become known as the ‘infomax
ansatz’. Starting with this ansatz we are able to formulate what an optimal visual information
processing system should do, and compare the result with the way the retina works.

Our eye can adapt to very different illumination conditions. For example, the intensity
of sunlight is 10 billion times that of starlight, yet the eye works under both conditions
surprisingly well [24]. That is to say, between the extreme limits of maximal light and
dark adaption the eye changes its sensitivity by a factor of 6× 106 [63]. With respect
to this ability, our eye is by far superior to any technical sensor. This is partially due to
using two specialized classes of photoreceptor, the rods and the cones. Moreover, in the
retina the photoreceptors are embedded in a neural network that serves as an instantaneous
preprocessing system. Given the extreme limits of adaption we are concerned with extremely
different signal-to-noise ratios. Of course, this fact calls for very different strategies of
preprocessing visual information. It is well known that the information processing of the
retinal network is highly adaptive to the illumination condition [20]. The aim of this paper is
to understand retinal preprocessing from first principles and, in particular, to understand the
adaption toextremely different noise levels. The method of information maximization offers
a suitable framework to develop optimal strategies for an early stage preprocessing of anoisy
signal. On the one hand, this information-theoretically optimal strategy may be compared
with the information processing of the retina, which leads to a better understanding of the
retina. On the other hand, we will show how a technical sensory system may be designed
in analogy with its biological counterpart. That is, we will design a sensory system with
on-chip preprocessing.

A brief comparison with companion literature is in order. There is a fair amount of work
which supposes an optimization criterion to explain biological visual information processing
[23, 45, 52, 57]. Some authors use an approach based on information-theoretic concepts as
well [2, 3, 10, 40, 44, 60, 61, 62]. It was Atick [3] who clearly pointed out the close relation
between information theory, the statistics of natural images and the information processing
function of the retina. A key role has also been played by the principle of redundancy
reduction, which can be traced back to Attneave [5] and Barlow [6, 7]. We will discuss
the relationship with some other work at the end and, in particular, we will discuss the
meaning of redundancy in the noisy case. As far as is known to us, the infomax approach
in conjunction with the processing of natural images was first used by van Hateren [60]
to describe the properties of the large monopolar cell of the fly. In so doing, he took
advantage of numerical Fourier transformations on a rectangular lattice. Some interesting
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general considerations with respect to the infomax approach in a linear network without
special reference to image processing can be found in [13].

This paper is organized as follows. In section 2 the technical infomax filter is in-
troduced. There we start by discussing some prerequisites. In particular, we review the
statistics of natural images and a physically appropriate power constraint which allows us to
incorporate our knowledge of a finite internal signal-to-noise ratio in the theory. Via a short
mathematical detour through Fourier transformations on a discrete lattice we then derive the
infomax filter and the relation between the power constraint and its Lagrange parameter.
The infomax filter is discussed both in the frequency domain and in the space domain. We
thereby prove that there is unique phase for the infomax filter in the frequency domain if
we use ‘local receptive fields’. The filter properties are demonstrated through the effect
of the filters on an image. Furthermore, it is shown how the infomax-like filters may be
implemented by a simple network with nearest-neighbour interactions alone. This network
can be easily adapted to the noise level by simply adjusting the nearest-neighbour couplings.
Up to here the first part of the paper might be considered independent of biological visual
information processing, i.e. simply a discussion of the infomax filter. Nevertheless, we will
partially use the intuitive nomenclature of the retina (receptor cells, ganglion cells, receptive
fields, etc) so as to avoid repeating ourselves in the rest of this paper. In the next part,
section 3, the previously described technical infomax filter is compared with physiological
and anatomicalfeatures of the vertebrate retina. Some contrast sensitivity measurements
are compared with the response properties of the infomax filter. It will thereby become
evident that further experimental data is desirable. We then compare the network structure
of the infomax filter with the topology of the outer plexiform layer of the retina. At this
point we also summarize some recent findings on an adaption mechanism observed in the
retinas of some species, which is analogous to the modulation of the nearest-neighbour
couplings of the previously suggested network. From our understanding of the retina some
further hypotheses about the functionality of the retina follow. Finally, in section 4, we
discuss the infomax approach from a more general point of view and relate it to Barlow’s
principle of redundancy reduction. We close in section 5 by discussing the advantages and
possible applications ofon-chip preprocessing of sensory information. We summarize our
main results and give an outlook on possible future work.

2. The infomax filter for natural images

2.1. Some prerequisites

The statistics of natural images.A fundamental prerequisite for constructing optimal
information processing systems is some knowledge about the nature of the signals which
are to be processed. Here some knowledge about the statistics of natural images is required.

Natural images contain a large amount of redundant information [5, 36]. This
redundancy becomes evident very impressively in experiments where a person being tested
is asked to estimate missing or noisy parts of an image [33]. In general, man is very
successful in this task, which is due to the redundancy of visual information. To a large part
the redundancy of natural images is caused by the correlation of nearby image elements.
Hence, one goal of investigating the statistics of natural images is the estimation of the
correlation function.

For the retina a natural image is a two-dimensional distribution of intensities, which
we denote byξ(x). The vectorx is the position in the two-dimensional focal plane.
We denote by〈·〉 the expectation value of any expression within the parentheses. Then
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Cξ(x,y) ≡ 〈ξ(x)ξ(y)〉 is the correlation function of the ensemble of natural images.
Without loss of generality we assume〈ξ(x)〉 = 0. In addition, we may assume that
the correlation of image elements is only dependent on their relative separation, i.e.
Cξ(x,y) = Cξ(x− y). The Fourier transform of the correlation function

Cξ(k) ≡ 1

2π

∫
R2

d2x e−ik·x Cξ(x) (2.1)

is called the spectrum of natural images. For the moment we disregard any finite-size or
discrete-sampling effects.

By some simplifying assumptions it is possible to determine thecoarse form of the
spectrumCξ . First, we assume thatCξ is rotation invariant,Cξ(k) = Cξ(k). Second, the
spectrum of natural images is assumed to be invariant with respect to any scaling of the
x-axis. A scene on which we focus is scaled by a factor 1/s if we change our distance by
a factors. Scaling the space domain by a factor 1/s in turn results in scaling the frequency
domain by a factors. This, as well as experimental findings [10, 23], is the motivation for
the assumption of scale invariance. Hence, let us take a look at the consequences. We shall
see that the only consistent spectrum isCξ(k) ∝ 1/k2.

Scale invariance means thatCξ(sk) ∼ Cξ(k) for any factors > 0. Hence we assume

Cξ(sk) = c(s)Cξ (k) (2.2)

wherec(s) is to be determined. With this aim in mind we express the variance of natural
images at an arbitrary positionx in the focal plane by the spectrumCξ(k):〈

ξ(x)2
〉 = Cξ(0)
= 1

(2π)2

∫
R2

d2k Cξ(k)

= s2 1

(2π)2

∫
R2

d2q Cξ(sq)

= s2c(s)
〈
ξ(x)2

〉
. (2.3)

In obtaining the third equality we made the variable transformationk = sq and then used
the scale invariance (2.2). From (2.3) we conclude thatc(s) = s−2, and therefore that

Cξ(sk) = 1

s2
Cξ(k) . (2.4)

This condition uniquely determines the functional form of the spectrum. We have

Cξ(k) = g

k2
(2.5)

with an arbitrary global constantg. Some work [10, 23] has pointed out the scale invariance
of natural images, and experimental statistics confirms equation (2.5) by and large for the
spectrum of natural images [9, 19, 53, 54]. In [54], for example, the experimental exponent
for images in the woods is determined to be 1.81± 0.01.

The derivation of equation (2.5) has one weak spot. We end up with (2.5), but because
of the second-order pole this expression leads to infinite variance,〈ξ(x)2〉 = ∞. Hence
equation (2.3) reads∞ = ∞s2c(s), which does not admit the conclusionc(s) ∼ s−2.
Physically, infinite variance is not realistic. If necessary we will shift the pole from the real
axis by a small amountκ and set

Cξ(k) = g

κ2+ k2
. (2.6)
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This corresponds to two first-order imaginary poles. The spectrum (2.5) and (2.6) will be
the basis of all further investigations.

Perception of visual information by a sensory system starts with sampling the image
ξ(x) by a photoreceptor arrayL. We denote the photoreceptor signals by the vector
ξ = (ξ(x),x ∈ L) ∈ RN and discuss the consequences of this sampling later on (Brillouin
zone, Nyquist frequency, aliasing, etc). The correlations of the photoreceptors are now
described by the correlation matrixCξ = 〈ξξT〉. Not that much is known about higher-
order moments. We will therefore estimate the the probability distributionP(ξ) of the
sampled natural images on the basis of the correlation matrixCξ . That is, we assume that
P(ξ) is a Gaussian distribution (maximum entropy!) with correlation matrixCξ :

P(ξ) = 1
√

2π
N

1√
detCξ

exp

[
−1

2
ξTC−1

ξ ξ

]
. (2.7)

The relation of the matrixCξ to the spectrum of the natural imagesCξ(k) will become
evident later on. On the basis of the statistics (2.7) we may now construct a corresponding
optimal sensory information processing system.

The model. Photoreceptors transform visual information into electrical signals. The
photoreceptor signals are processed by a network of different cells. At the end, ganglion
cells form the outputσ of the retina. For the sake of simplicity, we assume that the
ganglion cells are arranged in the same lattice as the receptor cells so thatσ ∈ RN as well.
In the fovea this assumption is valid, as here the number of ganglion cells is comparable
to the number of cones. Furthermore, we assume that the outputσ depends linearly on
the inputξ. This makes sense for the main class of ganglion cells, i.e. for the visual P-
system [18, 29] and for the X-ganglion cells of the cat [21]. Finally, we assume that the
input ξ as well as the outputσ is corrupted by Gaussian noiseν andµ with variances
〈ννT〉 = 111 and 〈µµT〉 = δ11, respectively. The significance of noise throughout the
whole retina has been discussed elsewhere [16, 20, 51, 56, 59]. The varianceδ describes
to what extent different output signals may have a different meaning. In other words,δ

also has to reflect the accuracy of later internal information processing. The assumption
δ = 0 is absolutely unphysical; rather it is reasonable to assume a large amount of internal
noise [58]. Altogether, we obtain the following model:

σ = G (ξ + ν)+ µ (2.8)

for some linear transformationG. According to the noise termsµ andν, the output variable
σ is not a deterministic function of the input variableξ. Instead their mutual dependence
is given by the conditional distributionP(σ|ξ) or by P(ξ|σ).

In the first part of this paper we are not interested in answering the question of how
the network of the retina or a technical sensor manages to represent the linear mappingG.
For the moment the sensory system is a black box whose linear response properties are
described by the matrixG. The goal we are aiming at is investigating requirements onG,
which will follow from an infomax approach.

The infomax ansatz.The task of a sensory system is to map the environment onto an
internal representation. The input variableξ is also called theexternal variable or simply
the environment. The output variableσ is also called theinternal variable or theinternal
representation of the environment. Of course, the internal representation should reflect as
much ‘information’ about the environment as possible. So far, however, this is just a
colloquial formulation and to quantify this we need a so-called information measure.
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It is beyond the scope of this paper to discuss information measures. The approach used
here is based on the Shannon entropy [14]. The entropy of a random variable is interpreted
as a measure of the uncertainty about this variable. We do not want to be uncertain about
our environment. Hence we require that, given the internal representationσ, the entropy of
the external variableξ

H [ξ|σ] ≡ −
∫

dNξ
∫

dNσ P(ξ,σ) logP(ξ|σ)

= −〈logP(ξ|σ)〉 (2.9)

be small. HereP(ξ|σ) is the probability density ofξ given σ, and we have implicitly
assumed that all probability measures are absolutely continuous with respect to Lesbeque
measure. The entropyH [ξ|σ] can be used as a measure for the quality of a sensory
system. For reasons of comparison we subtract the entropyH [ξ] = −〈logP(ξ)〉, which
is a constant, not depending on the properties of the sensory system. By an extra change
of sign and exploiting the Bayes relationP(ξ|σ) = P(ξ,σ)/P (σ) we obtain the mutual
information

M[σ; ξ] =
〈
log

P(ξ,σ)

P (ξ)P (σ)

〉
(2.10)

which we will use to assess the performance of a sensory system with linear mapG. This
approach is known as the infomax ansatz, which dates back to Linsker [41, 43].

At this point we have to comment on the concept of the entropy of a continuous
variable. Indeed, a solid mathematical foundation of an information measure, e.g., by
the above-mentioned Khinchin axioms, is only possible for random variables with a finite
number of discrete states. The straightforward generalization (replacing sums by integrals
etc) results in a concept which is not without problems. We have to take care of two things.
First, the set of real numbers has uncountably many elements, which corresponds to an
uncountably infinite alphabetin our case. This concept is not within the framework of
conventional information theory [1, 14], and, of course, may lead to divergent expressions.
The assumption of noise for every random variable leads to a finite resolution of the real
axis, and, correspondingly, any entropy becomes finite as well. Finite noise, however
small, is absolutely different from zero noise. Finite noise corresponds to a finite number of
discriminable states, while zero noise is an unphysical concept corresponding to an infinite
number of discriminable states. Second, we may investigate the limits of vanishing noise
at the end, e.g., the limit1→ 0 or the limit δ → 0. However, we have to take care that
the physical contents which we are aiming at are not lost in this limit. In our case it turns
out that the limits1 → 0 andδ → 0, as well as the limits1 → ∞ and δ → 0, do not
commute, and the different results correspond to different physical assumptions, namely
δ � 1 (coding) orδ � 1 (noisy information processing). Results which are derived by
settingδ = 0 a priori must in general be treated with care.

The power constraint. Without any constraints the optimal sensory mappingG has an
infinite determinant, because an infinite determinant results in an infinite signal-to-noise
ratio 〈σTσ〉/δ at the output. Physically we observe a finite variance or a finite ‘number
of states’ (〈σTσ〉/δ)1/2 available to the output. We add this physical constraint to our
optimization criterion (2.10) by using a Lagrange parameterλ. The cost function is then
given by

L = M[σ; ξ] − λ
2

p

δ
where p ≡ Trace

〈
σσT

〉
. (2.11)
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This is essentially the ‘power constraint’ which is used by van Hatereen [60, 61] as well as
in most technical considerations. Other constraints may be used, but the constraint cannot
be chosen arbitrarily. It has to reflect the physics of the system which we want to describe
and it has to be experimentally accessible, if we finally want to compare our results with
those of a biological system. The variancep, or better the signal-to-noise ratiop/δ, meets
these demands.

2.2. Theory of the infomax filter

We derive the infomax filter only briefly. Derivations like this one have become some kind
of a standard approach [3, 10, 40, 44, 60]. Here, however, we focus on a rigorous treatment
of the foveal lattice (or the lattice of a technical sensor array). This proves to be very
important, in particular, if we want to compare the result with physiological experiments.

We have assumed the Gaussian model (2.7) as the distribution of natural images and
Gaussian white noise. Hence the marginal distribution of the internal variableP(σ) and
the conditional distributionP(σ|ξ) are also Gaussians with covariance matrices

Cσ ≡
〈
σσT

〉 = GCξGT +1GGT + δ11 (2.12)

and

Cσ |ξ ≡
〈
σσT|ξ〉− 〈σ|ξ〉 〈σT|ξ〉 = 1GGT + δ11. (2.13)

Here the expression〈· · · |ξ〉 denotes a conditional expectation givenξ; it is also Gaussian
and has the covariance matrixCσ |ξ . The entropyH of a multivariate Gaussian distribution
with covariance matrixC is given byH = 1

2 log(detC) + 1
2N log(2πe). For the cost

function (2.11) we then obtain

L = 1

2
log

detCσ

detCσ |ξ
− λ

2
Trace

(
Cσ

)
(2.14)

with Cσ and detCσ |ξ given by (2.12) and (2.13).
We have already discussed the statistics of natural images in terms of the assumption

of translation invariance, namelyCξ,xy = Cξ(x− y). We will also assume this symmetry
property for the structure of the retina, i.e. we will assumeGxy = G(x− y). This means
that the couplingGxy of an input neuron at the positiony ∈ L to an output neuron at
the positionx ∈ L is only dependent on the relative separation of these two neurons in
the retina. Because of translation invariance and, additionally, assuming periodic or infinite
boundary conditions we can diagonalizeG and Cξ simultaneously by a discrete Fourier
transformation. For example, for the matrixG this discrete Fourier transformation reads

M∗G M = diag[G(k)] Mkx ∼ exp(−ix · k) . (2.15)

The vectorx is a vector on the chosen lattice structureL, and the frequency vectork has to
be defined on the corresponding reciprocal lattice [35]. Using the coordinate transformation
(2.15), we rewrite the cost function (2.14) as

L = 1

2

∑
k

log
|G(k)|2Cξ(k)+ |G(k)|21+ δ

|G(k)|21+ δ − λ

2δ

∑
k

(|G(k)|2Cξ(k)+ |G(k)|21+ δ)
(2.16)

wherek runs through the reciprocal lattice.
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Using the cost function (2.16), we determine the ‘optimal’|G(k)|2, taking into account
the boundary condition|G(k)|2 > 0. The standard optimization procedure leads to the
result

2
1

δ
|G(k)|2 = 1

1+1/Cξ(k)

[(
1+ 4

λ

1

Cξ(k)

) 1
2

+ 1

]
− 2 (2.17)

or |G(k)|2 = 0 if the right-hand side is less than zero. This is the Kuhn–Tucker condition
of an optimization task with the constraint given as an inequality [12]. Expressions which
are more-or-less equivalent to (2.17) can be found in [44, 52, 60]. The filter gain (2.17) is
non-zero, if

Cξ(k)

1
>

λ

1− λ. (2.18)

This is a condition on the signal-to-noise ratio SNRξ (k) ≡ Cξ(k)/1 of the external signal
ξ corresponding to the frequency componentk and means that|G(k)|2 = 0, if there is
too much noise in the corresponding frequency component. BecauseG(k) corresponds to
the eigenvalue of the linear mappingG, it may well be that the optimal mapping is not
invertible. In other words, for large noise the weight vectors of the output neurons become
linearly dependent. Linsker noted a corresponding property when he originally stated the
infomax approach [41, 42].

The global signal-to-noise ratio at the input is given by SNRξ =
∑
k SNRξ (k), which

is proportional tog/1 if we assume the spectrum (2.5) or (2.6). Hence we will also use
the ratiog/1 to characterize the signal-to-noise ratio SNRξ at the input. The SNRξ will
be mainly determined by the illumination intensity. We will therefore associate low SNRξ

with ‘vision at night’†.
For mathematical convenience we now introduce an additional assumption, namely, that

the photoreceptor array has an infinite extension. This assumption is valid, if the extent of
the ‘receptive fields’ investigated here is much smaller than the extent of the photoreceptor
array. This will be confirmed at the end. In the retina the density of the photoreceptors
is decaying rapidly with increasing distance from the fovea [29, 63]. Within the fovea,
however, the density of the photoreceptors is almost constant. This justifies the assumption
(at least as an approximation) of an ‘infinite fovea’ with single lattice constant. In this limit
k becomes a continuous variable, which is defined in the first Brillouin zone.

The Brillouin zone of a square lattice with lattice constanta is the square [−π/a, π/a]×
[−π/a, π/a]. The frequencyπ/a corresponds to what is known as Nyquist frequency of
one-dimensional discrete Fourier transformations. For the retina, however, the assumption
of a square lattice is not adequate. In the fovea the cones form a fairly regular triangular
lattice [63], which corresponds to the densest packaging in two dimensions. This lattice and
the corresponding Brillouin zone, which is a hexagon, are shown in figure 1. The hexagon
is nearly a disc. Because any highly regular lattice structure breaks rotational symmetry,
which is of advantage when manipulating mathematical expressions, we replace the hexagon
by a disc of equal volume. The radius of this disc is the frequencykB , which is given by

kB = 12
1
4π

1
2

1

a
≈ π

a
. (2.19)

The assumption of a rotation invariant Brillouin zone may also be an adequate strategy in
the case of a ‘random lattice’. At least in the parafoveal region of the retina the receptors
seem to be distributed in a partially random manner [63, 66]. In general, the lattice structure

† Note that for very low illumination conditions the noise is Poisson and not Gaussian [16].
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k
B

Figure 1. The triangular lattice and the corresponding
Brillouin zone as found, for instance, in the fovea;
cf [63, figure 3.4a]. Although the elementary cell of
this lattice is a parallelogram, this lattice is commonly
termed triangular. The two arrows show one possible
choice of primitive translations. The Brillouin zone
of this lattice is the shaded hexagon. To restore
rotational symmetry, the hexagonal Brillouin zone is
approximated by a disc of equal volume. The radius of
the disc is the frequencykB , which may by viewed as
the analogue of the Nyquist frequency.

may not be disregarded. That is, we are not allowed to assumea = 0 or kB = ∞, because
it will finally turn out that the extent of the receptive fields is of the order of the lattice
constanta.

Due to the assumption of an infinite lattice, the Fourier transforms are given by

G(k) =
∑
x∈L

e−ik·xG(x) and G(x) = 1

VB

∫∫
B

d2k eik·xG(k). (2.20)

HereB denotes the Brillouin zone andVB is its volume. Analogous expressions apply to
Cξ . Later on we will assume the spectrum (2.5) or (2.6) forCξ(k) on the first Brillouin
zone, i.e. we do not take into account any aliasing effects. Aliasing means that the discrete
sampling by the photoreceptor array does not discriminate between frequencies which differ
by a vector of magnitude 2kB along any lattice direction and, hence, the higher Brillouin
zones become superimposed on the first Brillouin zone. For the moment it is sensible to
disregard aliasing for the following reasons. First, because of the 1/k2 dependence of the
spectrum the main contribution always comes from thefirst Brillouin zone. Second, as
we will see later on, when we introduce a structure function to take into account the finite
extent of the cones and the point spread function of the optical apparatus [63], the system
is practically insensitive to frequencies of the higher Brillouin zones, abovekB ∼ 1/a.
Finally, an aliasing argument does not apply to noise as far as the noise emergesa priori
at the discrete lattice sites.

2.3. Discussion and demonstration of the filter properties

For a discussion of infomax filters and filters with similar characteristics, we refer the reader
to [60, 61] and also to [3, 4].

Discussion in the frequency domain.For low input noise (small1) the infomax filter (2.17)
is approximately given by

λ

δ
|G(k)|2 ≈ 1

Cξ(k)+1
[

1− λ− 2

λ

1

Cξ(k)

]
(2.21)

which follows by expanding the square root in (2.17). For vanishing input noise1 = 0 we
finally obtain

|G(k)|2 ∼ 1

Cξ(k)
. (2.22)
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This result corresponds to ‘whitening’ the input signal, i.e.Cσ (k) is constant. To obtain a
flat output spectrum, a large filter gain|G(k)| is needed for frequencies with smallCξ(k).
In general,Cξ(k) decreases monotonically with increasingk = ‖k‖, and, hence,G(k) is
high-pass.

If there is finite receptor noise1 > 0, this whitening results mainly in boosting the noise
in the high-frequency components of an image. In equation (2.21) this is taken into account
to a first approximation by the term−21/[λCξ (k)], which mainly damps frequencies with
low SNRξ (k) ≡ Cξ(k)/1, i.e. high frequencies. With increasing receptor noise1 or
decreasing signal amplitude, the filter properties gradually change from high-pass to low-
pass. Finally, high frequencies may even be cut off by the Kuhn–Tucker condition (2.18).
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Figure 2. Some infomax filters for large, medium, and small signal-to-noise ratio SNRξ . Full
line, g/1 = 3.3, (p − δ)/δ = 10.0; dotted line,g/1 = 0.1, (p − δ)/δ = 1.0; broken line,
g/1 = 0.0033, (p − δ)/δ = 0.1. The internal noise contributes to the total variancep of the
internal signal by an amountδ. Hence it is adequate to characterize the internal noise by the
parameter(p − δ)/δ. The relation betweenp andλ is evaluated in appendix A.1. The filters
in (a) correspond to the spectrum (2.5), those in (b) to the spectrum (2.6). The lattice constant
is a = 0.02◦ and the correspondingkB is marked by the vertical line. In (a), we have chosen
κ = 10−2kB .

Some filters are plotted in figure 2. The filters in figure 2(a) correspond to the
spectrum (2.5), those in 2(b) to the spectrum (2.6). The vertical line shows the frequency
kB corresponding to the lattice constanta = 0.02◦. In figure 2(a) the position of this line is
somewhat arbitrary, as a rescaling of the frequency axis may be absorbed into the unknown
constantg of the spectrum (2.5). This is simply the scale invariance of the natural images
discussed previously so that the ratiog/1 cannot be fixed. Only a finiteκ > 0 fixes the
scale of natural images in relation to the lattice constant. For thisκ it is adequate to assume
at least

κ ≈ 2π

extent of the fovea
. (2.23)

For the infinite lattice, the possible frequenciesk are dense in the Brillouin zone and the
sum over the reciprocal lattice becomes an integral over the Brillouin zone. Because of the
finite extent of the fovea the smallest frequency of physical meaning on the foveal lattice is
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given by (2.23). By choosingκ according to (2.23), we have changed the original spectrum
essentially only below this frequency. The fovea extends to about 100 lattice constantsa

only, so thatκ = 10−2 is an adequate assumption.

Back to the space domain.The cost function (2.16) depends only on|G(k)|2, and, hence,
the infomax ansatz does not determine the phase of the filters. Given anyG(k), we may
form a related filterG(k)eif (k) with an arbitrary functionf (k) ∈ R, which always results
in the same costs (2.16). The only condition onf (k) is eif (k) = e−if (−k), becauseG(x)
has to be real, i.e.G(x) ∈ R. Demanding rotational symmetry leads to the additional
condition eif (k) = eif (−k). This additional condition leaves us only with two possible
choices eif (k) = ±1.

In what follows we will always chooseG(k) = |G(k)|. This choice of the phase
is distinguished by the additional property that the corresponding ‘receptive fields’ are
‘local and topology preserving’. Only through this property the term receptive field is
appropriate since a ‘receptive field’ is defined as the retinal area of receptors that provide
input to a ganglion cell. In appendix A.2 we show that, without rotation symmetry, the two
possibilities for the phases, eif (k) = ±1, follow from requiring the receptive fields to be
local. In so doing we use a cost function which enables us to assess the locality of a phase
f (k), given a fixed|G(k)|.

Having determined the phase of the filters, we may now use the inverse Fourier
transform to calculate the receptive fieldG(x). The infomax filter (2.17) depends onk
only via the signal-to-noise ratio SNRξ = Cξ(k)/1. We suppose the spectrum (2.5), i.e.
Cξ(k) = Cξ(k) = g/k2. In this case the infomax filter may be viewed as a function of
k21/g only, so thatG(k) = H(k21/g). The inverse Fourier transform therefore reads

G(x) ∼
∫ kB

0
kdk

∫ 2π

0
dϕ e−ikx cos(ϕ) H

(
k21/g

)
∼
∫ kB

√
1/g

0
qdq J0

(
q

x√
1/g

)
H
(
q2
)

(2.24)

where we have omitted irrelevant global constants. In the second line we have switched to
the integration variableq = k√1/g and introduced the zero-order Bessel function

J0(x) = 1

π

∫ π

0
dϕ e−ikx cosϕ. (2.25)

Integral transformations with Bessel functions as their kernels are called Hankel
transformations. They are difficult to perform analytically [64]. Furthermore, the integral
in (2.24) has the finite upper boundkB

√
1/g so that we are bound to evaluate the integral

over q in (2.24) explicitly. Figure 3 shows some results forG(x), which follow from a
numerical evaluation of the integral overq in (2.24). For large SNRξ we find the typical
‘centre-surround receptive fields’, which are known from many experiments on the retina.
The illumination of the surroundings of an output cell has an inhibitory effect on that cell.
This inhibitory effect decreases with increasing noise1. Finally, the extent of the optimal
receptive fields increases as1 increases.

The size increase of the receptive fields can be proven explicitly as soon as the Kuhn–
Tucker condition (2.18) is not met in the first Brillouin zone. In this case the effective
upper bound of the integral (2.24) is not given bykB

√
1/g but rather by the valueq0 with

H(q2
0) = 0. HenceG(x) may be written as

G(x
√
1/g) ∼

∫ q0

0
qdq J0(qx)H(q

2). (2.26)
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Figure 3. (a) Local infomax filtersG(x) according to the parameters of figure 2(a). As SNRξ
decreases, first the inhibitory surround disappears, then the size of the receptive fields increases.
To enable better comparison, any filter has been scaled so as to giveG(x = 0) = 1. The
units of thex-axis are given in terms of the lattice constanta. Strictly speaking, the function
G(x) is only defined for discrete values. Nearest neighbours have a distancea. On a triangular
lattice, however, the next-nearest-neighbour lattice points are at a distance of

√
3a. For this,

and because in the retina the lattice will not be absolutely regular, we have decided to draw a
continuous line. (b) Three-dimensional plot corresponding to the filter for large SNRξ in (a),
namely that represented by the solid line.

We have shifted the factor
√
1/g into the argument ofG so as to show that the right-hand

side is now independent of1/g for a fixed Lagrange parameterλ. That is to say, increasing
1/g is now just a rescaling of the argument on the left-hand side, which corresponds to a
form-invariant increase of the receptive field.

The fraction1/g is proportional to the signal-to-noise ratio. Equation (2.26) is then in
agreement with experiments on the retina where a decrease of the inhibitory surroundings [8]
and a subsequent increase of the size of the receptive fields [30] has been observed as the
average illumination decreases and, hence,1/g increases.

Demonstration of the filter properties.The effect of the infomax filters is demonstrated
in figure 4. However, one must be careful. Simply because an image is of subjectively
poor quality this does not mean that it has no informative value. The following illustration,
however, shows that our subjective view is consistent with the ‘objective’ infomax approach.

The image in figure 4(a) is the original image; in 4(b) white noise has been added to
the gray values of 4(a) according to a signal-to-noise ratio of SNRξ = 〈ξ2〉/〈ν2〉 = 1.0. The
images 4(c) and 4(d) are results that follow by applying an infomax filter appropriate for a
large SNRξ � 1 to the images 4(a) and 4(b). The image in 4(c) shows that, compared with
the original non-noisy image, the contrast is enhanced, which is due to the centre-surround
structure of the receptive fields. This is evident in particular at the inserted black and white
squares. At the boundary of these squares we find the so-called ‘Mach band phenomenon’
[20, 46]. Fine details, e.g., the drops of water on the petals, stand out more clearly.

Applying the same filter to the noisy image 4(b) leads to the catastrophic result 4(d).
The fine details of the original image 4(a) are already lost in the noisy image 4(b): in 4(a)
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(a) (b)

(c) (d)

(e) (f )

Figure 4. Demonstration of the filter properties. Image (a) is the original image; in (b) white
Gaussian noise with SNRξ = 1.0 has been added. The images (c) and (d) result by applying
an infomax filter adapted to a low noise level,g/1 = 0.0003,(p − δ)/δ = 3.0, to the images
(a) and (b), respectively. The images (e) and (f ) follow by applying a filter which is adapted to
SNRξ = 1.0, i.e.g/1 = 0.2, (p − δ)/δ = 3.0. The results clearly demonstrate that it is crucial
to accurately adapt the filter properties to the amount of internal and external noise. Otherwise
the consequence will be the catastrophic result (d) or a loss of contrast (e).



52 M Haft and J L van Hemmen

we see the drops, in 4(b) we do not. Hence there is no use in trying to enhance the fine
structure of a noisy image. This just enhances the noise, which is white and hence ‘fine
structured’. The image in 4(d) impressively demonstrates the necessity ofadaption of the
filter properties.

A filter which is adapted to a signal-to-noise ratio SNRξ = 1.0 results in the images
4(e) and 4(f ). The corresponding large receptive fields sum signals from a large area
of the image. By this ‘averaging’ white noise can be partially eliminated at the expense
of fine details, which are in any case lost in the noisy image 4(b). In 4(f ), however,
coarse structures stand out more clearly as before in 4(b). By comparing the squares in
image 4(e) and 4(c) the inverse characteristic of the filters for low and high SNRξ becomes
obvious. The edge is smoothed in 4(e) instead of being sharpened in 4(c). The infomax
filter is enhancing structure if possible and, conversely, this filter corresponds to a kind of
regularization (smoothing) in the presence of noise.

2.4. Implementation of infomax-like filters by simple networks

Lateral inhibition. Phenomena analogous to Mach bands are observable in many sensory
systems and are commonly referred to as the appearance of ‘lateral inhibition’. This notion
expresses the suggestion that corresponding effects are evoked by an interaction extending
in lateral direction between sensory elements. Indeed, from his observations Mach himself
immediately drew the conclusion that there must be a lateral inhibitory interaction in the
retina [46]. Hence a possible simple attempt to implement filters of the desired form is to
couple the nearest neighbours in a photoreceptor array by an inhibitory interaction. This
should result in high-pass properties. For adaption to low SNRξ the interaction can be
switched continuously from negative to positive. This should change the characteristic of
the network from high-pass to low-pass.

The dynamics of a linear network with external inputξx and an nearest-neighbour
interaction is given by

d

dt
σx = −rσx + w

∑
y∈N (x)

σy + ξx. (2.27)

HereN (x) denotes the set of nearest neighbours ofx on the triangular lattice. Herew
determines the strength of interaction andr is a time constant. We pass to the frequency
domain, where equation (2.27) reads

d

dt
σ (k) = − rσ (k)+ wσ(k)

∑
a∈N (0)

e−ia·k + ξ(k). (2.28)

In the sum the vectora connects0 to its nearest neighbours on the triangular lattice, written
as
∑
a∈N (0). These vectors are displayed in figure 5. They are located on a circle of radius

a. To restore rotational symmetry we replace the sum over the six neighbours by an integral
over the circle:

1

|N |
∑
a∈N (0)

e−ia·k ≈ 1

2π

∫ 2π

0
dϕ e−ika cosϕ = J0(ak) (2.29)

where|N | = 6 is the number of nearest neighbours. In the frequency domain the nearest-
neighbour interaction is represented by a Bessel functionJ0 of order zero. The lattice
constanta enters the argument of the Bessel function.

We are solely concerned with a spatial theory and, therefore, we set the time constant
r to unity and consider only the stationary points of the dynamic equation (2.28). Together
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a

Figure 5. In a triangular lattice, every site has six
nearest neighbours, which are located on a circle with
radius corresponding to the lattice constanta. The sum
over the six neighbours is approximately replaced by
the integral over the displayed circle.

with equation (2.29), we obtain

σ(k) = 1

1− wJ0(ak)
ξ(k). (2.30)

In the frequency domain the filter corresponding to the nearest-neighbour network is then
given by

Gw
N (k) ≡

1

1− wJ0(ak)
≈ 1

1− w[1− 1
4(ak)

2
] . (2.31)

We have denoted the interaction parameterw as an upper index ofGN . The second
approximate equality follows by expanding the Bessel function in the first Brillouin zone.

Some of these filters are displayed in figure 6. It is obvious that through a positive
interactionw a low-pass filter can be implemented very efficiently. The high-pass filter,
however, which is implemented by an inhibitory, negativew, is very unsatisactory; cf the
desired filters of figure 2. The high-pass is the result of the pole of (2.31), which at best can
be placed just beyond the boundary of the first Brillouin zone. But even in this case this
does not affect the low frequencies efficiently enough. The corresponding results, which
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Figure 6. The filtersGwN generated by a nearest-neighbour interaction according to equation
(2.31). Full line,w = −3.0; dotted line,w = −1.0; broken line,w = +0.99. Obviously the
desired high-pass properties of the infomax filters for low noise levels cannot be implemented
through plain lateral inhibition of nearest neighbours.
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we obtained by filtering the test images of figure 4, were disappointing from our subjective
point of view.

Two-layered implementation.Plain lateral inhibition does not seem to be an appropriate
method of high-pass filtering; on the other hand, however, a low-pass filter can be
implemented very efficiently by a positive interaction. In what follows we describe a
two-layered implementation scheme, which turns out to be very practical and uses only
low-pass layers. The desired high-pass effect is implemented as ‘one minus the equivalent
low-pass’.

The corresponding interaction scheme is illustrated by figure 7. First, the signal is low-
pass filtered by coupling nearest-neighbour receptor cellsξ. The signal of the first layer
is fed to an additional interaction layer, which is also low-pass by means of the positive
couplingsu. The signal of this layer is subtracted from the signal of the first layer and this
difference forms the outputσ of the filter. This scheme results in the filter function

Guvw(k) = Gw
N (k)

(
1− vGu

N (k)
)

(2.32)

where the lower indexN refers to the nearest-neighbour interaction. Figure 8 shows
some filtersGuvw(k) for different parameters and the effect ofGuvw(k) on the test images
figure 4(a) and 4(b) is demonstrated in figure 9. These results show that with the scheme of
figure 7 the desired high-pass and low-pass properties can be implemented very efficiently.
The parameters in the caption of figure 8 show that we can change the filter characteristic
from high-pass to low-pass by simply switching off the couplingsu of the second layer and
switching on the couplingsw of the receptor layer. We did not change the parameterv, but
this parameter may also be used to control the filter properties.

With the scheme of figure 7 we have succeeded in efficiently implementing high- and
low-pass filters by usingonly nearest-neighbour interactions. This is very important if such
a scheme is to be realized on a silicon chip. Long-range interactions cannot be disentangled
in two dimensions and, hence, would be very expensive to implement.

Finally, a comment on spatio-temporalextensions of the presented concepts is in order.
Aiming at a spatial theory, we have considered only stationary points of the dynamics and

1
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ξ

σ

  . . . .. . .

-v

Figure 7. Two-layered implementation scheme with nearest-neighbour interactions alone. The
receptorsξ are coupled through a positive interactionw. Their signals are the input to a second
layer, which is also low-pass because of a positive interactionu. The final output is a weighted
difference between the receptor layer and the second layer. The corresponding ‘inhibitory
synapse’ has the strengthv and is displayed by a small full circle. These synapses act only in
one direction, as do the excitatory synapses, which are displayed by small open circles. Any
other connexions within the two layers are symmetric.
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Figure 8. Examples of filters which follow from the two-layered scheme of figure 7. Again
note the logarithmic scales. Full line,u = 0.9, w = 0.3; dotted line,u = 0.89, w = 0.9;
broken line,u = 0.2, w = 0.99. The parameterv = 0.095 is the same for all three filters. We
haveGuvw(k) → 0 for k → 0 if v = 1− u. Thus to implement a high-pass filter efficiently,
one needs a sensible interplay between the parametersu andv. Furthermore, the figure clearly
shows that by decreasingu and increasingw one can turn a high-pass filter into a low-pass one.

(a) (b)

Figure 9. Demonstration of the filterGuvw according to the two-layered scheme of figure 7.
(a) The original image in figure 4(a) after applying the filterGuvw with the parametersu = 0.97,
v = 0.028 andw = 0.5. (b) The filtered noisy picture in figure 4(b) with the parametersu = 0.1,
v = 0.028 andw = 0.9. The parameters were determined in a subjective way. It is obvious
that with the two-layered scheme of figure 7 it is possible to implement diverse useful filters by
simply adjusting the nearest-neighbour interactions.

dropped irrelevant time-integration constants, e.g., the parameterr in equation (2.28). We
expect that time-integration constants are crucial parameters of a spatio-temporal theory and
will have to be adapted to the signal-to-noise ratio as well. They determine the amount
of temporal smoothing of a signal in one layer in the same way as nearest-neighbour
interactions determine the spatial smoothing of the signal. It may be well to realize, however,
that finite time-integration constants presuppose capacitance facilities (condensers), which
are expensive to implement on a silicon chip.
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3. The retina as an infomax filter

We have extensively discussed the infomax filter and ways to implement a corresponding
‘on-chip’ preprocessing by a simple network. A ‘natural’ issue is now to ask what kind
of solution Nature has offered to us through the long process of evolution. First, we will
compare the response properties of the vertebrate retina with those of the infomax filter. So
far the retina is just a black box. Next, we will have a look at the network of the retina and
compare the retinal network with the scheme that we found advantageous for our on-chip
implementation of infomax filters.

3.1. The retina as a black box

One aspect of the response properties of the retina is described by the so-called contrast
sensitivity, which is determined experimentally at the retina; see, e.g., [21]. The contrast
sensitivity function may be compared directly with the filter functionG(k); cf the reasoning
in [21]. Only one global constant remains undetermined.

One example of a contrast sensitivity function is shown in figure 10 (full line), which
is measured at the parvocellular part of the lateral geniculate nucleus (LGN) of a macaque.
Given the quality of the data available at the moment, thespatial response properties of
cells of the LGN do not differ significantly from the properties of corresponding ganglion
cells [30, 29]. Some minor differences are reported in [25, 30]. Figure 10 additionally
shows an infomax filter corresponding to equation (2.17). The parameters of this filter were
determined by eye to obtain agreement with the experiment. For the lattice constant we had
to usea = (1/30)◦, which does not correspond to central foveal vision. In [18] the foveal
eccentricity of the measured neuron is not specified, and we have no information about
the lattice constant. Hence it does not make sense to speculate about noise levels in the
retina under experimental conditions as long as we are not sure about the most important
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Figure 10. The contrast sensitivity of a neuron in the parvocellular part of the LGN of a
macaque compared with the infomax filter. The full line corresponds to experimental data of
[18, table 1, parameters of cell number 15M]. The dotted line is an infomax filter with the
parametersg/1 = 1.0, (p − δ)/δ = 4.6, a = (1/30)◦ andκ = 2.5× 10−2kB . For the dashed
line the structure function for the finite extent of the cones and the point spread of the optical
apparatus has been taken into account according to equation (3.2).
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parameter, namely the lattice constant.
In the fovea the cones are packed densely, i.e. their extent corresponds to the lattice

constanta. The point spread of the optical apparatus [63] is also of the same order of
magnitude as the lattice constant. Hence, the system does not support frequencies of
the higher Brillouin zones abovekB ∼ 1/a and, therefore, aliasing is, on the whole,
prevented [49]. The finite extent of the cones and the optical point spread lead to an
additional modulation of the input spectrum within the first Brillouin zone as well, which
we did not take into account in the first part of the paper, for the sake of simplicity. We
now introduce a structure function∼ exp(−k2/k2

B) to describe the finite extent of the cones
and the optical point spread, which corresponds to a ‘soft cut-off’ at the boundary of the
Brillouin zone. In the infomax filter (2.17) this structure function is take into account by
the replacement

Cξ(k)→ Cξ(k) e−2k2/k2
B . (3.1)

The total system of optical apparatus and neural filter then has response properties according
to the product of a structure function and a neural filter

Gtot (k) = G(k)e−k2/k2
B . (3.2)

The dashed line of figure 10 corresponds to this filter function.
So far we have not discussed what happens at the boundary to the higher Brillouin

zones, i.e. at the vertical line displayed in any figure showing filter functions. If we have an
absolutely regular, infinite lattice, the neural response function of the first Brillouin zone has
to be continued periodically to the higher Brillouin zones. Thereafter, to obtain the response
properties of the total system, we have to multiply the neural filter and the structure function
again, as in equation (3.2). An example for a filter which emerges by this procedure, is
shown in figure 11. We find an additional bump beyond the first Brillouin zone, if the filter
function crosses the boundary of the Brillouin zone at a very high filter gain, i.e. only if we
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Figure 11. At low noise levels the discrete sampling by the photoreceptor array may result
in an additional bumpbeyondthe first Brillouin zone, which finally is the reason for possible
aliasing effects. There are only very few hints at such a bump in experimental contrast sensitivity
measurements; see, e.g., [29].
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Figure 12. Contrast sensitivity of (a) the cat retina for different mean background illuminations
[21] compared with (b) the infomax filter according to equation (3.1) and (3.2). The experimental
data correspond to an X-ganglion cell. This class of cells of the cat retina may be viewed
as equivalent to the visual P-system of other species [29, 39]. The upper contrast sensitivity
corresponds to the highest background illumination. Common to all the theoretical filters are the
parametersκ = 10−2kB , a = 0.5◦,1 = 0.3 andδ = 0.01. For the uppermost curve to the lowest
the remaining parameters are respectivelyg/1 = 4.3, 1.3, 0.14, 0.017 and(p − δ)/δ = 25.0,
10.0, 3.0, 0.5. The parameterλ has to be determined fromp via equation (A.5), although this
equation does not apply here exactly because of the additional structure function.

have a very low noise level. Aliasing effects are the final consequence of this additional
structure. We found only one experimental contrast sensitivity function where indications
for such a bump appear; see [31] or [29]. However, in [31] and [29] this bump is interpreted
as a fine substructure of the receptive field, namely, as an ‘on-centre subunit’. A correct
interpretation is possible only if the corresponding ‘local’ lattice constant is determined
simultaneously in the experiment. Supposing that the interpretation given here is correct,
we may conversely determine the lattice constanta by observing a renewed increase of
the contrast sensitivity at high frequencies. By using additional technical supplements to
improve the quality of the optical apparatus of the eye, psychophysical effects may indeed be
evoked which correspond to aliasing, e.g., impressions resembling Moiré patterns [65, 67].
However, this mainly concerns parafoveal vision.

Figure 10 shows that a single contrast sensitivity measurement can be fitted very
well. However, an essential feature of the retina is the ability to adapt to illumination
conditions. In figure 12(a) contrast sensitivity measurements of the cat retina for different
background illuminations are presented [21]. Obviously the filter characteristics of the retina
change drastically from high-pass to low-pass as one decreases the illumination conditions
(logarithmic scales!). We have obtained a corresponding variation for the infomax filter
in figure 12(b) by assuming decreasing ratiosg/1 and (p − δ)/δ. Again we have used
the parametersg/1 and(p − δ)/δ as free parameters to fit the experiment. Corresponding
information on noise levels in the retina is not available from [21]. Moreover, we have used
the lattice constanta = 0.5◦ to fit the experiment. This would correspond to a position in the
retina far away from the fovea. For different reasons which we already hinted at above, it is
more difficult to investigate parafoveal vision. Our theory mainly applies to foveal vision.
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On experimental data. In many other work we find receptive fields of the magnitude
of 1◦ and frequency scales of the magnitude∼ 1/1◦ [17, 25, 26, 28]. Mostly no
information is given about the foveal eccentricity, and we have to assume parafoveal
measurements. Receptive fields of the magnitude of 1◦ are not consistent with, e.g., the
human foveal resolution of about 0.01◦. It is known that in the central fovea there exist
receptive fields with a corresponding small extent [18, 29, 63], which is also obvious from
psychophysical contrast sensitivity measurements [15, 32]. Psychophysical measurements
closely resemble the measurements of figure 12(a), with the exception that the scales of the
frequency axis differ by two orders of magnitude. In the central fovea we expect contrast
sensitivities similar to psychophysical measurements, cf [15, 32]. However, psychophysical
measurements cannot be used for comparison with a theory of the retina.

It is obvious that further experimental data are desirable. As far as known to us, there are
no experimental data availableshowing the dependence on the background illumination for a
midget ganglion cell in the foveal centre. To compare with the theory presented here it would
be even better to use midget bipolar cells to exclude effects of the inner plexiform layer.
Simultaneously to those measurements the ‘local’ lattice constant should be determined.
Furthermore, it should be possible to access the signal-to-noise ratios of the different cells
in the experiment (dependent on the illumination conditions and the stimulus frequency),
and to estimate the accuracy of further information processing in the LGN and the visual
cortex. The accuracy of further information processing should also enter the parameter
δ, because the coding of the retina should also take into account the differences that can
be resolved in later stages of information processing. Finally, it would be interesting to
perform psychophysical measurements under exactly the same conditions. Agreements and
disagreements with the retinal contrast sensitivity may give a hint at to what extent the
firing rates are indeed the ‘code words’ of the retina.

3.2. Comparison of the network structures

The retina is a thin nervous tissue at the back of our eye, at most 0.5 mm thick,
like cellophane. This membrane is the interface to our visual environment and, hence,
corresponds to our most important sense. Nevertheless, up to now our understanding of
the retina is superficial, and the complexity of the retina still retains some puzzles. For a
comprehensive treatment of the retina we refer the reader to Dowling [20].

Information processing in the vertebrate retina may be viewed as being carried out at
two different levels: that of the inner plexiform layer (IPL) and that of the outer plexiform
layer (OPL). These two layers perform different tasks. The OPL seems to correspond to the
P system of the later stages of visual information processing [39]. The IPL seems to be the
basis of the M system. The OPL is mainly concerned with thestatic and spatial aspects
of illumination. Neurons of this layer respond linearly through sustained, graded potentials.
Conversely, the IPL is concerned primarily with thedynamic and temporal aspects of
visual stimuli. Neurons of this layer respond in a transient way through a mixture of
graded potentials and action potentials. They are vigorously excited by moving stimuli.
Because of their nonlinear response properties, linear system analysis cannot be applied in
a straightforward way. Nevertheless, we may characterize this layer by strong high-pass
properties, in particular, with respect to its temporal information processing. This property
of the IPL will be important later on, when we discuss a further hypothesis concerning the
interplay of the IPL and the OPL.

In what follows we are mainly concerned with the OPL of the retina, which is much
better understood than the IPL. The receptive fields with centre-surround organization



60 M Haft and J L van Hemmen

reflect the information processing of this layer. They already appear at the level of the
bipolar cells. Their excitatory centre corresponds to the direct path RECEPTOR CELL−→
BIPOLAR CELL, while the surroundings are mediated via the horizontal cells [48, 50] and
its realization is often illustrated by the path RECEPTOR CELL−→ HORIZONTAL CELL
−→ BIPOLAR CELL. The inhibitory surround of a bipolar cell is due to the large receptive
fields of the horizontal cells, which, in turn, is mainly a consequence of the electrical gap
junctions between the horizontal cells [38]. In view of these facts, it is obvious how the
scheme of figure 7 can be mapped onto corresponding structures of the OPL:

• The inter-receptor couplings of figure 7 correspond to the gap junctions, which can be
found selectively between cones or between rods. These symmetric electrical junctions
are mediated via ‘short processes’ [20] of the receptor cells. In particular, the rods are
strongly coupled via gap junctions, which is consistent with the interpretation that this
electrical coupling serves to suppress noise at low ambient illumination. At least in
some species we find extensive electrical coupling, e.g., it is reported that in the toad
retina up to 9000 receptor cell are coupled effectively [20, 22]. It has been suggested
that these inter-receptor couplings serve to damp the membrane fluctuation [37]; see
also [20] and references therein.

• The bipolar cells correspond to the output layerσ of figure 7. They are fed by the
receptor cells via directed chemical synapses (small open circles of figure 7). The
midget bipolar cells of the fovea contact only one cone by and large [20], just as
one midget ganglion cell contacts only one midget bipolar cell. This arrangement is
responsible for the small receptive fields and the high resolution of the fovea.

• Finally, the horizontal cells correspond to the additional layer of figure 7. They are fed
by the cones via chemical synapses too, and they propagate signals mainly in lateral
direction within the OPL. This lateral propagation is on the one hand due to the wide-
spread ramification of the horizontal cells. On the other hand, as mentioned above, the
extensive gap junctions between the horizontal cells give rise to an additional lateral
propagation and large receptive fields. These symmetric electrical synapses correspond
to the symmetric interactionsu of the additional layer of figure 7. The horizontal cells
act on the bipolar cells via directed chemical synapses in an inhibitory way, i.e. with
a different sign on theon and theoff bipolar cells. These synapses correspond to the
full circles of figure 7.

Of course, there is plenty of structure and detail of the OPL, which has no adequate
counterpart in the scheme of figure 7. In particular, we have to mention the feedback
of the horizontal cells to the receptors, which is occasionally viewed as the main reason
for the centre-surround structure of the receptive fields [51]. The extent of the feedback
HORIZONTAL CELL −→ RECEPTOR CELLS and its dependence upon the illumination
conditions [34] seems to be unclear. We suppose that this feedback is mainly important in
a spatio-temporal formulation. It has been shown here that the scheme in figure 7 is the
minimal structure which is necessary for a efficientspatial on-chip information processing,
and we hope that with the above processing scheme we have gained the essentials of
the spatial information processing of the OPL. This view is underpinned by some recent
experimental observations which shed some light on a mechanism, which, possibly among
others, contributes to the network adaption of the retina. It is analogous to the reduction
of the interactionu of the additional layer which we used to switch from a high-pass to a
low-pass filter. The corresponding recent experimental findings, which are mainly a case
study of the teleost fish retina, are comprehensively summarized in [20]. See this book for
references and many interesting further details.
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In addition to the commonly known five basic classes of retinal neurons there exists an
additional class, that of the so-called interplexiform cells. Since they are refractory to Golgi
staining they were recognized as a distinct class of retinal neurons only 80 years after the
pioneering work of Cajal. The interplexiform cells play an essential role in dark adaption
of the retina. They appear to be a kind of feedback path, carrying information from the IPL
back to the OPL. All of the input to these cells comes from in the IPL, whereas most of the
synapses originating from the interplexiform cells are found in the OPL. The interplexiform
cells contain the neuromodulator dopamine. Neuromodulatorsare neuroactive agents which
act in quite a different way as compared with neurotransmitters. A neuromodulator does
not directly affect the postsynaptic membrane potential. Rather its effects are mediated
biochemically. Dopamine, for instance, appears to activate an intracellular enzyme system
and the physiological changes induced by dopamine are multiple and long-lasting.

Figure 13. Horizontal cells stained by a fluorescent dye. The cell on the left is from a
retina treated with dopamine, which restricts the diffusion of dye from the injected cell to
the surrounding cells. The micrograph on the right is from a control preparation, in which dye
spreads from the injected cell (centre) to the neighbouring cells via the gap junctions. Obviously
dopamine ‘narrows the pores’ of the electrical gap junctions and, as a consequence, increases
the resistance between horizontal cells. Note that horizontal cells are analogue neurons so that
‘resistance’ is a well-defined notion. (The original micrographs are attributed to T Tonquist and
X L Yang, and are reproduced from [20] by permission of Harvard University Press.)

Mostly horizontal cells are postsynaptic to the interplexiform cells and, accordingly, the
effect of dopamine on the horizontal cells has been investigated in some detail. From a
series of experiments [20] at least two important effects of dopamine became evident. First,
dopamine changes the responsiveness of the horizontal cells. Second, the lateral propagation
of signals between horizontal cells is depressed by dopamine, which is due to a decreased
electrical coupling between adjacent horizontal cells. In figure 13 we have reproduced an
experimental result from [20] which impressively demonstrates the effect of dopamine on
the gap junctions. Substantial evidence that dopamine alters the electrical coupling between
horizontal cells has been gained from a variety of further experiments; for details see [20].

The release of dopamine is controlled by the interplexiform cells. This is confirmed in
experiments where selective destruction of the interplexiform cells broadens the receptive
fields of horizontal cells and enhances dye diffusion between them. The only question
now is: when do interplexiform cells release dopamine? Evidently the release of dopamine
is correlated with the adaption to darkness. This is inferred from the observation that
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application of dopamine causes changes in the response properties of horizontal cells
analogously to changes caused by dark adaption.

Altogether, there is a strong analogy between the adaptation mechanism in the retina
and the decrease of the interaction parameteru to adapt the filters (2.32) to a noisy signal.
Besides the direct effect on the gap junctions, dopamine seems to cause some further changes
in the OPL [34] so that a dependence of the inhibitionv upon the illumination conditions
might be consistent with biological facts as well.

3.3. Three further hypotheses on the functionality of the retina

We have mentioned that the two-layered scheme of figure 7 should not be taken as an
attempt to build a detailed model of the OPL. Instead, we hope that by mapping the scheme
of figure 7 onto the topology of the retina we have got to the heart of the spatial, static
information processing of the OPL. More refined models should be considered, but yet, on
the basis of this temporary understanding of the retina, some further hypotheses about the
functionality of the retina suggest themselves. They are formulated as follows.

• First, it is evident from our theory that the inter-receptor couplings may depend on the
illumination conditions or on the noise level as well. There are some experiments which
do not confirm this hypothesis [37]. Nevertheless, it should be verified in detail, at least
for species which depend on the ability to seein daylight as well as at night. In the
toad retina it has been found that each rod receives input from as many as 8000–9000
rods distributed over an area of 0.5 mm2 [20, 22]. What is the use of such an extensive
receptor coupling if the receptors cannot function independently under circumstances
other than those of the experiment?

• The task of theinterplexiform cells is to control the adaptation of theouter plexiform
layer (OPL). The interplexiform cells get all their input from theinner plexiform layer
(IPL). An interesting question is therefore: how do the interplexiform cells manage
to access the illumination conditions through their input couplings in the IPL? Our
hypothesis is that the interplexiform cells do not ascertain the illumination conditions,
but, moreover, they directly determine the signal-to-noise ratio. We have mentioned
above the response properties of the IPL cells. Their nonlinear, transient responses
mainly code temporal variations of an image so that this layer may be viewed as a
high-pass filter, at least with respect to its temporal properties. But this also means
that the IPL is very sensitive to noise; white noise means ‘fast changing’. Hence
the noise level may be estimated by observing the response at the IPL. This is what
the dendritic arbors of the interplexiform cells might do. We have summarized this
hypothesis in figure 14. If it is correct, it should be possible to bring about a release of
dopamine and consequently a dark adaption (increase) of the receptive fieldsin spite of
high average illumination conditionsby stimulating the retina with white noise or with
a high-frequency spectrum. An experiment which verifies of refutes this hypothesis
can easily be set up. A positive result would also have implications for our every-day
lives in an unnatural environment, e.g., for the design of computer screens. A computer
screen should be designed so as to avoid stimulating the IPL.

• It is fair to speculate about the purpose of the invaginations, which still constitute a mys-
tery; see figure 15. Within the invaginations in the fovea the processes of two horizontal
cells and one bipolar cell are coupled to the terminal of a receptor cell in a highly specific
way [20]. We suggest that this construction may be used to regulate the relative ampli-
tude of the horizontal-cell layer and the bipolar-cell layer. In our scheme of figure 7 the
high-pass filter has been implemented as ‘one minus the equivalent low-pass filter’. This
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strategy depends in a sensitive way on the accurate matching of the relative amplitudes
of the two signals. In particular, if we demandG(k)→ 0 ask → 0 so as to produce
a very efficient high-pass filter, we obtain the conditionv = 1− u for the parametersu
andv. Our hypothesis is now that the invaginations serve this matching of parameters,
i.e. the correct relative amplitudev of the bipolar and the horizontal cell layer.

. . . .   . . . .

R
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(estimation of SNR)

Figure 14. Illustration of the hypothesis on the
interplay between the inner (IPL) and outer plexiform
layer (OPL). The OPL corresponds to the processing
scheme of figure 7: receptors (R), horizontal cells (H),
and bipolar cells (B). The bipolar cells feed the ganglion
cells (G) and the IPL, where the dendritic arbors of
the interplexiform cells (IPC) can be found (pictured
schematically; there are probably fewer interplexiform
cells than horizontal cells). The interplexiform cells
appear to be a kind of feedback path to the OPL [20].
It is suggested that in the IPL the signal-to-noise ratio is
‘estimated’ by the interplexiform cells, which, in turn,
regulate the properties of the horizontal cells. This
means that the retina is not adapted to the illumination
conditions, but rather to the amount of noise. It should
be possible to verify or refute this hypothesis by a
simple experimental set-up.

Figure 15. Within the invaginationsthe processes of horizontal and bipolar cells are coupled to
the terminal of a receptor cell in a highly specific way. Left: in the fovea two horizontal cells (H)
are placed laterally to one bipolar cell (IMB,invaginating midget bipolar cell; FB, flat bipolar
cell; FMB, flat midget bipolar cell). Right: coupling scheme in the periphery (RB,rod bipolar
cell). It is suggested that this obscure construction regulates the amplitude of the horizontal
cell layer relative to the amplitude of the bipolar cell layer. The successful implementation of
infomax-like filters by the scheme of figure 7 depends in a crucial way on the correct matching
of these amplitudes. (c©1987 J E Dowling, reprinted from [20] by permission of Harvard
University Press.)
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4. Redundancy and noise-robustness of an internal representation

The infomax approach is based on probabilities only and, therefore, is very universal. Its
drawback, however, is that this approach is also very abstract. Hence, some more concrete
interpretations would be desirable, at least for some special cases. We will now offer an
additional characterization of the infomax ansatz which is possible in the case of Gaussian
distributions.

By our sensory information processing an external inputξ is mapped onto an internal
representationσ. For better intuition we may imagineξ1 and ξ2 to be the faces of
two different people. To discriminate these two people it is necessary that their internal
representationsσ1 andσ2 are different. Otherwise we will confuse them. Forξ1 6= ξ2 we
demandσ(ξ1,µ1,ν1) 6= σ(ξ2,µ2,ν2), although the noiseµ andν may be different from
case to case.Noise is just what makes the whole thing interesting. Otherwiseany bijective
function would do equally well. We count the number of mistakes by the followingδ-
function:

# mistakes= 〈δN [σ(ξ2,µ2,ν2)− σ(ξ1,µ1,ν1)
]〉

(4.1)

whereδN is a δ-function whose argument is anN -vector. The number of mistakes may
be used as a measure of the performance of a sensory system. It is as good as any
function which increases or decreases monotonically with the number of mistakes (4.1). We,
therefore, choose minus the logarithm of the average number of mistakes,− log〈δN [σ2 −
σ1]〉, as a quality measure which should be maximized.

In the same way we construct a second term with the aim to ensure that thesame
external signalξ is repeatedly mapped onto thesameinternal representationσ in spite of
the noiseµ andν . An appropriate term is given by log〈δN [σ(ξ,µ2,ν2)−σ(ξ,µ1,ν1)]〉,
which may be viewed as the diagonal elements of the first term. Our final measure for the
performance of a sensory system is

K[σ; ξ] ≡ − log
〈
δN
[
σ(ξ2,µ2,ν2)− σ(ξ1,µ1,ν1)

]〉
+ log

〈
δN
[
σ(ξ,µ2,ν2)− σ(ξ,µ1,ν1)

]〉
. (4.2)

This cost function measures the robustness of an internal representation against internal and
external noise. It is an easy exercise to explicitly evaluate the expression (4.2) for Gaussian
distributions, which are given by their covariance matrixC. In the present case we obtain

K[σ; ξ] = log det(Cσ )− log det(Cσ |ξ ). (4.3)

Comparing equation (4.3) with (2.14) we findK[σ; ξ] = 2M[σ; ξ], i.e. we have recovered
the mutual information. By this equivalence we now have an additional interpretation of the
infomax approach in the Gaussian case. High mutual information helps us to discriminate
external stimuli within our internal representation despite disturbing noise. In other words,
the infomax approach guides the way to a ‘noise-robust internal representation of sensory
information’.

In general, noise-robust, fault-tolerant systems use ‘redundancy’ to overcome possible
errors. We, therefore, investigate the statistical dependences of the internal unitsσ in
dependence upon the noise parameter1/g supposing an infomax-optimal linear mapG.
These dependences may be best measured by a corresponding information-theoretic
expression, namely the redundancy

R[σ] = 〈logP(σ)〉 −
∑
x∈L
〈logP(σx)〉 .
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Figure 16. The mutual information (full line) and the redundancy (broken line) in dependence
upon1/g, which is equivalent to the inverse signal-to-noise ratio SNR−1

ξ at the input. The
variance of the internal signal and the variance of the internal noise has thereby been fixed to
obey the ratiop/δ = 2.0. This is guaranteed by choosing an appropriate Lagrange parameter
λ for every1/g; see appendix A.1. The redundancy increases monotonically with increasing
1/g.

In appendix A.1 the mutual informationM[σ; ξ] and the redundancy at the internal
representationR[σ], which result from the infomax-optimal mapping, are evaluated in
dependence upon the noise parameters and the Lagrange parameterλ, which fixes the
power constraint; see equation (2.11). In figure 16 we have plotted the mutual information
and the redundancy against1/g. Thereby, the variancep of the internal representation
is kept constant by choosing an appropriate Lagrange parameterλ for every value of
1/g; see appendix A.1. Figure 16 shows that at low noise levels there is no necessity
to use redundancy. However, as1/g increases, so does the redundancy. This increasing
redundancy is necessary for an infomax-optimal filter, at least in our case of translation
invariance. Translation invariance also means that every neuron has the same signal to
noise ratiop/δ or every output element is represented with the same accuracy (number of
bits in technical applications), which is a physically reasonable assumption†.

Under physically relevant conditions the infomax-optimal mapping will in general
demand increasing redundancy of the internal representation with increasing noise. That
is to say, the infomax ansatz differs from the redundancy reduction principle stated by
Barlow [6, 7] and used in other work [2, 3, 4, 57]. In the noisy case the redundancy
reduction approach has to be supplemented by an additional noise filter [2], which has to
be put in by hand. On the other hand, the infomax ansatz can handleany noise level on its
own. If the Kuhn–Tucker condition (2.18) is not met in the first Brillouin zone, the weight

† There is no constant signal-to-noise ratiop(x)/δ independent ofx for the PCA-like solution discussed in [13].
This is a special solution with zero redundancy among a large class of infomax-optimal mappings which differ
in redundancy. This large degeneracy of solutions is due to the distinguishing property of Gaussian distributions
(namely, its being determined uniquely by its first and second moments alone) and allowing different ratiosp(x)/δ
for different internal neuronsσx.
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vectors even become linearly dependent. This implies that some ‘important’ properties
of the environment are transmitted ‘twice’ at the expense of some less important or very
noisy properties. This is a strategy which we use in everyday life when we communicate
information to other people. We mainly communicate important things, may be even twice
at the expense of less important messages if the communication line is noisy. This of course
means that at some noise level we decide to transmit redundant information. In dependence
upon the noise level, the infomax ansatz trades diversity of information against redundant
coding of essential information. The redundancy reduction approach cannot helps us to find
that necessary compromise.

Redundancy is at the heart of many systems. As mentioned above, in the retina of
some species we find ‘receptor pooling’, a kind of collective phenomenon, which of course
results in a large amount of redundancy. But nevertheless, as we have seen, this pooling
may be very useful. Redundancy is also supposed to be essential for the functioning of
an associative memory which is designed to restorenoisy patterns by the collaborative
work of many neurons. This restoration process may be compared with the collective
activity of the photoreceptors at night. Generally, the information theory of communication
channels may be transcribed by the question: ‘How much redundancy isminimally needed
if we want to have a reliable communication over anoisy communication channel?’ The
answer is the famous channel coding theorem [14, 55]. As a consequence engineers have
decided to use redundancy even in technical very reliable systems, e.g., the parity bits of
our computers. The brain is a very fault-tolerant system with associative properties. Hence,
we do not believe that Barlow’s redundancy reduction hypothesis may be used as theonly
principle for understanding neural information processing as it has not incorporated the idea
of ‘collective computation’ for noise-robust, associative information processing.

5. Outlook

In this work we have discussed the infomax approach and its essential properties by
comparing it with visual information processing. Without any additional assumption this
approach may serve as a closed ansatz over thewhole range of illumination conditions.
Hence, this is an appropriate approach to investigate retinal information processing because
it is precisely the large range of its functioning which distinguishes the retina from the
technical sensors of today. One would do well to remember that from a bright day to
a moonless night the ambient illumination changes by many orders of magnitude and
consequently the retina increases its sensitivity by a factor of about 6× 106 [63]. We
are thus facing very different signal-to-noise ratios, which require very different ways of
preprocessing. Our retinal network equips us with this highly adaptive preprocessing. In
the present paper an understanding of the retinal network and, in particular, of its adaptation
properties has been derived from information-theoretic considerations. This understanding
led us to some further hypotheses, which mainly concern the interplay between the inner
plexiform layer and the outer plexiform layer. In particular, we predict that stimulating
the retina by white noise might affect the shape of the retinal receptive fields in a way
which resembles dark adaption. We hope that our hypotheses may serve as a basis for
future investigations. The extension of the theoretical concepts presented here to a spatio-
temporal formulation and more detailed modelling of the retinal network should also lead
to a deeper understanding.

From the technical point of view, our considerations might guide the way to advanced
concepts for a silicon retina. Increasing attention has been focussed on the idea of a technical
sensory system analogous to its biological counterpart, that is, a sensory system where early-
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stage preprocessing is inherent to the system itself [11, 27, 47, 68, 69]. None of the known
silicon models, however, is able to adapt to the illumination conditions. There are several
advantages of an adaptive sensory system with a simultaneouson-chippreprocessing. First,
this preprocessing is implemented at the earliest possible level of information processing,
i.e. noisy photoreceptors are directly coupled (cfw in figure 7) so as to produce a low-
pass filter as early as possible. Second, an adaptive silicon retina might work over an
extended range of illumination conditions as compared with conventional technical sensors.
Third, a silicon retina may also serve as an image compression module as it reduces the
dynamic range of the output signal relative to the internal resolution (internal noise). This
property is explicitly built into the infomax filter by the power constraint. Consequently,
the filter output may be digitized with only a few bits and restored to the full range by
inverse filtering, e.g., after transmission. We expect to demonstrate this image compression
properties of a silicon retina in a forthcoming paper. No computational power is necessary
for any of these tasks because of the real-time analogue processing of a silicon retina.

Finally, in analogy with this work some fruitful considerations might be possible with
respect to other sensory system, such as the auditory one. The phenomenon of adaptation
and lateral inhibition is known from other sensory systems as well, e.g., from the auditory
system; see [51, chapter 14]. As a consequence a new generation of technical sensory
systems may result.

Appendix

A.1. Evaluation of the power constraint, mutual information and redundancy

In equation (2.11) we have used the variancep as a power constraint:

p = Trace
(
Cσ

) =∑
x∈L

Cσ (x) =
∑
k

Cσ (k). (A.1)

Before performing the bulk limitN →∞ we have to normalize any extensive expression
by dividing it by the numberN of neurons, i.e. any sum has to be supplemented by the a
factor 1/N . Thereby, the variance (A.1) becomes the variance of a single neuronp = 〈σ 2

x〉,
which is independent ofx because of translation invariance. In the limit of an infinite
retina,N →∞, any sum becomes an integral over the first Brillouin zone:

1

N

∑
k

= 1

VB

∑
k

(
VB

N

)
−→ 1

VB

∫
B

d2k. (A.2)

To obtainp we now have to evaluate the integral ofCσ (k) over the first Brillouin zone.
Cσ (k) is obtained fromCξ(k) according to the general expression (2.12) byCσ (k) =
|G(k)|2 (Cξ (k)+1)+ δ. In our case,|G(k)| andCξ(k) are given by equation (2.17) and
(2.5) and we obtain (k = ‖k‖)

Cσ (k) = 1

b

1

k2

(√
1+ 2bδ

λ
k2− 1

)
(A.3)

whereb ≡ 21/δg. The variance of an internal neuron then follows directly:

p = 1

b

2π

VB

∫ kB

0
dk

1

k

(√
1+ 2bδ

λ
k2− 1

)
. (A.4)
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This integral can be evaluated. We obtain an expression that givesp as a function ofm
and thus ofλ:

p = 2π

bVB

[
m− 1− ln

1+m
2

]
with m ≡

√
1+ 2bδ

λ
k2
B. (A.5)

We mainly need the inverse relation, namelym as a function ofp, but equation (A.5) cannot
be inverted explicitly. For a givenp we therefore use the following iteration scheme:

mnew≡ bpVB

2π
+ 1+ ln

(
1+mold

2

)
. (A.6)

This mapping is a contraction and by iteration converges to them that corresponds to the
givenp. Fromm the correspondingλ follows. Of course, the varianceδ of the output noise
has to be chosen less than the total variancep of the internal representation, i.e.δ < p.

If the Kuhn–Trucker condition (2.18) is satisfied within the first Brillouin zone at
k0 < kB , the variancep is given by the modified expression

p = 2π

bVB

[
m− 1− ln

1+m
2

]
+ δ (k2

B − k2
0

) π
VB

with m ≡
√

1+ 2bδ

λ
k2

0. (A.7)

The second term in this expression takes into account that in the frequency rangek > k0

only the output noise contributes to the variancep. By a similar iteration scheme to that
of (A.6), equation (A.7) can be inverted to obtainλ as a function ofp.

Because of translation invariance, the entropy of a single ganglionH [σx] is independent
of the positionx and, up to an additive constant, is given by

H [σx] = 1
2 log

〈
σ 2
x

〉 = 1
2 logp. (A.8)

For the joint entropy per ganglionH [σ] determined by the correlation matrixCσ (k), i.e.
by (A.3), we find

H [σ] = 1

2VB

∫
B

d2k logCσ (k)

= 1

2VB

∫
B

d2k log

[
1

b

1

k2

(√
1+ 2bδ

λ
k2− 1

)]
. (A.9)

This integral can be evaluated by a change of variables,k → k′ = (1+ 2bδk2/λ)1/2. The
final result (for the natural logarithm) is

H [σ] = 1

2
ln b + π

VB

[
2k2
B

(
ln kB

2
− 1

4

)
+ λ

2bδ

(
h2

4
− h lnh+ h− h

2

2
lnh

)]
(A.10)

whereby

h ≡
√

1+ 2bδ

λ
k2
B − 1.

Again, this expression has to be modified in casek0 < kB . The redundancy is given by the
difference of (A.8) and (A.10).

The conditional entropyH [σ|ξ] can be calculated in an analogous way by evaluating
an integral over the first Brillouin zone. We only give the final result for the casek0 > kB :

H [σ|ξ] = 1

2
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(A.11)



Theory and implementation of infomax filters for the retina 69

where

r ≡
√

1+ 2bδ

λ
k2
B + 1.

As always, equation (A.11) is given up to an additive constant. The mutual information is
given by the difference of (A.9) and (A.11).

A.2. Fixing the phase by demanding local receptive fields

Given any filter gain|G(k)| we want to choose a phasef (k) in such a way that we obtain
local receptive fieldsas the Fourier transform ofG(k) = |G(k)| exp[if (k)]. First, we have
to define how locality should be measured. An appropriate expression is given by

K =
∫

d2x x2 |G(x)|2. (A.12)

Large, long-ranging weights (i.e. large|G(x)| for largex2) are unfavorable for this cost
function, which should be minimized. In the Fourier domain the expressionxG(x) is given
by

xG(x) = 1

2π i

∫
d2k eik·x ∇G(k). (A.13)

Thus for our cost function (A.12) we obtain

K = 1

(2π)2

∫
d2x

∫
d2k d2k′ ei(k−k′)·x ∇G(k)

[
∇G(k′)

]∗
=
∫

d2k ∇G(k) [∇G(k)]∗

=
∫

d2k
[|G(k)|2|∇f (k)|2+ |∇|G(k)||2] . (A.14)

Varying (A.14) with respect tof (k), we see directly that the optimal phase is given by

∇f (k) = 0 H⇒ f (k) = constant. (A.15)

In the space domainG(x) has to be real and thus we obtain exp[−if (k)] = ±1. These two
solution are equivalent, and we may view these solutions as theon- andoff-centre pathways
of the visual system. We also note that we did not make any assumptions on|G(k)|.
Whatever|G(k)|, the ‘most local’ receptive field therefore has zero phase (or phaseπ ).
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