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Abstract Fish acquire information about their aquatic

environment by means of their mechanosensory lateral-line

system. This system consists of superficial and canal

neuromasts that sense perturbations in the water sur-

rounding them. Based on a hydrodynamic model presented

here, we propose a mechanism through which fish can

localize the source of these perturbations. In doing so we

include the curvature of the fish body, a realistic lateral line

canal inter-pore distance for the lateral-line canals, and the

surface boundary layer. Using our model to explore

receptor behavior based on experimental data of responses

to dipole stimuli we suggest that superficial and canal

neuromasts employ the same mechanism, hence provide

the same type of input to the central nervous system. The

analytical predictions agree well with spiking responses

recorded experimentally from primary lateral-line nerve

fibers. From this, and taking into account the central

organization of the lateral-line system, we present a simple

biophysical model for determining the distance to a source.

Keywords Lateral line � Orientation � Distance �
Hydrodynamic � Modeling � Neuromasts

Abbreviations

A/D Analog to digital

CN Canal neuromast

D Distance perpendicular to the line of detectors

DASPEI 2-(4-(Dymethylamino)styryl-N-

ethylpyridinium iodide

ERP Extra-cellular receptor potential

SEM Scanning electron microscopy

SN Superficial neuromast

D Distance between the zeros and/or distance

between the maxima in the flow field

Dk Distance between the zeros in the flow field

D\ Distance between the maxima in the flow field

Introduction

Fish and many other aquatic vertebrates use a specific

sensory system, the mechanosensory lateral-line system or

for short the lateral line, to orient themselves by using

hydrodynamic cues. In this work we focus on the question

of how the lateral line enables fish to determine the spatial

location of a stimulus in their aquatic environment. Our

motivation for this work was to improve the general

understanding of the biological physics governing the

interaction between the lateral line and the water sur-

rounding it by applying and solving the Navier–Stokes
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equation and in this way clarifying the mechanisms

underlying the ensuing neuronal processing. We also vin-

dicate the assumption that the Euler equation, although

neglecting viscosity, is a valid starting point and, hence, we

justify the approach of numerous preceding works in this

field (Harris and van Bergeijk 1962; Sand 1981; Coombs

et al. 1996; Franosch et al. 2005; Ćurčić-Blake and van

Netten 2006), as discussed below.

The lateral line functions in a rather complex context

with many different physical factors. These must be ana-

lyzed separately, in specifically defined behavioral

contexts, in order to understand the underlying neuronal

mechanisms involved in information processing and in the

generation of the behavioral responses observed. We may

expect, and also show, that both the curvature of the fish’s

body and the distance separating lateral line canal pores

affect the responses of canal neuromasts (CN).

Having elucidated the underlying physics, we incorpo-

rate these factors into our model. In addition, we consider

the boundary layer, a thin layer of fluid around any moving

object where viscosity is essential. The behavior of this

layer can be described by the Navier–Stokes equation.

Although the Euler equation does not take fluid viscosity

into account, it nevertheless effectively justifies a simple

description of the stimulus once the boundary layer has

been ‘‘added’’ to the fish body.

Based on our analysis of the fundamental stimulus

properties we present a detailed investigation of the

responses of lateral-line receptors within and outside the

canals, the latter being the superficial neuromasts (SN), and

reveal strong similarities between the two. We then com-

pare modeling results and neuronal data.

Finally, we present a simple, though still putative,

algorithm enabling fish to determine the distance to a

source. This distance algorithm only depends on a single

parameter that we confirm to be encoded in the neuronal

response ensuing from both SN and CN of fish; cf.

Fig. 1.

In summary, our aim has been to provide a detailed

theoretical analysis of the biophysics and neurobiology of

fish lateral-line detection, together with experimental

analysis of the neural representation of known sensory

images, in order to explain how the physical characteristics

of the near-flow velocity and pressure field are translated as

a neuronal code, and can then be embedded into a full

hydrodynamic description of both fish and stimulus.

Mutatis mutandis, many results also hold for SN of aquatic

amphibians such as Xenopus.

Fig. 1 Organization of canal and peripheral lateral-line system.

a The distribution of canal pores (small black disks) and superficial

neuromasts (grey dots) in goldfish (Carassius auratus); fish picture

modified after A. Grotefeld. b Close-ups of SNs and CNs situated on

the trunk of a goldfish. Neuromasts (light dots) are marked by the

fluorescent dye DASPEI. The insets show SEM images of a single SN

with cupula and a single CN. c Schematic of a CN embedded in the

surrounding canal. The cupula and the two separately innervated

populations of hair cells of opposite polarity are sensitive to either

water moving from left to right or in the opposite direction.

d Schematic of a sinusoidal stimulus used in the physiological

experiments and its impact on a single hair cell
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Materials and methods

In this section we introduce both the theoretical and the

experimental methods we are going to use. Experimental

results and mathematical derivations will be presented in

the next section.

Assumptions for a minimal model

To theoretically analyze a complicated situation, models

with a minimal amount of assumptions are most useful. In

the present context a ‘‘minimal’’ model means for the canal

lateral-line system a straight line of detectors with equi-

distant pores and cupulae in between. More precisely, a

detector is either sensitive to velocity (SN) or to the pres-

sure difference between pores (CN), i.e., to acceleration.

To approximate natural conditions we will consider both

the case of a linear array of detectors and detectors that are

arranged on a curved line, just as along the skin of a fish.

The simplest stimulus is a small moving sphere that

generates a so-called dipole flow field as defined in Lamb

(1932, Sect. 92). Any source can be expanded mathemati-

cally into a multipole series consisting of a monopole, a

dipole, a quadrupole and so forth (Pozrikidis 1997). The

quadrupole and higher terms are negligible as they rapidly

decrease with distance. The monopole term, if at all pres-

ent, is a sound wave that is only relevant far away from a

source (Kalmijn 1988). Thus the dipole is the most

important stimulus, which is easily realized experimentally

by a small vibrating or translating sphere.

In simulations, the stimulus was a small vibrating or

translating sphere at a distance D from CNs; see Fig. 2 for

a sketch of the model. If not stated otherwise, the sphere

has a diameter a = 5 mm, oscillates at frequency f = 50 Hz

(angular frequency x = 2pf) and with a displacement

amplitude s = 0.8 mm, or a translating sphere with velocity

U = 10 cm/s.

In order to understand the fluid motion produced by

these stimuli, we need to turn to the Navier–Stokes equa-

tion (Acheson 1990)

ot

ot
þ t � rð Þt ¼ �rp

q
þ tDtþ g ð1Þ

where t is the water velocity, p the pressure, q the water

density, g the acceleration of gravity, and t the kinematic

viscosity giving rise to the dissipative term tDt: The

Navier–Stokes equation is supplemented by the incom-

pressibility condition r�t ¼ 0 and the no-slip boundary

condition tjoB ¼ 0; so that the fluid velocity vanishes at the

body surface oB: In fluids with low viscosity t, such as

water, viscosity only has an effect in a small boundary

layer (Prandtl 1904; Schlichting and Gertsen 2003) which

is at most 2–3 mm thick under the conditions considered

here.

Outside the boundary layer the Euler equation applies,

i.e., Eq. (1) with t = 0,

ot

ot
þ t � rð Þt ¼ �rp

q
þ g: ð2Þ

Here the fluid motion is merely bounded by a wall,

the boundary of a region B with normal vector n, so that

n � tjoB ¼ 0 is the appropriate boundary condition for the

Euler equation.

As a first approximation, a SN responds to the velocity

field whereas a CN reacts to the pressure difference

between the two pores surrounding it, i.e., acceleration.

Well, do they? It was Kalmijn (1988) who argued in favor

of a fractional derivative (Sokolov et al. 2002) interpola-

ting, so to speak, between velocity (first derivative with

respect to time) and acceleration (second derivative).

Though quite an interesting idea, there is not enough

convincing evidence at present to introduce such a fit

procedure. However, one cannot derive the parameter

1 \ n \ 2 for the fractional derivative. Furthermore, we

suppose, and nearly always observe, an average velocity

t0 = 0 for our fish and can develop whatever quantity

necessary with respect to deviations from t0: We will

therefore remain with the traditional picture.

When dealing with CNs it is important to realize that the

Navier–Stokes equation (1) governs the fluid dynamics in

the canal whereas the pressure field on the skin of the fish

can be described by the Euler approximation (2) since the

perpendicular pressure is almost constant in the boundary

layer near the skin (Schlichting and Gertsen 2003). The

pressure difference between two adjacent pores is the

relevant external force driving the fluid through the canal.

In the canal, the water velocity is proportional to the

pressure difference between two pores (Denton and Gray

1982). In contrast, a SN response is directly proportional to

the water velocity near the skin of the fish.

x

y

D

Lateral-line organs

}

Fig. 2 In the 2-D minimal model, the lateral-line organs are arranged

in a linear array on the x-axis. The distance between them and

between two consecutive pores is taken to be d. An oscillating sphere

is located at position (0,D). It oscillates parallel to the x-axis,

generating a dipolar velocity field
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The dipole flow field can be described by a velocity

potential / with t = r/. For a sphere at position (Dx, Dy)

that oscillates parallel to the x-axis and in the plane of the

lateral-line organ (Fig. 2) with l(t) := 2pxsa3 sin (xt) the

two-dimensional (2-D) potential /, as described in Lamb

(1932, Sect. 92) is

/kðx; y; tÞ ¼
�lðtÞ

4p
ðx� DxÞ

½ðx� DxÞ2 þ ðy� DyÞ2�3=2

(

þ ðx� DxÞ
½ðx� DxÞ2 þ ðyþ DyÞ2�3=2

)
;

ð3Þ

which satisfies the boundary condition t � n ¼ 0 of the

Euler equation on the surface of the sphere. The resulting

water velocity tx ¼ o/k=ox in x-direction is

txðx; y ¼ 0; tÞ ¼ lðtÞ
2p
ð2x2 � D2Þ
ðx2 þ D2Þ5=2

: ð4Þ

In the case of a sphere oscillating perpendicularly to the

skin of the fish, i.e., in the direction of the y-axis (Fig. 2),

we find1

/?ðx; y; tÞ ¼
�lðtÞ

4p
y� Dy

½ðx� DxÞ2 þ ðy� DyÞ2�3=2

(

� yþ Dy

½ðx� DxÞ2 þ ðyþ DyÞ2�3=2

)
:

ð5Þ

The resulting water velocity tx ¼ o/?=ox in x-direction is

tx x; y ¼ 0; tð Þ ¼ 3lðtÞDx

2p x2 þ D2ð Þ5=2
: ð6Þ

Figure 3 shows the water velocity near the skin of the

fish. In the case of parallel oscillation, the water velocity

which is dependant on the position at the skin is an even

function. In the case of perpendicular oscillation, the water

velocity is an odd function. To use the symmetry of the

water velocity in both cases, we normally set Dx = 0,

D = Dy, y = 0 at the skin and let x vary between -5 and

5 cm.

The water velocity around the body of a fish stimulates

the SNs. Relatively short in length (about 0.2 mm), they

are affected by the boundary layer. In order to see how

large the effect is, we have done a numerical simulation of

a 2-D Navier–Stokes equation using Comsol (a numerical

simulation software) and compared the results with a cal-

culation using the Euler equation (Fig. 4).

We were only interested in the water flow parallel to the

boundary since the flow perpendicular to the boundary

layer decreases fast within the boundary layer. Using the method of images to satisfy the boundary conditions of the

Euler equation, one can show that in the presence of a

plane wall, the fluid velocity near and parallel to the wall

will double; see for example Sect. 4.4 of Acheson (1990).

2

1

0

-1

-2

02 24 4

)s/
mc(yticoleV

√2 D

Position (cm)

}

}
D

)a
P(

ec
ne

re
ffi

d
er

us
se

r
P

12

6

0

-12

-6

Fig. 3 Amplitude of the velocity tx near the skin of the fish in

dependence upon the x-position. The stimulus is an oscillating sphere

at D = 1 cm from the skin. The sphere is oscillating either parallel
(solid line, cf. Eq. (4)) or perpendicularly (dashed line, cf. Eq. (6)) to

the line of detectors and thus generates either a triphasic or a biphasic

response. The distance between the zeros is
ffiffiffi
2
p

D for the parallel
condition and the distance between maximum and minimum is D for

the perpendicular condition. The squares represent the pressure

difference. The velocity field and pressure difference field are

proportional to each other; cf. Eq. (14)
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Fig. 4 x-Component of the velocity field v at 1 mm distance from the

skin of the fish, modeled as a wall, for both the Navier–Stokes (solid
line) and the Euler (dashed line) equation. Stimulus is a sphere

oscillating in x-direction with frequency f = 50 Hz, sphere diameter

a = 5 mm, and amplitude s = 0.8 mm at a distance of 1 cm from the

wall (the two upper curves). The two lower curves are simulation

results where the wall is missing. There are local fluctuations in the

velocity field because of the viscosity of water, but the resulting

dipole field has the same spatial characteristics as in the Euler case.

The simulations show that the effect of the wall as predicted by the

Euler equation (2), namely doubling the velocity, is also present in

numerical simulations using the Navier–Stokes equation (1)

1 The potential for an arbitrary axis of vibration in the xy-plane

making an angle a with the x-axis is /ðx; y; tÞ ¼ /kðx; y; tÞ
cos aþ /?ðx; y; tÞ sin a:
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In the case of a viscous fluid the boundary condition of the

Navier–Stokes equation prescribes that the velocity field

vanishes at the wall. Numerical simulation of the fluid

velocity at 1 mm from the wall, using the Navier–Stokes

equation, also shows that fluid velocity parallel to a wall is

almost twice the velocity produced by the same stimulus

without a wall (Fig. 4). We therefore conclude that even

within the boundary layer the flow parallel to the wall can

be approximated by the Euler equation so that we can

neglect the effect of the boundary layer.

Furthermore, the theoretical predictions Eq. (36) for the

firing rate and the activity fields recorded at the primary

afferents agree nicely as do predictions stemming from the

Euler equation and the experimental results in Fig. 8; see

‘‘Results’’.

Experimental method

Details of fish maintenance, anesthesia, and preparation are

given in Chagnaud et al. (2006).

Stimulation

Stimuli were generated by means of metal spheres (diam-

eters 5, 8.7, 10, and 17 mm) attached to a vibrator (Ling,

Model V101) via a stainless steel shaft. Sine waves (50 Hz,

100 ms rise and fall time, duration 1 s) were generated

(Superscope II) and transferred via an A/D converter

(MacAdios) to a custom made dB-attenuator whose output

was fed to a power amplifier (LDS, PA 25 E) that drove the

vibrator. The vibration axis of the sphere was always par-

allel to the long axis of the fish. The displacement

amplitude of the sphere was calibrated in air with a

microscope (Leitz, Laborlux K) and could be varied

between 1 and 1,000 lm.

We determined the location of a neuromast by moving

the vibrating sphere along the x-axis, maintaining the

sphere’s distance (y-position measured from the neuromast

to the center of the sphere) and its elevation (z-position)

constant. The x-position where the vibrating sphere evoked

the strongest response was taken as the rostro-caudal

position of the recorded neuromast. In the majority of the

recordings the elevation of the sphere was optimized at this

position so as to obtain the strongest response so that the

final sphere position was directly opposite to the

neuromast.

We then adjusted the y-distance of the sphere and the

displacement amplitude to give a neural response below

saturation rate (between 20 and 100 lm). Keeping these

conditions constant we measured the receptive field, i.e.,

we determined the spatial extent over which the stimulus

was able to evoke changes in the afferent discharge when

moving the sphere along the x-axis. We moved the vibrator

in steps of 2–10 mm along the x-axis and recorded the

response to stimulation at each position (ten repetitions,

repetition rate 0.5 Hz) over several centimeters. When

possible, the receptive field was measured for various

y-distances. In total we measured 60 receptive fields in 54

afferents of 26 fish.

Data analysis and recordings

We recorded and analyzed the evoked primary afferent

firing activity by means of standard procedures; see

Engelmann et al. (2002) for details. For each x-position of

the vibrating sphere we measured the firing rate due to the

vibrating sphere and the spontaneous rate in absence of

stimulation (spikes/s), the phase of the neuronal response

with respect to the phase of the vibrating sphere (degrees)

and the degree of phase-coupling (r-value, Batschelet

1981). The statistical significance of phase-coupling was

assessed by the Rayleigh Z statistic (Goldberg and Brown

1969).

Figure 5 shows this data as so-called ‘‘receptive field’’

plots. On the trunk of the fish there are two orientations of

receptors (Schmitz et al. 2006). One orientation is sensitive

to flow in the x-direction (Fig. 2) and the other orientation

is sensitive to flow perpendicular to the x-direction. In the

former case the receptive field plot is characterized by

three peaks of the evoked discharge-rate that are separated

by two 180� phase shifts (triphasic response, see Fig. 5a)

while in the latter case there are two consecutive peaks of

the evoked discharge-rate which are separated by a 180�
phase shift (biphasic response, see Fig. 5b) (Sand 1981;

Coombs et al. 1996).

Thirty-nine afferents were classified as triphasic and 15

as biphasic (only CN); cf. Fig. 5. For triphasic receptive

fields we take the distance between two consecutive phase

shifts as the physiological realization of the distance

between the zeros of the velocity field. For biphasic

receptive fields the distance between the peaks of the dis-

charge rate corresponds to maximum and minimum, i.e.,

maximum with opposite direction, of the velocity field; see

Figs. 3 and 5.

Results

In the following we present the modeled hydrodynamic

stimuli for SNs and CNs, including an experimental proof

of the modeled results. We address the parameters required

for distance determination in both the modeled and the

physiological data.
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Distance determination by superficial neuromasts

How can fish determine the position of small sources?

Surface neuromasts are sensitive to the velocity

(change) in the direction of their primary axis. The velocity

is zero at the two points where fluid motion reverses; see

Fig. 3. For a translating or vibrating sphere near SNs

(Franosch et al. 2005) and a vibrating sphere near CNs

(Ćurčić-Blake and van Netten 2006) the distance D

between the two zeros (or the two maxima/minima) is a

measure of the distance between object and fish. Here we

extend these ideas and in essence show that D is propor-

tional to the distance between the lateral line and a

vibrating sphere for SNs for an axis of vibration parallel as

well as perpendicular to the skin of the fish.

In case of oscillation parallel to the lateral-line the

velocity in the x-direction is given by Eq. (4). In view

of l(t) = 2pxs a3 sin (xt); the velocity oscillates with

frequency f, i.e., angular frequency x = 2pf, around a

maximum value of

tx�max x; y ¼ 0ð Þ ¼ xa3s 2x2 � D2ð Þ
x2 þ D2ð Þ5=2

: ð7Þ

Equation (7) has two zeros. The distance between the two

zeros, which we will denote by Dk, is

Dk ¼
ffiffiffi
2
p

D: ð8Þ

Thus the distance between the zeros of the velocity field is

proportional to the distance D of the sphere to the skin and

does not depend on any other parameter.

For a sphere oscillating perpendicularly to the skin the

velocity field is given by Eq. (6). The amplitude of this

flow field along the lateral line has two maxima separated

by a zero. The distance between the maxima equals the

distance D between the lateral line and the oscillating

sphere

D? ¼ D: ð9Þ

It is interesting to see that the above results are similar to

those derived by Ćurčić- Blake and van Netten (2006) in

the context of CNs.

Distance determination by canal neuromasts

Canal neuromasts are sensitive to the pressure difference

between two adjacent pores. We are therefore interested in

the pressure field and will show analytically that the

pressure difference distribution along the lateral line canal

has a form identical to the velocity field. For distance

determination this means that both SNs and CNs function

by the same mechanism.

To calculate the pressure in a non-viscous fluid at the

pores of the canal lateral line, we can use the Bernoulli

equation (Billingham and King 2000)

pðx; y; tÞ þ 1

2
qt2 x; y; tð Þ þ q

o/k
ot

� �
y¼D

¼ p0ðtÞ ð10Þ

where t2 is the square of the water flow velocity at the body

and p0(t) is a constant depending on the time t only. Since

the velocity ty ¼ o/k=oy perpendicular to the skin is zero
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Fig. 5 Physiological parameters recorded as a function of sphere

position for triphasic (a), and biphasic (b) receptive field. In both

figures the mean (n = 10 trials) discharge rate (solid line and circle)

and the ongoing discharge rate (dashed line and circle) have been

plotted (y-axis on the left) versus the sphere’s position. Error bars
show standard deviations. Mean phase angles are plotted in thick solid
lines (cf. y-axis on the right). Non-significant phase locking (Z \ 4.6)

is indicated by the dotted lines. In a the sphere vibrated at a rate of

50 Hz, with 80 lm sphere displacement and distance 15 mm to the

neuromasts (trout). In b the distance was 25 mm and the amplitude

was 200 lm (goldfish). In triphasic receptive fields (a) for oscillations

parallel to the lateral line the distance Dk between the zeros was

determined to be the distance between the two 180� phase jumps; cf.

Fig. 1. In biphasic receptive fields (b) for oscillations perpendicular to

the lateral line the distance D\ between the zeros was taken to be the

distance between the two consecutive peaks of the discharge rate
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at the skin because of the Euler boundary condition, we

find t2 ¼ t2
x : Using Eq. (3) for a sphere at distance D from

the skin oscillating parallel to the x-axis we get

t2ðx; y ¼ 0; tÞ ¼ t2
x ¼ o/k=ox

� �2

¼ a6x2s2 2x2 � D2ð Þ2

x2 þ D2ð Þ5
sin2 xtð Þ: ð11Þ

Again, the notion of a thin boundary layer is important since

outside of this layer we can use the Euler and Bernoulli

equations to obtain the pressure. It holds that qt/k � t2:

The time derivative qt of the velocity potential for an

oscillating sphere is

o/k x; y; tð Þ
ot

¼ 1

2p
dlðtÞ

dt

x

x2 þ D2ð Þ3=2
ð12Þ

where dl(t)/dt = 2px2 a3 s cos (xt). The water velocity

within the canal and thus the deflection of the CNs is

proportional to the pressure difference Dp between two

adjacent pores at position (x,y = 0) on the skin

Dpðx; y ¼ 0; t; dÞ ¼
o/kðxþ d; 0; tÞ

ot
�

o/kðx; 0; tÞ
ot

ð13Þ

where d is the distance between the pores. As d is small, we

obtain

Dpðx;y¼ 0; t;dÞ � o

ot

o/kðx;y¼ 0; tÞ
ox

� d¼xtx�maxðx;y¼ 0Þ
cosðxtÞ � d:

ð14Þ

In general, using Eq. (3) we get

Dpðx; y¼ 0; t;dÞ

¼ �x2a3sq
dþ x

ðdþ xÞ2þD2
� �3=2

� x

ðx2þD2Þ3=2

2
64

3
75 cosðxtÞ:

ð15Þ

Figure 3 shows a plot of the maximum amplitude of

Dp(x,y = 0,t,d) as a function of x for cos (xt) = -1. It

reveals that the pressure difference distribution has a form

identical to the velocity field. Again the distance between

the zeros Dk is proportional to the distance D of the sphere.

A mathematical expression for the distance between the

zeros can be found by equating Eq. (15) to zero and then

keeping only the terms linear in d since d � x and d2� d.

This leads to

�2D6 þ 6D2x4 þ 4x6 ¼ 0: ð16Þ

The above equation has two real-valued zeros x ¼
�D=

ffiffiffi
2
p

: Hence Dk ¼
ffiffiffi
2
p

D; which corresponds to what we

have shown before for the velocity field governing the

response of SNs.

Angle determination

Franosch et al. (2005) have shown that for a translating

sphere the angle a (angle between the axis of vibration of

the sphere and the x-axis) can be determined from the zeros

and the maxima and minima of the flow field. This is

possible for any a.

Real fish, however, may use a special behavioral strat-

egy based on the zeros, since the latter are easily

detectable. In experiments on blind mottled sculpins it was

observed that fish frequently approaches the source in a

step-wise manner (Schwartz and Hasler 1966; Conley and

Coombs 1998; Coombs 1999). First they align themselves

parallel to the axis of the sphere motion where t(x) is an

even function of the position; see Fig. 3. Second, they

approach the sphere frontally. These two steps are repeated

at increasingly closer distances until the fish is close

enough for a strike. Based on this approach behavior, we

assume that the fish measures the position of a vibrating

sphere when the trunk lateral line is parallel to the direc-

tion of vibration. This behavioral mechanism solves the

problem of angle determination.

Angle-determination algorithm for angles near 0 and p/2

have been proposed previously (Franosch et al. 2005;

Ćurčić-Blake and van Netten 2006). In addition, Franosch

et al. (2005) have also presented a relation valid for any

angle. At the moment, however, it is difficult to select a

universal mechanism that fish use. We therefore limit

ourselves to the case of a stimulus moving in parallel or

perpendicularly to the skin of a fish.

Three dimensions

There is evidence (Janssen et al. 1990) that fish can use

their lateral line not only to detect a source in a horizontal

plane but also to determine the source’s elevation, i.e., its z-

component. Anatomical data show that both SNs and CNs

are organized orthogonal to each other (Schwartz and

Hasler 1966). In the following we show how fish could

compute the 3-D position of a dipole from lateral-line data.

For a dipole at position (0, Dy, Dz), we get

/k x; y; z; tð Þ ¼ � l tð Þ
4p

x

x2 þ ðDy � yÞ2 þ ðDz � zÞ2
h i3=2

8><
>:

þ x

x2 þ ðDy þ yÞ2 þ ðDz � zÞ2
h i3=2

9>=
>;: ð17Þ

Simplifying the anatomy of the lateral line, we assume two

lines of receptors arranged perpendicular to each other

along the x and z-axis (with y = 0), so as to get
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tx ¼
l tð Þ
2p

2x2 � ½ðDyÞ2 þ ðDz � zÞ2�

x2 þ D2
y þ ðDz � zÞ2

h i5=2
: ð18Þ

Since we are interested in the velocity along the line of

receptors on the x-axis, we set z to zero and calculate the

distance between the zeros as

D3D ¼
ffiffiffi
2
p
ðD2

y þ D2
z Þ

1=2: ð19Þ

For the line of receptors along the z-axis we find

tz ¼
l tð Þ
2p

3xðDz � zÞ
½x2 þ D2

y þ ðDz � zÞ2�5=2
: ð20Þ

If x = 0 (i.e., the line of detectors is not at x = Dx = 0)

then there is one point with zero velocity the z-axis at

z = Dz.

The fish may then determine the position of a dipole in

three dimensions as follows. The x-position Dx of the

dipole is between the two zeros of tx: The z-position Dz is

at the zero of tz. The y-position is calculated with Eq. (19).

We have done the above calculation for receptors sensitive

to velocity, i.e., SNs. For CNs the same calculation applies

since we have already shown through Eq. (14) that the

pressure difference distribution along the canal lateral line

has an identical form to that of the velocity field.

Translating sphere

The velocity field due to a translating sphere is a dipole

(Lamb 1932). SNs can encode the distance to such a source

(Franosch et al. 2005). Here we show that the localization

mechanisms we have presented above are also applicable

to the detection of a translating sphere by means of the

CNs. Say, a sphere is moving in the x-direction with

velocity w and starting point x0 at time t = 0. Then the

distance in the x-direction between a CN at position x and

the sphere at time t is

Xðt; xÞ ¼ x� ðx0 þ wtÞ: ð21Þ

The velocity potential is

/kðx; y; tÞ ¼ 2a3w
Xðt; xÞ

½Xðt; xÞ2 þ ðy� DÞ2�3=2

(

þ Xðt; xÞ
½Xðt; xÞ2 þ ðyþ DÞ2�3=2

)
:

ð22Þ

Due to the Bernoulli equation (10) we find

pðx; y; tÞ � p0ðtÞ ¼ �q
1

2

o/
ox

� �2

þ o/
ot

" #
: ð23Þ

Since the second term is dominant, the pressure difference

between two consecutive pores is approximately

Dpðx; tÞ � d

dx

o/kðx; y; tÞ
ot

����
y¼0

�d ð24Þ

where d is the distance between two pores. Using (22) we

arrive at

Dpðx; tÞ ¼ 2a3w2d
o2

o2X

Xðt; xÞ
X2ðt; xÞ þ D2½ �3=2

¼ 6a3w2d
X½2X2ðt; xÞ � 3D2�
½D2 þ X2ðt; xÞ�7=2

: ð25Þ

This field is antisymmetric in x and the distance between its

maximum and minimum is Dk = 0.72 D.

In the case of a sphere translating perpendicularly to the

line of detectors we have

DðtÞ ¼ D0 þ wt: ð26Þ

The velocity potential is

/?ðx; y; tÞ ¼ 2a3w
y� DðtÞ

½x2 þ ½y� DðtÞ�2�3=2

(

� yþ DðtÞ
½x2 þ ½yþ DðtÞ�2�3=2

)
:

ð27Þ

Therefore the pressure difference (15) between two pores

becomes

Dpðx; tÞ � d

dx

d/?ðx; y; tÞ
dt

����
y¼0

�d ¼ 6a3w2d
4D2ðtÞx� x3

½D2ðtÞ þ x2�7=2
:

ð28Þ

The pressure difference field is again antisymmetric in x

and the distance between the maximum and the minimum

is D? �
ffiffiffiffiffiffiffiffiffi
1:21
p

D: Hence a simple linear encoding of the

distance between fish and object may well hold for a

translating sphere too.

Extending the minimal model to a lateral line

with curvature

So far we have modeled the lateral-line system as a straight

line. Strictly speaking, this may be, and in general is,

incorrect since a fish body is practically always curved. We

have therefore applied our method to a curved surface in

order to analyze the effect of curvature on the relationship

between the zeros of the velocity field and pressure dif-

ference field. Because of curvature the relation between the

distance Dk of the zeros and the distance of the sphere

becomes non-linear. We note, however, that this relation is

always independent of the dipole strength, which means

that the distance to the sphere can nevertheless be com-

puted from the distance between the zeros. We will also

quantify the effect of curvature for two real goldfish.
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To determine the effect of curvature on a line of SNs as

well as CNs, we measured the shape of two goldfish (6.5 and

10 cm long). Assuming the fish is axially symmetric with

respect to the x-axis, we use a polynomial to fit the geometry

of the fish. Let Y(x) be the distance of the fish’s skin from the

x-axis. As shown in Fig. 6, a polynomial of degree three of

the form Y(x) = a x3 + b x2 + c x + d can already fit the

experimental data. Table 1 shows the coefficients.

The dipole is at distance D from the fish’s skin and at

x-position X0. Here the skin is at distance Y0 := Y(X0) from

the x-axis. For a sphere oscillating parallel to the tangent to

the (now curved) line of detectors the velocity potential at

position (x,Y(x) + y) is

/kðx;y; tÞ ¼
�lðtÞ

4p
x�X0

x�X0½ �2þ y�Dþ YðxÞ � Y0½ �2
n o3=2

8><
>:

þ x�X0

x�X0½ �2þ yþD� YðxÞ þ Y0½ �2
n o3=2

9>=
>;:
ð29Þ

The distance r(x) between the point at position x on the

lateral line and the center of the oscillating sphere is

rðxÞ ¼ ½x� X0�2 þ D� YðxÞ þ Y0½ �2
n o1=2

: ð30Þ

With the definition

RðxÞ :¼ ½x� X0�2 þ Y2ðxÞ
n o1=2

ð31Þ

the velocity field at the fish’s skin (y = 0) is

txðx; tÞ ¼
1

RðxÞ
o/kðx; y; tÞ

ox

����
y¼0

¼ 1

RðxÞ
o/k½x; YðxÞ; t�

ox
þ

o/k½x; YðxÞ; t�
oY

dYðxÞ
dx

	 

y¼0

¼ lðtÞ
4pRðxÞr5ðxÞ f2½x� X0�2 � D� YðxÞ þ Y0½ �2

þ 3½x� X0� D� YðxÞ þ Y0½ � dYðxÞ=dx½ �g: ð32Þ

The zeros of the velocity field follow from txðx; tÞ ¼ 0

and therefore from

2½x� X0�2 � D� YðxÞ þ Y0½ �2þ3½x� X0� D� YðxÞ þ Y0½ �
dYðxÞ=dx½ � ¼ 0: ð33Þ

The distance between the two real zeros (x+ and x-) along

the fish’s skin is

Dk ¼
Zxþ
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jdYðxÞ=dxj2

q
dx: ð34Þ

Figure 6b shows that the difference in Dk between the two

goldfish is negligible. Figure 9a compares the theory

developed above with experimental results.

In the case of a dipole oscillating perpendicularly to the

line of detectors, we proceed in the same way except that

we are now focusing on the difference between the maxima

of the velocity amplitude instead of the zeros.

The velocity field on the skin of the fish is

2

1

5

0

0

)
mc(

Y
)

mc(

X (cm)

Distance (cm)

0 2 6 84 10

1          1.5            2           2.5           3           3.5           4           4.5

a

b

Fig. 6 a Experimental measurement of the curvature and, thus, of the

radius of curvature of two real goldfish (open circle 6.5 cm long,

filled circle 10 cm long). The solid line represents a polynomial fit to

the data; see Table 1 for the coefficients. b The theoretical distance

Dk between the zeros in the velocity field for the two goldfish as a

function of the distance D to the sphere. The black dashed line is the

approximation Dk ¼
ffiffiffi
2
p

D valid for a straight lateral line. There is

only a small difference between both fish. Moreover, Eq. (34) shows

that Dk only depends on the distance to the stimulus and not on

stimulus amplitude or frequency

Table 1 Polynomial fit through a x3 + b x2 + c x + d for the radius

of curvature of two real goldfish

Length of the fish (cm) a b c d

6.5 0.012 0.16 0.53 0.22

10 0.0033 0.08 0.45 0.27

Figure 6a shows that such a polynomial of degree 3 already fits the

experimental data quite well

txðx; tÞ ¼
�lðtÞ
4pRðxÞ

3½x� X0� D� YðxÞ þ Y0½ � þ r2ðxÞ � 9½x� X0� D� YðxÞ þ Y0½ �
r5ðxÞ

	 

: ð35Þ
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The distance D? between the maxima of the velocity

amplitude follows from dvx/dx = 0. The zeros of the

velocity field, i.e., txðx; tÞ ¼ 0; do not depend of l(t) and

therefore the distance D to the dipole is just a function of

the distance to the source and the form of the fish body.

Figure 7 shows for a circular lateral line the speed at

which Dk and D? converge to the values for a straight line. It

shows that the effect of curvature is not negligible for bigger

fish. The Appendix contains the mathematical derivation.

Comparison between modeled and measured data

In this section we test the theoretical predictions by com-

paring them with recordings from lateral-line nerve fibers.

As shown in previous studies, the two observed patterns

can be predicted by the amplitude and direction of the

pressure gradients surrounding a dipole source for a

vibration axis that is either parallel (trimodal pattern) or

orthogonal (bimodal pattern) to the orientation of the pores

(Sand 1981; Coombs et al. 1996, 1998; Coombs and

Conley 1997b).

Some general predictions of our model have been con-

firmed by experimental data as well. A prediction of all

analytic models is that the distance Dk between the zeros in

the velocity and pressure fields is only a function of

stimulus distance and hence independent of the sphere

displacement amplitude, size, and frequency; cf. Eq. (8).

Various sphere sizes and amplitudes were tested in two

cases and neither sphere size nor vibration amplitude had

an effect on Dk (data not shown); for the dependence upon

the amplitude see also Ćurčić-Blake and van Netten (2006).

To determine the degree of agreement between the

theoretic predictions and the measured responses, we

compare a ‘‘firing rate’’ function of the form (triphasic

field)

FðxÞ ¼ I þ A
½2ðx� x0Þ2 � D2�
½ðx� x0Þ2 þ D2�5=2

H

�����
����� ð36Þ

with actual receptive fields. Here I is the experimentally

determined instantaneous firing rate, A denotes a scaling

parameter and x0 is the position of the sphere. The variable

H is 1 when the neuronal response is in phase with the

vibrating sphere and -1 when there is a 180� phase dif-

ference; cf. Fig. 5.

In the case of a sphere moving perpendicularly to the

skin of the fish (biphasic field), the firing rate is

FðxÞ ¼ I þ A
Dðx� x0Þ

½ðx� x0Þ2 þ D2�5=2
H

�����
�����: ð37Þ

As shown in Fig. 8, the agreement between the modeled

firing rate F and the three arbitrarily chosen neuronal

receptive fields is quite good.

Determining distance

We now turn to the question of whether, and how, the

distance to the sphere is unambiguously encoded in the

distance between the zeros or the maxima in the discharge

pattern of the afferents. Since our model shows that the

factor governing the linear relationship between sphere

distance D and D depends on the orientation of the neu-

romasts, we first present the results obtained by pooling

data from afferents with identical orientations. For ‘‘tri-

phasic’’ fibers Fig. 9a shows the dependence of the

distance Dk between the zeros of the velocity field upon the

distance D to the sphere. For ‘‘biphasic’’ fibers Fig. 9b

shows the dependence of the distance D? between the

amplitude maxima upon D.

A linear fit of the data shows that there is a correlation

between the distance to the sphere and the distance

between the phase reversals for the case of triphasic

receptive fields with Dk & 1.13 D (R2 = 0.96). The slope

of this fit is significantly larger than 1 and smaller than
ffiffiffi
2
p

:

The model including the curvature of the fish explains the

measured data better. The obtained slope is thus in good

agreement with the two values predicted by a linear model

for both SNs and CNs. It is important to note that neuronal

data for this analysis were not sorted by neuromast type

(CN or SN) but only by the orientation of the neuromasts

(triphasic or biphasic receptive field).

Since the linear relation between D and D is just an

approximation valid for a flat fish we also show the

0.5

1.0

1.5

√2D||

D||

)stinu
D(

R (D units)
0               20                40                60                80              100

Fig. 7 Effect of decreasing curvature R-1 as the radius of curvature

R becomes large so that R-1 ? 0. The distance Dk between the zeros

of the velocity field converges to
ffiffiffi
2
p

D (solid line) for a parallel

direction of oscillation of the sphere. In case of perpendicular

oscillations the distance D? between the maxima in amplitude of the

velocity field converges to D (dashed line)
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theoretical results in the case of a real fish. For the biphasic

case D? ¼ 1:02D; which is not significantly different from

the slope 1.0 given by Eq. (9).

We did not attempt to separate CNs and SNs here. The

physiological data confirm the results shown in Fig. 3, i.e.,

both the velocity and the pressure difference between the

pores present the distance of the sphere in the same man-

ner. This was further confirmed when we analyzed the

receptive fields of triphasic SNs and CNs separately

(Fig. 10). There is no significant difference in the slope for

the CNs and the SNs population.

Discussion

In view of the multifaceted aspects of our results we will

list and discuss them in turn. Throughout this paper and
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Fig. 8 Experimentally measured firing rates (black dots, mean of ten

stimuli) at afferent nerve fibers and theoretical predictions (solid lines)

of Eqs. (36) and (37). a A triphasic field of a CN for an oscillating

sphere at distance D = 1.5 cm from the skin of the fish, instantaneous

firing rate I = 8, and the free parameter A = 170 to fit the amplitude. b
A biphasic field for a sphere at distance D = 2.6 cm from the skin of

the fish, I = 13 and A = 6,000. c A triphasic field of a superficial
neuromast for an oscillating sphere at distance D = 0.93 cm, I = 13

and A = 500. In this case, the difference between theory and

experiment is probably related to rate saturation (see ‘‘Discussion‘‘)

)
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Fig. 9 a Distance Dk between the zeros of the velocity field as a

function of sphere distance for afferents with triphasic receptive

fields. Error bars show standard deviations in y-direction. The

standard deviation in x-direction is 0.1 cm. The thick solid line is the

theoretic prediction for the curved 10 cm long goldfish; cf. and

Eq. (33). The dashed line is the predicted result for a straight lateral

line; cf. Eq. (8). The thin solid line is the best linear fit of the

measured data 1.13 D. The data agree well with the theoretical

prediction for the curvature effect. b Distance D? between the

maxima in amplitude of the velocity field as a function of sphere

distance for afferents with biphasic receptive fields. The thick solid
line is the theoretic prediction for the curved 10 cm long goldfish. The

dashed line is the predicted result for a straight lateral line Eq. (9).

The thin straight line 1.02 D is the best linear fit to the measured data.

The horizontal axis is the sphere distance D in both cases (a and b)
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hence also throughout what follows we focus on dipolar

stimuli such as an oscillating or uniformly translating small

sphere or, for instance, a small fish swimming in the

neighborhood of an adult pike.

For a discussion of results it is useful to first put things

into a historical perspective. Lateral line analysis has a long

history culminating in a first review by Dijkgraaf (1963);

see also the great collection of essays in Coombs et al.

(1989), in particular, those by Kalmijn and Hassan, the

detailed mathematical analysis due to Hassan (1985,

1992a, b, 1993), and Bleckmann’s succinct monograph

(Bleckmann 1994) evenly combining biological data and

mathematical description.

There are also several studies addressing questions

similar to those analyzed here, starting with Harris and van

Bergeijk (1962) and Sand (1981), continuing with Coombs

et al. (1996) and most recently, Franosch et al. (2005) and

Ćurčić-Blake and van Netten (2006). Though Coombs and

co-workers (Coombs 1994, 1999; Coombs et al. 1996,

2000, 2001; Coombs and Conley 1997a, b; Conley and

Coombs 1998) have analyzed an impressive collection of

data, we are facing several, partially inconsistent, conclu-

sions. The inconsistency is mainly due to the fact that these

authors have not analyzed the physics of the problem in

sufficient detail. Their insight, however, that only the near

flow field can communicate outside information to the

lateral line has certainly stimulated a lot of recent work.

Franosch et al. (2005) were the first to unequivocally

show that the distance between the zeros or between

maxima and minima of the velocity field encode the spatial

distance D between an aquatic stimulus and fish. In par-

ticular, the distance between characteristic lines of the

velocity field on the fish body scales with D with a pre-

factor of order 1. If, for instance, fish would encode the

distance D to a prey by the distance between maxima and

minima of the near flow field, scaling with D, then they

need to be able to detect both maximum and minimum.

However, if D is too large, exceeding fish length, then the

information is to be incomplete. Encoding D is no longer

possible, and hence distance determination in higher brain

centers is no longer possible either. These points con-

cerning the maxima and minima would hold equally well

for the two zeros of the dipolar velocity field; see below.

This natural explanation of the ‘‘short’’ range of the lateral-

line system as ‘‘about one fish length’’ in fact justifies a

criterion that has been known to biological tradition since

long; (Harris and van Bergeijk 1962, Sand 1981). Though

the above theoretical evidence was quite compelling,

physiological evidence for a sharp estimate in terms of the

near-flow field was still missing.

Analyzing extracellular receptor potentials (ERPs), also

called microphonic potentials, which arise from the col-

lective mechano-transduction of hair cells in single

neuromasts, Ćurčić-Blake and van Netten (2006) showed

that the above criterion of zeros of the velocity field scaling

with D indeed holds for ERPs, thus providing a first

experimental confirmation of this theoretically attractive

idea. On the other hand, their interpretation of the ERP data

in terms of a wavelet read-out is somewhat questionable

since it is unclear why, and how, fish should use such a

complicated mathematical procedure, if things also work

simply and straightforwardly in biological terms, a key

result of the present paper.

Canal and superficial neuromasts are equivalent

Canal and superficial neuromasts are the two types of

neuromast relevant to the lateral line functioning in fish. By

carefully analyzing the hydrodynamics underlying the

biophysical detection mechanisms giving rise to the

response of both we have arrived at the rather surprising

conclusion that both operate through the same mechanism

so that ensuing neuronal procedures need not discern the

input of CNs and SNs, and can handle both identically, cf.

Fig. 3 and Eq. (14). We now turn to the hydrodynamics

through which such a mechanism becomes operational.

Our finding that both SNs and CNs employ the same

encoding scheme for determining the distance to a dipolar

source agrees with what is known about the projections

present in the lateral-line system. While it has been

demonstrated that there is a proof of a crude somatotopic

representation of the lateral-line in goldfish (Kröther et al.

0.6  0.8  1.0  1.2  1.4  1.6      1.8
0.2
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1.0
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||
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Fig. 10 Distance Dk as a function of sphere distance for CNs (n = 15)

and SNs (n = 10) with triphasic receptive fields, i.e., cells sensitive to

motions along the x-axis. The 25 samples stem from a population of

17 goldfish and 8 trout. Error bars represent standard deviations in x-

direction. The plot confirms the theoretical prediction that both CNs
and SNs encode distance on the same way, since the populations are

small and the error bars important, we are not able to make definitive

conclusion about the value of the slope for a linear relation. The black
line y = x is therefore just a guide to the eye
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2001) and the zebra fish brain (Alexandre and Ghysen

1999), there is no evidence that afferents of SNs or CNs

project to distinct areas in the Medulla. Recordings from

central neurons in the Medulla, where input from the pri-

mary afferent is further processed, show that information

about the zero-distances of the near-flows velocity fields

can be maintained at this level (Mogdans and Kröther

2001). The fact that such neurons exist in the initial stage

of information processing suggests that the actual extrac-

tion of the distance D between the zeros (or maxima/

minima) of the near-flow velocity field may well occur

higher up in the sensory system.

Behavioral support for the hypothesis that both CNs and

SNs being involved in distance estimation comes from

experiments on the Mottled sculpin (Cottus bairdi) show-

ing that these fish can locate a vibrating sphere even if the

CNs are mechanically blocked (Janssen and Corcoran

1998). Nevertheless, the CNs are necessary (Coombs et al.

2001) for an efficient distance determination, although

juvenile sculpins, which possess SNs only, can orient

themselves towards small copepods (Janssen et al. 1987).

Localization: determining distance

Hydrodynamic images are to some extent comparable to

visual images. With increasing distance image become

blurred (O’Shea et al. 1994, 1997; Maher 1997) and this

can be used in monocular vision for distance determination.

In contrast to visual images, however, hydrodynamic

images lack a lens adjusting the focus. Consequently

hydrodynamic images get wider with increasing distance

while visual images in fact get smaller as the distance

increases. For our data this translates into the finding that

the distance between the maxima and minima or zeros of

the velocity field of a dipole increase monotonically with

the distance to the source; cf. Figs. 3, 6, 9 and 10 and

Eqs. (8) and (9). Hence the knowledge of this relationship

may well suffice for a fish to determine the distance to

predator, prey, or conspecifics—at least as long as the latter

can be described as oscillating dipoles or moving spheres.

Another argument for localization based on distance

between the zeros or the maxima and minima of the near-

flow velocity field (cf. Figs. 3, 5) is that the spatial location

of these points is invariant in time so that it enables quicker

localization than if complete reconstruction of the stimuli

were required over a period of time, say an oscillation

period, is nearly always in the range of 30 Hz and below,

the times we need to think of exceed 30 ms.

Both Coombs et al. (1996) and Coombs and Conley

(1997b) already noted that there is a relation between the

distance D to a dipole and the width D between the phase-

reversals in the receptive fields of primary afferents. These

authors did not investigate, however, this relation quanti-

tatively. A more detailed investigation for the SNs of

Xenopus has been presented recently by Franosch et al.

(2005) and for the CNs of the ruff by Ćurčić-Blake and van

Netten (2006). As we have seen, a natural consequence of

D’s scaling with D, is in fact a fundamental restriction

depending on what part of the lateral-line system we focus

on, e.g., trunk, mouth, or eyes, is that the range of the

respective parts of the lateral-line system is about one fish

length, the width of the mouth, or the eye diameter. From a

biological point of view, this makes a lot of sense.

Even more importantly, though Eqs. (33) and (34) show

that because of the curvature of the fish body the relation

encoding the distance is in general non-linear, it is inde-

pendent of dipole strength and the speed of a translating

sphere. In other words, though curvature makes the relation

between the distance D to a sphere and the D between zeros

or maximum/minimum of the near-flow velocity field non-

linear, the relation is a function of the distance and some

internal parameters, such as the form of the fish, only. Thus

fish can learn to evaluate the distance without considering

any other external parameter. This is relevant since con-

siderable curvature often occurs at the head of a fish, in

particular, for neuromasts situated around the mouth and

the eyes. On the other hand, the effect of curvature is rather

moderate for small distances; for example, for a small prey

near an adult pike. We therefore conclude that in many

cases even a simple linear algorithm may well suffice to

determine distance.

In passing we note that our simple ‘minimal’ model is

based on an arrangement of neuromasts in a plane. That is,

for a flat fish. Quite often this is a reasonable approxima-

tion of the trunk lateral line. Including curvature alters the

results originating from the simple model as described by

Eq. (34). However, it does not alter the essence of our

result that lateral-line neuronal input encodes the distance

of a dipole independently of its intensity.

The above facts suggest that ‘‘distance-neurons’’ might

exist in the ascending lateral-line system, although it is

unlikely that distance tuning, in the sense of a one-to-one

neuron coding, is established in the system. Future exper-

iments should address the question of whether central

lateral-line neurons show tuning characteristics related to

distance and whether this tuning can be related to the zeros-

distance or min/max parameter D.

Localization in three dimensions

Extending our findings that similar coding strategies are

employed by SNs and CNs to orientation in 3-D space, we

propose that fish can determine distance to and elevation of

a source either by the aid of CNs arranged orthogonally to

J Comp Physiol A (2008) 194:1–17 13
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each other, as one can frequently see on the fish head

(Schwartz and Hasler 1966; Webb 1989a, 1989b; Faucher

et al. 2003, 2005), or by a similar combination of SNs and

CNs or SNs alone, as in Xenopus (Franosch et al. 2003,

2005). In either configuration—see Eq. 17)—two perpen-

dicular lines of detectors are sufficient to extract the exact

position of any source, provided that each line of receptors

is long enough. In future behavioral experiments, it might

be interesting to test for differences in the distance deter-

mination capability between fish that differ in lateral-line

geometries or between fish of different sizes. In the latter

case, where the density of neuromasts for many fish

decreases with growth (Janssen and Corcoran 1998), one

might expect a decrease in distance determination perfor-

mance during development, as Jones and Janssen (1992)

have indeed reported.

An oscillating dipole is effectively a 3-D construct in that

its dipole moment is a 3-D vector. Velocities associated

with fish are in general so small that one can take the Stokes

approximation of the Navier–Stokes equation (1) and hence

drop the non-linear term t2�rt; which is proportional to t2:

The remaining problem being linear we can decompose the

dipole moment p into three components, one parallel to the

long axis of the fish, a case we have treated extensively, and

two directions orthogonal to it; say, with decomposition

coefficients bı and 1� ı� 3: The general solution to the

velocity field is then a linear superposition of these three

cases with exactly the same coefficients bı:

Wavelets could of course also be used to describe the

pattern due to many dipoles pointing in different directions

(Ćurčić-Blake and van Netten 2006). The problem, how-

ever, with the wavelet approach is that, although it makes it

possible to reconstruct a complicated pattern one can

measure, it gives no idea as to how fish analyze a single

pattern through a general wavelet decomposition nor how

they can neuronally segregate composite signals coming

from many dipoles. This is open to future experiments but

might well be more a problem of signal integration than

one of pattern formation at the nerves. There is no evidence

either that neurons perform pattern segmentation through a

wavelet algorithm. Pattern segmentation is certainly an

interesting topic; e.g., the model of Franosch et al. (2003)

allows Xenopus to segregate a superposition of up to at

least three sources generating surface waves, which has

been confirmed recently by experiment (Elepfandt, private

communication). This kind of result is not available yet for

underwater stimuli, i.e., for 3-D localization.

Shape of the fish body

In 3-D space the fish body has a finite extent. To arrive at

exact results that provide insight we have to confine

ourselves to specific shapes such as ellipsoids or perform

an approximating series expansion (Handelsman and Keller

1967; Geer 1975). The algorithm developed here for an

ellipsoid can be adapted by a weighting function that would

adjust for the local degree of curvature. However, the error

in distance estimation due to curvature may be negligible

within the range of precision needed. For example, Janssen

and Corcoran (1998) has shown that mottled sculpins tend

to underestimate the source distance. As argued by the

same author (Janssen 2004), it is probably not critical for

the lateral-line mediated orientation system to be so pre-

cise. The sculpin still successfully captures its prey, even if

the distance has not been estimated accurately, because the

prey is ingested by means of a suction mechanism

(Wainwright and Day 2007). Just getting close enough to

the prey suffices to enable successful capture, at least for

this fish. Precision may well be species-dependent.

Boundary layer

The notion of boundary layer is closely related to the shape

of any object in an aquatic surroundings. It was already

Prandtl (1904)—for details see Schlichting and Gertsen

(2003)—who suggested more than a century ago that, if

velocity is low, viscosity can be neglected and one can use

the Euler equation (2) outside fish body with boundary

layer. The latter’s extent is typically 2–3 mm. Though we

may then consider fish and boundary layer as one object, it

is precisely the boundary layer where both SNs are found

and from which the CNs get their information. As we have

seen, for an incompressible fluid such as water the pressure

perpendicular to the boundary layer is almost constant so

that the boundary layer effectively plays no role. Moreover,

the difference between the predicted and measured

responses for the case shown in Fig. 8c is probably due to

rate-saturation, as primary afferents do not discharge faster

than at a rate of about 200 Hz.

Based on the numerical simulations, we have shown that

the boundary layer can be neglected for both SNs and CNs.

For SNs the point is that the spatial form of the field is

maintained within the boundary layer. Hence both SNs and

CNs detect dipole-like sources in the very same way. It is

consequently not necessary to solve all possible problems

related to hydrodynamics since instead it suffices to ana-

lyze far simpler configurations on the basis of the physical

insights presented in this paper.

An interesting issue that deserves consideration in the

present context is our finding that both velocity and pres-

sure difference at the pores are increased in amplitude by

interaction with the fish (or whatever) body. For instance,

the factor of 2 that we have explained in the context of

Fig. 4 was already noticed, though not understood, by

14 J Comp Physiol A (2008) 194:1–17
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Hassan (1993) in his numerical simulations. Apart from the

physical importance of the above result, it may also be of

behavioral relevance. In a series of elegant experiments,

Hassan (1986, 1989) also showed that blind Mexican cave

fish can determine the structure of artificial surfaces as they

glide past an object by using their highly developed lateral-

line system.

In conclusion, by taking into account and carefully

modeling the physical essentials underlying neuronal

object localization as performed by the lateral line in an

aquatic environment we can finally understand a bedaz-

zling wealth of data and, what is equally important, see that

they all belong to a grand, biologically and physically,

consistent context.
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Appendix: Convergence of the curved model

Another interesting question concerns the rate at which the

predictions of the model describing a curved fish body

converge to those of a straight line as the body curvature

vanishes. In order to answer this question, we assume an

arc of radius R at a distance D to an oscillating dipole. For a

dipole oscillating parallel to the tangent to the curved line

of detectors, the velocity potential is

/kðR; h; tÞ ¼
�lðtÞ

4p
R sin h

½R2 sin2 hþ ðDþ R� R cos hÞ2�3=2

ð38Þ

where R is the radius of the lateral line, (0,D) the position

of the dipole, and h is the angle between the radius and the

y-axis. The velocity in h-direction (perpendicular to r) is

thðR; hÞ ¼ �
lðtÞ
2p

2ðDþ RÞ2 cos hþ RðDþ RÞ½cosð2hÞ � 5�
2½ðDþ R� R cos hÞ2 þ R2 sin2 h�5=2

ð39Þ

so that th = 0 results in

2ðDþ RÞ2 cos hþ RðDþ RÞ½cosð2hÞ � 5� ¼ 0: ð40Þ

Solving (40) explicitly for h we find as real solutions

h� ¼ 	 arccos
ðD2 þ 2DRþ 2R2Þ

2RðDþ RÞ

�

�ðD
4 þ 4RD3 þ 20R2D2 þ 32R3Dþ 16R4Þ1=2

2RðDþ RÞ

#
:

ð41Þ

For small curvature, R is large. Focusing on the immediate

surroundings of a dipole we assume h is small and develop

the expression in (40) into a Taylor series near h = 0,

2D2 � ðDþ 2RÞ2h2 þ Oð�4Þ ¼ 0; ð42Þ

and find the solutions h� ¼ �
ffiffiffi
2
p

D=ðDþ 2RÞ and hence

D ¼ ðhþ � h�ÞR ¼ 2
ffiffiffi
2
p

DR=ðDþ 2RÞ: Since D + 2R &
2R for large R we recover D ¼

ffiffiffi
2
p

D: Plotting Dk =

R(h+ - h-), we see from Fig. 7 that for a curvature near

R = D = 1 cm the distance between the zeros is almost D,

whereas for a straight lateral line the limit approachesffiffiffi
2
p

D:

The same kind of solution is applicable for the anti-

symmetric field. In this case the velocity potential is

/?ðR; h; tÞ ¼
�lðtÞ

4p
Dþ Rð1� cos hÞ

fðR sin hÞ2 þ ½Dþ Rð1� cos hÞ�2g3=2
:

ð43Þ

The maxima/minima of the velocity th are at

h� ¼ �
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2Dþ 3RÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D3 þ 16RD2 þ 37R2Dþ 24R3
p : ð44Þ

The Taylor series as in Eq. (42) is

ð�8D4 � 12RD3Þ þ ð4D4 þ 32RD3 þ 74R2D2 þ 48R3DÞ
h2 ¼ 0: ð45Þ

Figures 6 and 7 show the dependence of the distance

between the zeros or the maxima and minima of the

velocity upon the distance to the stimulus. The distance D?
converges a bit faster to D than Dk. The above calculations

show how a fish can localize objects in front of its mouth or

eyes where curvature is of great importance.
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