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Abstract

IN THE present thesis biological learning mechanisms in spiking neuronal networks

are investigated. In the brain, mechanisms at the molecular level modify the strengths

(or weights) of the connections (synapses) between neurons, which is hypothesised to

develop structure in neuronal networks depending on their activity; this learning mech-

anism is called ‘synaptic plasticity’. This thesis focuses on a particular physiological

model of synaptic plasticity: spike-timing-dependent plasticity (STDP). Using a stochas-

tic model of the spiking neuron, the Poisson neuron, a dynamical system is derived to

predict the evolution of the weights and thus of the network activity using mathematical

tools from stochastic processes and dynamical systems. The main aim of the study is to

gain a better understanding of the weight dynamics induced by such synaptic plasticity

in recurrent neuronal networks. The emergence of weight structure in a neuronal net-

work is determined by the interplay between the main players: neuronal mechanisms,

network connectivity, stimulating input structure and learning parameters. For a broad

range of parameters, STDP can generate at the same time both a stabilisation of the mean

incoming weight for each neuron, synonymous to stability of the firing rates in the net-

work, and a diverging behaviour that induces neuronal specialisation to some of its in-

coming connections (both for input and recurrent weights). The results presented can

be linked to cortical self-organisation, for example; STDP can lead to the emergence of

neuronal groups sensitive to distinct input pathways. The resulting input selectivity pro-

vides a framework for ocular dominance in the primary visual cortex. The study of the

learning dynamics also contributes to obtaining insight into the neuronal information

processing that occurs in the brain: it indicates a time scale at which variations of the

neuronal spiking probabilities are of importance, stresses the importance of the complete

iii



cross-correlation structure between pairs of neurons (not just coincident spiking) and

supports the hypothesis of massively distributed computation through the role of neu-

ron assemblies in driving the weight dynamics. This study can also be seen as a further

step towards linking neuromodelling at the physiological level to machine learning.
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Chapter 1

Introduction

1.1 Motivation

THE brain performs many sophisticated everyday computational tasks with a speed

and precision unparalleled by present-day computers. Usual examples include ob-

ject recognition and target tracking by the visual pathway, sound localisation and speech

recognition by the auditory pathway, and movement control in the motor cortex. The

difference between the brain and computers does not lie so much in brute-force compu-

tational power, but rather in the way the processing is organised: the brain makes use of

a massively parallel architecture to perform computations in a distributed fashion. How

the brain achieves such a performance is of interest both in gaining a better understand-

ing of the brain and in designing artificial applications inspired by it.

1.2 Neurons

At the end of the nineteenth century, Ramon y Cajal and Golgi uncovered the role of neu-

rons in the information processing performed by the brain. Their observations of brain

tissue by means of microscopes shed light on the structure of neuronal networks, as illus-

trated in Fig. 1.1, and on the way in which neurons communicate through “connections”

between them, the synapses. The human brain comprises more than 1011 neurons or-

ganised in various structures, from microscopic circuits to macroscopic functional areas

(Hubel and Wiesel 1962, Bear et al. 2007). Understanding its functioning is arguably one

of the most challenging problems in the domain of complex systems.
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Figure 1.1: Preparation through the optic tectum (from a sparrow) impregnated with
the Golgi technique. Drawing by Ramon Y Cajal (taken in May 2009 from url nobel-
prize.org/nobel prizes/medicine/articles/cajal/images/9.gif). This drawing shows neurons of
distinct types (indicated by the capital letters), and the ‘a’ indicates an axon.

1.2.1 Anatomy and functioning of a neuron

Neurons are believed to communicate by means of spatial and temporal variations of

their membrane potential. The anatomy of a neuron involves three distinct parts with

different functions with respect to the neuronal electrical activity (see Fig. 1.2): dendrites

that form a tree and contain post-synaptic receptors (inputs), the cell body or soma that

integrates the synaptic influx coming from the dendrites, and a long-limbed axon that

terminates with pre-synaptic buttons (outputs). One typical feature of the neuronal elec-

trical activity is the propagation of membrane depolarisation. Brief high-amplitude de-

polarisations that propagate from the soma along the axon are called action potentials

(or spikes) and have a characteristic shape. When a spike reaches an axonal termination

that “connects” to a post-synaptic neuron, neurotransmitters are released into the extra-
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a b

Figure 1.2: Anatomy of a neuron. (a) Schematic representation featuring the dendritic tree (in-
puts), the cell body (soma) and the long-limbed axon (output). (b) Detail of a synapse. The axonal
termination contain vesicles (thick closed curve) of neurotransmitters (triangles) that are released
when the synapse is excited by an incoming axon potential (not represented). The neurotrans-
mitters activate synaptic receptors located on the dendrite of the post-synaptic neuron, which
modifies the local membrane potential.

cellular space and excite receptors on the post-synaptic neuron (usually on dendrites).

This generates a local variation of the membrane potential, which propagates towards

the soma. The soma can be seen as a spatio-temporal integrator of these post-synaptic

potentials (PSP) to generate an output spike, as illustrated in Fig. 1.3. The soma potential

often remains set to a resting value for a few milliseconds after firing an action poten-

tial, which is referred to as the refractory period. These basic elements of the neuronal

information processing actually depend upon many different mechanisms at the molec-

ular level, such as ionic concentrations, density of ion channels, axonal myelination, and

types of neurotransmitters; for a review, see Bear et al. (2007).

1.2.2 Modelling neuronal activity

The soma potential V(t) for a neuron evolves over time due to leakage and the pre-

synaptic influx, which is usually modelled by the following differential equation,

Cm
∂V(t)

∂t
=

Cm

τm
[Vrest −V(t)] + IK(t) + INa(t) + ICa(t) + Isyn(t) , (1.1)
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Figure 1.3: Basic input-output functioning of a neuron. Evolution of the soma potential when
the neuron is stimulated by pre-synaptic spikes (input). In the absence of stimulation, the soma
potential rests around −60 mV. Each pre-synaptic spike generates a partial depolarisation of the
local post-synaptic membrane (e.g., on the dendrite), which propagates to the soma. When the
soma potential exceeds a threshold (grey dashed line, chosen to be at −30 mV here) due to post-
synaptic response following the two spikes at 80 and 85 ms, it triggers a brief high-amplitude
depolarisation of the membrane (a: action potential) followed by a hyperpolarisation (b) during
which the neuron is inhibited (refractory period). Then the neuron is excitable again.

where Cm is the membrane capacitance, τm is the passive membrane time constant due

to the leakage, and Vrest is the resting potential. The current Isyn is related to incoming

PSPs that propagate from the dendrites to the soma. The ionic currents IK, INa and ICa

generate an active response of the membrane to changes of its potential: in particular,

they are involved in the generation and propagation of action potentials for sufficiently

strong synaptic influx Isyn. Such details can be incorporated in a model such as that

proposed by Hodgkin and Huxley (1952) to quantitatively reproduce experimental data.

This model is often used with a more or less simplified compartmental geometry using

numerical simulation.

However, such a modelling approach is rather untractable from a mathematical point

of view and many phenomenological models of neurons have been proposed to describe

the input-output functioning of neurons or groups of neurons. This includes, in particu-

lar, the integrate-and-fire (IF) neuron (Lapicque 1907,Gerstein and Mandelbrot 1964,Stein

1965, Lansky 1984, Burkitt 2006), binary neuron (McCulloch and Pitts 1943), the Pois-

son neuron (Kempter et al. 1998, Kempter et al. 1999) and neuronal continuous fields
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(Beurle 1956, Wilson and Cowan 1972, Amari 1977, Coombes 2005). One crucial issue lies

in determining at which scale to position a problem, since neuronal activity can be deter-

mined by an interplay between, for example, specific mechanisms at the molecular level

(dopamine, calcium), intrinsic neuronal activation properties (bursting, irregular), and

the network topology (excitatory vs. inhibitory neurons, feedback strength).

1.2.3 Neurons as point processes

One way to tackle the complexity of the mechanisms involved in the spike generation

lies in separating the evolution of the soma potential during an action potential from that

in the “sub-threshold” regime, i.e., between the firing of spikes. Action potentials are

thus considered to be instantaneous. This idea has been used since Lapicque (1907) and

is motivated by the standard shape of action potentials and their short duration (order of

1 ms) compared to other neuronal mechanisms (post-synaptic responses, leakage of the

membrane potential, etc.).

In this way, a neuron can be modelled using a point process that describes the proba-

bility of firing an action potential (instantaneous event) depending upon the past activity

of the neuron, its incoming synaptic stimulation or other mechanisms. This concept made

it possible to study analytically the neuronal response to various input stimulations; for

a review, see Gerstner and Kistler (2002) and Burkitt (2006). Spiking neurons, such as IF

neurons modified with a suitable intrinsic dynamic variable, proved to be able to repro-

duce the variety of spiking dynamics exhibited by Hodgkin-Huxley neurons (Izhikevich

2003), which also supports this choice.

1.2.4 Connecting neurons

This project aims to study neuronal activity in networks. The cortical connectivity, on

which we focus, is extremely complex and involves many types of neurons. A usual sim-

plification consists in reducing the cortical neurons to two populations of “excitatory”

(pyramidal) neurons and “inhibitory” (stellate) interneurons, with a different range for

the connections between these two populations, an overall density of local connections
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equal to 5-10% and roughly balanced excitation vs. inhibition for the incoming synap-

tic influx to each neuron. We will mostly consider only excitatory synapses, which is

equivalent to assuming identical inhibition for all neurons in the network. The connec-

tion density will range from 10% to full connectivity, in order to study the effect of the

connectivity density. We target general behaviours related to the spiking neuronal ac-

tivity that do not depend upon the size of the network considered, but rather upon its

structure.

1.2.5 Neuronal information processing

The brief duration of action potentials suggests that only their timing carries information.

Using point-process modelling, it is necessary to investigate the mechanisms leading to

the generation of spikes in the sub-threshold regime in order to understand how neurons

process information. Within a network, neurons process information in a distributed

fashion. Spiking activity at the scale of networks is still only partially understood, even

though progress in the theory has recently been made in order to relate the neuronal level

to the network level (Brunel and Hakim 1999,Brunel 2000,Meffin et al. 2004,Kriener et al.

2008). When observing neuronal activity, it is not clear what features of the raster plot

(temporal distribution) of spikes represent information. In other words, how does one

analyse spike trains: is information carried in the firing rates, spike-time correlations or

other spatio-temporal features (Delorme et al. 2001, Rieke 1997)? One critical problem

for neuromodelling lies in the variability of spike trains, even when evoked by the same

stimulus (Shadlen and Newsome 1998). This variability discriminates between types

of neurons: certain of them do exhibit reliable output spike times for some stimulation

protocols (Gutkin et al. 2003, Ermentrout et al. 2008).

1.3 Learning in neurons

One particular aspect of the neuronal mechanisms that occurs at the molecular level con-

cerns changes in the weights (or strengths) of synaptic connections, which is related to

the amplitude of the PSP induced by each pre-synaptic action potential (incoming spike).
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‘Synaptic plasticity’ describes the strengthening (potentiation) or the weakening (depres-

sion) of the synaptic weight, which depends in particular upon the neuronal spiking

activity. The study of these mechanisms has become a prominent area in neuroscience

(Malenka and Siegelbaum 2001, Martin et al. 2000).

1.3.1 Experimental evidence of synaptic plasticity

The usual method to investigate the change in synaptic weight in vivo or in vitro consists

in finding two neurons connected by a synapse and recording the evolution of the PSP

amplitude at the target neuron for a given stimulation protocol on the source neuron.

Fig. 1.4(A-B) shows the change in the PSP due to pre-synaptic stimulation at 15 Hz: the

experimental pathway (Exp) exhibits an increase of the depolarisation while it does not

vary for the ipsilateral control pathway (Cont). Such changes can last over time and are

thus denoted as long-term potentiation (LTP), as illustrated in Fig. 1.4(C) for brief stim-

ulations separated by tens of minutes. This long-term plasticity should not be confused

with short-term plasticity that occurs at time scales below seconds (Morrison et al. 2007).

Conversely, long-term depression (LTD) corresponds to a decrease of the synaptic weight

(Artola et al. 1990,Hirsch et al. 1992). The stimulation protocol is crucial to determine the

polarity of the weight change: traditionally, LTP has been obtained for high input rates

while low rates induce LTD (Bliss and Lømo 1973). However, pairing low-frequency

stimulation with depolarisation of the post-synaptic membrane leads to LTP. The tempo-

ral order of a weak and a strong stimulating inputs also determines whether LTP or LTD

is induced (Levy and Steward 1983).

Experiments using glutamatergic (excitatory) synapses highlighted out the role of N-

methyl-D-aspartate (NMDA) receptors that are believed to act as coincidence detectors:

the pre-synaptic activation triggers a release of glutamate and the depolarisation of the

post-synaptic membrane lifts the blocking effect of Mg2+ ions (Mayer et al. 1984, Nowak

et al. 1984). When these two phenomena overlap in time, calcium ions (Ca2+) can flow in

though the NMDA receptors and are the principal trigger for induction of LTP vs. LTD

(Neveu and Zucker 1996,Yasuda and Tsumoto 1996). The concentration level in Ca2+ de-

termines the activation of protein kinases and/or phosphatases, the predominance of the
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Figure 1.4: Increase of synaptic weight due to high-rate pre-synaptic stimulation; taken
from Bliss and Lømo (1973). Three traces of the evoked PSP (A) before and (B) two and a
half hours after conditioning (15 spikes per second for 10 s) for the experimental pathway
(exp) and the ipsilateral control pathway (cont). (C) Increase of the PSP amplitude over
time for the experimental pathway (filled circles) and the control pathway (open circles)
in the case of consecutive conditioning stimulations (arrows).

first ones leading to LTP while LTP is induced when the second ones dominates (Lisman

1989, Colbran 2004).

1.3.2 Spike-timing-dependent plasticity (STDP)

Gerstner et al. (1996) first proposed a model for synaptic plasticity relying on the precise

timing between pre- and post-synaptic spikes as a mechanism to train neurons to perform

sound localisation and explain the performances recorded in the laminar nucleus in the

auditory system of the barn owl. This spike-based learning rule, in contrasts to rate-based

rules broadly used before, allows weight dynamics to make use of spike-time information

at time scale below the millisecond.

This seminal theoretical work has generated a vast interest and subsequent experi-
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Figure 1.5: Experimental data of weight change as a function of the time difference between
paired pre- and post-synaptic action potentials, fitted by two curves (solid line) for each side;
data from hippocampal glutamatergic neurons in culture (Bi and Poo 1998).

mental studies have established the importance of the timing of paired pre- and post-

synaptic spikes in the weight change (Markram et al. 1997, Bell et al. 1997, Magee and

Johnston 1997, Bi and Poo 1998, Debanne et al. 1998, Egger et al. 1999, Feldman 2000, Bi

and Poo 2001, Boettiger and Doupe 2001, Sjöström et al. 2001, Froemke and Dan 2002,

Tzounopoulos et al. 2004). Most of these “early” experiment studies used short-range

excitatory connections between neurons, for example, in cortical and hippocampal slices

of rat, mouse, fish and tadpole. In agreement with the Hebbian postulate (Hebb 1949),

pre-synaptic spikes that take part in the firing of an output spike induce an increase of

the synaptic strength (potentiation); when the time order is reversed, the weight is de-

creased (depression). The observed weight change also fades away when the time dif-

ference between the spikes becomes larger, as illustrated in Fig. 1.5. STDP has also been

observed for synapses from an excitatory to an inhibitory neurons (Bell et al. 1997, Han

et al. 2000, Tzounopoulos et al. 2004, Tzounopoulos et al. 2007) and between inhibitory

neurons (Holmgren and Zilberter 2001, Woodin et al. 2003). However, we will focus in

this thesis on STDP between excitatory neurons.

For glutamatergic (excitatory) synapses, the main agents involved in STDP are the

same as “conventional” LTP/LTD, but the question whether STDP relies on the underly-
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ing same mechanisms is still controversial (Dan and Poo 2006, Caporale and Dan 2008).

Indeed, STDP requires activation of NMDA receptors and elevation of the Ca2+ concen-

tration at the post-synaptic site (Magee and Johnston 1997,Markram et al. 1997,Debanne

et al. 1998, Bi and Poo 1998, Sjöström et al. 2001). Calcium ions are involved in sev-

eral cycles with different kinetics that are used as signals to generate STDP (Magee and

Johnston 1997, Sabatini et al. 2002, Rubin et al. 2005). The fact that post-synaptic NMDA

receptors behave as coincidence detectors for short time scales due to fast components

of calcium ions gives an explanation for the potentiation side of STDP; the depression

side of STDP requires a more elaborate mechanism, such as two coincidence detectors;

see Dan and Poo (2006) for a review. Some experimental studies also showed the role of

pre-synaptic mechanisms such as NMDA autoreceptors in STDP (Duguid and Sjöström

2006). Integration of the synaptic inputs, for example inhibitory, in the dendritic tree af-

fects the membrane depolarisation and thus STDP (Liu et al. 2005). The detailed shape of

the STDP learning window function, cf. Fig. 1.5, was also demonstrated to depend upon

the location of the synapse on the dendrite and the type of pre- and post-synaptic neurons

(Froemke et al. 2005). Finally, the susceptibility of the synaptic weight to change can vary

according to the current value of the weight (Bi and Poo 1998, Wang et al. 2005) or even

its prior history on a longer period (Montgomery and Madison 2002). For reviews about

the relationship between STDP and molecular mechanisms, see Dan and Poo (2006) and

Caporale and Dan (2008).

1.3.3 Weight dynamics induced by STDP

On the modelling side, much effort has refined the STDP model initially proposed by

Gerstner et al. (1996) in order to incorporate physiological mechanisms. A specific focus

has been on the link between the molecular level and the phenomenological spike-timing

dependence, using Ca2+ channels or other signaling chains for example (Senn et al. 2001,

Hartley et al. 2006, Badoual et al. 2006, Benuskova and Abraham 2007, Graupner and

Brunel 2007, Zou and Destexhe 2007).

Much interest has also focused on how spikes contribute to the weight change. When

incorporating the effects of spike triplets or higher-order interactions, new regimes in the
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Figure 1.6: Diagrammatic representation of the interactions between pre- and post-synaptic
spikes. Time goes from left to right. Each post-synaptic spike (action potential, AP) interacts
only with the last and the next pre-synaptic spike (excitatory PSP). The APs are represented by
vertical arrows above the time line, and PSPs are represented by vertical arrows below the time
line. The brackets indicate the PSP-AP interactions included in this model: brackets above the
time line represent contributions that increase the weight (potentiation), and brackets below the
time line represent contributions that decrease the weight (depression). Taken from Burkitt et
al. (2004).

weight dynamics appear, such as modulations of the potentiation/depression scheme for

high firing rates (Sjöström et al. 2001,Kempter et al. 2001,Izhikevich and Desai 2003,Pfis-

ter and Gerstner 2006). A probabilistic interpretation of STDP also proved capable of

exhibiting richer weight specialisation schemes than the original model (Appleby and

Elliott 2005, Appleby and Elliott 2006, Appleby and Elliott 2007, Elliott 2008). The selec-

tion of only a portion of interactions to take into account for STDP amongst all possible

pairs of pre- and post-synaptic spikes was also demonstrated to affect the weight dynam-

ics. This implies in particular that STDP depends in a complex fashion upon the output

firing rate of the neurons. Some experimental results were in favour of a restriction to the

pairing of the pre- and post-synaptic spikes interaction when the input excitatory PSPs

fall within more than one STDP time window of output spikes (Sjöström et al. 2001), as

illustrated in Fig. 1.6. Theoretical studies investigated the influence of such spike pairing

schemes upon the weight dynamics (Izhikevich and Desai 2003, Burkitt et al. 2004, Mor-

rison et al. 2007).



12 Introduction

The relationship between the weight dynamics induced by STDP and the input stim-

ulation has been the particular focus of many theoretical studies (Gerstner et al. 1996,

Kempter et al. 1999, Song et al. 2000, Song and Abbott 2001, Senn 2002, Gütig et al.

2003, Burkitt et al. 2004, Wenisch et al. 2005, Meffin et al. 2006, Appleby and Elliott

2006, Morrison et al. 2007, Lubenov and Siapas 2008, Câteau et al. 2008, Kang et al. 2008).

To obtain analytical results, a usual simplification consists in using a phenomenological

model of STDP (Morrison et al. 2008) that describes the mean effect of the molecular

mechanisms represented by the fitting solid curve in Fig. 1.5. Such models focus on the

relationship between the weight dynamics and input spike-time correlations at a short

time scale, for example, coincidentally spiking sources (Kempter et al. 1999, Song and

Abbott 2001, Gütig et al. 2003, Meffin et al. 2006). In the presence of input correlations,

the role of dendritic and axonal delays in sharpening or spreading synchronous activity

has been pointed out (Senn 2002). However, the implications of STDP in vivo are not yet

clear, even if some progress has been made to understand the weight dynamics corre-

sponding to natural spike trains (Froemke and Dan 2002).

The weight dependence of the STDP rule has strong implications upon the learning

dynamics. Many quantitative models have been proposed to explore the effect of this

specific non-linearity in STDP (van Rossum et al. 2000,Morrison et al. 2007,Standage et al.

2007). In particular, strong weight dependence favors unimodal weight distributions

whereas additive-like STDP tends to split weights into bimodal distributions (Kempter

et al. 1999, Gütig et al. 2003). It is not yet clear which type of stabilisation for individual

synaptic weights is more physiologically realistic.

As for network topology, the weight dynamics induced by STDP are somehow well

understood for single neurons and feed-forward architectures, for which several ana-

lytical models are available (Kempter et al. 1999, Gütig et al. 2003, Meffin et al. 2006).

In such cases, STDP tends to favor correlated input pathways, but elaborated stimulat-

ing inputs can generate much more complex dynamics, for example, with spike patterns

where earlier spikes are picked up by STDP (Masquelier et al. 2008) or input pathways

with oscillatory activity at distinct frequencies to compete between each other (Dahmen

et al. 2008). In contrast, the effect of STDP in recurrent networks is still unclear even



1.3 Learning in neurons 13

for simple models of stimulating inputs and has only begun to be addressed, mainly

using numerical simulation (Song and Abbott 2001, Wenisch et al. 2005, Morrison et al.

2007, Lubenov and Siapas 2008, Câteau et al. 2008, Kang et al. 2008). In particular, there

exist only a few theoretical results for recurrent architectures (Karbowski and Ermentrout

2002, Masuda and Kori 2007) due to mathematical difficulties in evaluating the effects of

feedback synaptic loops. Comparison with previous results will be discussed in more

details throughout the text. For a review on the dynamical implications of the various

models of STDP, see Morrison et al. (2008).

1.3.4 Functional implications of synaptic plasticity and STDP

Synaptic plasticity is hypothesised to give rise to functional structure in neuronal net-

works and is thus central to the understanding of neuronal information processing. For

example, the emergence of cortical organisation similar to that observed in the primary

visual cortex (Hubel and Wiesel 1962) has been the subject of numerous studies (von

der Malsburg 1973, Swindale 1996, Goodhill 2007). Such a learning scheme is believed

to combine two complementary mechanisms: genesis of new connections and pathways

(through growth of axons and creations of new synapses) and activity-dependent se-

lection of synaptic connections. We constrain the present study to activity-dependent

synaptic plasticity in neuronal networks.

It is not clear yet how rich a specialisation STDP can generate upon the synaptic

weights in neuronal networks, especially when recurrent connections are involved. Many

theoretical studies have focused on input selectivity for single neurons (Kempter et al.

1999, Gütig et al. 2003, Meffin et al. 2006) and then extended to particular structures

of stimulating inputs in order to reproduce experimental results. For example, neurons

were successfully trained as coincidence detectors to represent inter-aural time difference

in a neuronal map (Leibold et al. 2002), tonotopic maps for oscillatory inputs with distinct

frequency (Dahmen et al. 2008) and to recognise spike patterns (Masquelier et al. 2008),

as well as firing-rate patterns (Fusi 2002). In recurrent networks, the relationship between

STDP and spiking synchrony has been the subject of many studies (Senn 2002, Câteau

et al. 2008,Lubenov and Siapas 2008). Synchronous activity is related to assembly of neu-
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ronal cells and hypothesised to take part in decentralised coding of neuronal information

(Hebb 1949). However, it is still controversial under which conditions STDP induces

more (Izhikevich et al. 2004) or less (Iglesias et al. 2005) synchronisation. STDP has

also been shown capable of enhancing the neuronal response to stimuli by reducing its

variability (Bohte and Mozer 2007).

Synaptic plasticity is hypothesised to be a candidate underlying mechanism for mem-

ory (Bienenstock et al. 1982, Hopfield 1982, Levy and Steward 1983, Amit and Brunel

1997, Martin et al. 2000, Tsodyks 2002). STDP links in a natural fashion to the Hebbian

postulate, as only pre-synaptic spikes that take part in the firing of an output spike lead to

potentiation (Hebb 1949). STDP was shown to have interesting implications for both su-

pervised (Pfister and Gerstner 2006, Molter et al. 2007) and unsupervised (Carnell 2009)

learning. However, it is necessary to bridge the gap between the time scale of STDP,

namely spike-time correlations of tens of milliseconds, and behavioural temporal asso-

ciations (order of seconds), in order to link the physiological and cognitive levels (Drew

and Abbott 2006).

These examples illustrate the diversity of neuronal specialisation that STDP can gen-

erate. Another striking observation concerns the versatility of generic cortical circuits that

seem capable of specialising to a broad range of functions, for example in the sensory and

motor areas. This suggests that a common neuronal code and plasticity mechanisms may

be used to represent and learn to process very different sensory signals. Bridging the gap

between local mechanisms at the scale of neurons and network dynamics is crucial to gain

insight into the role of the players at the different scales (synaptic parameters, neuronal

activity, connectivity and learning rule). A better understanding of the weight dynamics

in relation to the input structure, in particular their spike-time correlations, should pro-

vide a unifying framework to explain the common trends behind the apparent diversity.

1.4 Context and focus of this PhD project

The present study aims to develop a mathematical framework that describes the weight

dynamics in a recurrent neuronal network. The main theoretical contribution is the ex-
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tension of previous work based on the Poisson neuron model (Kempter et al. 1999,Gütig

et al. 2003) to the case of recurrent connectivity. This neuron model illustrates the success

of stochastic point processes in modelling neuronal activity (Sec. 1.2.3). The models used

in the present study will be chosen to keep the analysis as tractable as possible.

In a previous paper (Burkitt et al. 2007), we presented a framework for the analysis of

STDP in recurrent networks with arbitrary topology subject to external stimulation. This

framework describes how the network activity, viz., firing rates and spike-time correla-

tions, determines the evolution of the weights that occurs on a much slower time scale

than other neuronal activation mechanisms. It provides a soluble differential system of

equations that allows us to predict the resulting development of structure within the net-

work, in particular the asymptotic distribution of the firing rates and of the weights after

a sufficiently long learning epoch (the emerged structure). However, the analysis of the

weight dynamics was carried out only for a network with full recurrent connectivity and

no external inputs.

This thesis presents subsequent results that analyse the more biologically realistic case

in which a recurrent network with partial connectivity is stimulated by external input

neurons that have a functional structure. It extends our previously developed framework

to incorporate the effect of the post-synaptic response, which was simplified as a delta-

function response by Burkitt et al. (2007). The study of the unsupervised learning scheme

generated by STDP through the weight dynamics is a first step to link the physiological

model of STDP to the domain of machine learning. We will illustrate this by addressing

the following question: how can STDP generate functional self-organisation in neuronal

networks? In this way, we investigate whether the behaviour of a network where STDP

modifies the synaptic connections can be related to the algorithm proposed by Kohonen

(1982), which leads to specialised units (areas) sensitive to some input features presented

to the network, thus performing categorisation on the stimuli.



16 Introduction

1.5 Plan

Chapter 2 introduces the models of Poisson neuron and discusses its relevance compared

to other neuron models, as well as the model of weight-dependent STDP that we use.

Chapter 3 presents the derivation of the theoretical framework to investigate the weight

dynamics induced by additive STDP. The evolution of the network activity and synaptic

weights is described by a dynamical system, which is analysed to predict the emergence

of the weight structure for different network configurations:

• only the input connections are plastic (Chapter 4);

• only the recurrent connections are plastic (Chapter 5);

• both the input and recurrent connections are plastic (Chapter 6).

The framework can account for a network with an arbitrary number of neurons and ex-

ternal stimulating sources, but the analysis focuses on the specific case where the inputs

are partitioned into homogeneous pools. The asymptotic weight structure is determined

in terms of the input stimulation and the learning parameters. Chapter 6 generalises the

analysis of the previous chapters to weight-dependent STDP and investigates some of

its implications in terms of computation performed by STDP on the synaptic weights.

Chapter 7 develops a mathematical framework based on a particular class of stochastic

point processes, the piecewise deterministic Markov process, to extend our analysis to

Poisson neurons with non-linear activation function. The conclusion in Chapter 8 re-

lates the presented results to existing literature and links them to neuronal information

processing.



Chapter 2

Modelling the brain at the neuronal
level

This chapter introduces the models of neuron and synaptic plasticity that are used throughout the

present study.

2.1 Introduction

THIS chapter describes the neuron model used in the subsequent chapters, as well

as the mathematical foundation of STDP. This forms the basis for the analysis pre-

sented in later chapters: the theoretical framework derived in Chapter 3 relies on the

Poisson neuron (Sec. 2.2.1) and Hebbian additive STDP (Sec. 2.3). A general version of

STDP is introduced, although Chapters 4 and 5 use the simplified additive version in

order to keep the analysis of the weight dynamics tractable. Chapter 6 extends the study

of the weight dynamics to the more general weight-dependent STDP (non-additive).

2.2 Modelling neuronal activity in networks

2.2.1 Poisson neuron model

The Poisson neuron (Kempter et al. 1999) is a stochastic point process for which the

spiking mechanism of a given neuron i is approximated by an inhomogeneous Poisson

process. The corresponding intensity function ρi(t) generates an output spike-time series

Si(t), which can be represented as a sum of delta-functions or Dirac comb. One of the

easiest ways to understand this model is to use discrete time, and at each time step ∆t,

17
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the probability that the neuron fires is ρi(t)∆t. In addition, the probability that two or

more spikes occur during ∆t is o(∆t), i.e., o(∆t)/∆t → 0 when ∆t → 0, while events in

disjoint intervals are independent. This homogeneous Poisson process models the effects

of the currents IK, INa and ICa, as well as the leakage related to τm in Eq. (1.1).

The rate function ρi(t) of neuron i is to be related to the soma potential V(t) in Eq. (1.1)

and it evolves over time according to the activity of its pre-synaptic inputs (Isyn), as

shown in Fig. 2.1:

ρi(t) = ν0 + ∑
k

Kik(t) ∑
n

ε
(

t− t̂k,n − d̂ik

)
. (2.1)

The constant ν0 is the spontaneous firing rate (identical for all neurons) that accounts for

other pre-synaptic connections that are not considered in detail. Each synapse indexed

by k is excited by a spike-time series Ŝk(t), whose spikes each induce a variation of ρi(t),

namely the post-synaptic potential (PSP). The PSP is determined by the synaptic weight

Kik, the post-synaptic response kernel ε(t), and the delay d̂ik. The kernel function ε(t)

models the time course of the PSP due to the current flowing into the post-synaptic neu-

ron for one single pre-synaptic spike; ε(t) is normalised to one:
∫

ε(t) dt = 1; and, in

order to preserve causality, we have ε(t) = 0 for t < 0. The overall synaptic influx is

the sum of the PSPs over all past spike times t̂k,n (related to the kth synapse, and indexed

by n) of the spike trains Ŝk(t). We often consider only positive weights, i.e., excitatory

synapses, to ensure that the rate function ρi remains positive; otherwise, the inhibition

level, as will be studied in Chapter 6, has to be chosen adequately. This model also does

not usually incorporate a refractory period.

Some extensions of the Poisson neuron have been used in previous studies, such as

applying an increasing and bounded activation function on the rhs of Eq. (2.1) to clip

ρi(t) to a given range. This more realistic neuron model incorporates the saturation ob-

served for real neurons and allows us to use inhibitory synapses (ρi can be ensured to

remain positive at all times), but the calculations are not as tractable and often require

approximations. In Chapter 7, we study a network of such non-linear Poisson neurons

to evaluate the effect of the activation function on the steady state of the spiking activity.

This extension is a first step towards incorporating more biologically realistic features.
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a
b

0  1000
time (ms)

Ŝk(t)

ρi(t)

Si(t)

Figure 2.1: Poisson neuron model. (a) Schematic view of the neuron i. The soma (or cell body,
circle) receives inputs from the synapses (below, indexed by k) and fires spikes that propagates
on the axon (above), towards synaptic connections with other neurons (not represented). The
flow of information is from bottom to top. (b) Illustration of the variation of ρi(t) over 1000 ms
(middle plot) for a given succession of pre-synaptic spikes Ŝk(t) (bottom spike train) and one of many
possible randomly generated outputs, denoted by Si(t) (top spike train).

2.2.2 Relation to more elaborate neuron models

The Poisson neuron is a coarse approximation of the activation mechanisms that take

place in real neurons. It accounts for the variability observed in some cortical neurons

(Poggio and Viernstein 1964, Noda and Adey 1970), but its firing output is very noisy

compared to the IF neuron, whose basic functioning is more deterministic (Burkitt 2001,

Burkitt 2006, Moreno-Bote et al. 2008). Consequently, IF neurons perform better when

precisely predicting the output spike-time series in response to in vivo currents (Rauch

et al. 2003, Jolivet et al. 2008). As another example, the stability and the synchronisation

of IF neurons in recurrent networks can dramatically change depending on feedback

coupling and external stimulation (Brunel and Hakim 1999, Brunel 2000, Burkitt et al.

2003). Such interesting features do not emerge with Poisson neurons and a more complete

study of neuronal synchronisation would thus require a more elaborate neuron model,

in addition to the understanding of the weight dynamics.

However, the focus of this study is the weight dynamics that are assumed to be very

slow compared to other neuronal activation mechanisms. With this separation of the
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time scales (van Hemmen 2001), the activation mechanisms need not be too “realistic”

to evaluate the effect of synaptic plasticity: analyses using Poisson neurons correctly

predict the qualitative evolution of the weights for IF neurons (Kempter et al. 1999,Gütig

et al. 2003). This suggests that the effect of STDP is mainly related to the increase of the

probability of firing an output spike when receiving a post-synaptic potential, which is

qualitatively captured by this neuron model.

2.2.3 Model of recurrent neuronal network

When connecting neurons in a recurrent fashion, some of the pre-synaptic spike trains for

neuron i in Eq. (2.1) are the outputs of other neurons. This feedback imposes a constraint

upon the neuronal activity, which has non-trivial implications. Rigorously speaking, re-

currently connected Poisson neurons are no longer inhomogeneous Poisson processes,

but Hawkes processes (Hawkes 1971). The derivation of equations to model the learning

dynamics in the presence of feedback connections is the subject of Chapter 3; the theoret-

ical framework is general and can be applied to any network topology. The consequences

for the neuronal dynamics are then analysed in Chapters 4, 5 and 6 for a particular con-

figuration that extends previous studies (Kempter et al. 1999, Gütig et al. 2003, Meffin

et al. 2006) to the case of a network: recurrently connected neurons are stimulated by

homogeneous external pools of spike trains with within-pool spike-time correlations but

no between-pool correlations. In this way, the spiking information conveyed by the in-

puts is carried by the firing rates and the pairwise correlations. More details about the

generation of the input spike trains are provided in Sec. 3.5.

2.3 Spike-timing-dependent plasticity (STDP)

2.3.1 STDP for pairwise interactions between pre- and post-synaptic spikes

In order to investigate the functional effect of STDP in neuronal networks, we use a phe-

nomenological model of STDP (Morrison et al. 2008) that describes the change in the

synaptic weight induced by single spikes and pairs of pre- and post-synaptic spikes. This
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choice has limitations compared to more elaborate models that include triplets of spikes

in their analysis (Sjöström et al. 2001, Pfister and Gerstner 2006, Badoual et al. 2006, Ap-

pleby and Elliott 2006). However, from a functional point of view, all STDP models are

sensitive to pairwise spike-time correlation. Gaining a better understanding of this rela-

tionship is the core of the present study and we ignore higher-order correlations (three-

point correlation, etc.). Our version of STDP thus captures the mean effect illustrated by

the interpolation curves in Fig. 1.5. This effect corresponds to the leading order of the

weight change with respect to the temporal structure of the pre- and post-synaptic spike

trains. It has been shown to determine the structuring of the synaptic weights for single

neurons stimulated by correlated inputs (Kempter et al. 1999,Gütig et al. 2003). However,

we leave to subsequent studies further non-linearities in pairwise STDP models, such as

the restriction of the pairs of input and output spikes that contribute to the weight change

(Burkitt et al. 2004). In other words, the present model captures the weight modification

by STDP for neurons in a firing regime such that spike pairs predominate in terms of

plasticity, unlike bursting; see Sec. 1.3.2 for more details.

Among all the different versions of pairwise STDP, it is still unclear which features

are crucial and physiologically realistic in terms of weight dynamics, such as the degree

of non-linearity related to the weight dependence (van Rossum et al. 2000, Bi and Poo

2001, Gütig et al. 2003) or the detailed shape of the learning window (Morrison et al.

2008). The present study of their functional implications for learning and neuronal dy-

namics may prove to be helpful in this debate.

The general model for pairwise STDP considered in this study applies to an excitatory

synapse with weight J. The weight change δJ for a sole pair of pre- and post-synaptic

spikes corresponding to the respective times tin and tout at the synaptic site is given by

δJ = η





win at time tin

wout at time tout

f+(J)W+(tin − tout) at time tout if tin < tout

− f−(J)W−(tin − tout) at time tin if tin > tout .

(2.2)



22 Modelling the brain at the neuronal level

The rate-based contribution win (resp. wout) accounts for the effect of each pre-synaptic

(post-synaptic) spike and occurs only once per spike (Kempter et al. 1999, Burkitt et al.

2007). The STDP learning window function W+ describes the potentiation of the weight

J when the pre-synaptic spike occurs after that of the post-synaptic spike; conversely, W−

describes the depression of J when the pre-synaptic spike occurs after the post-synaptic

spike. These correlation contributions are each rescaled by the function f+ and f−, respec-

tively, that are illustrated in Fig. 2.2. We consider the functions f+, f−, W+ and W− to be

non-negative to correspond to Hebbian learning; for the sake of consistency, W+(u) = 0

for u > 0 and W−(u) = 0 for u < 0. The parameters used are in the range of values

observed in the physiology (Caporale and Dan 2008). All these contributions are scaled

by a learning parameter η, typically chosen to be very small, to model learning processes

that occur very slowly compared to the other neuronal and synaptic mechanisms. In this

study we consider learning rates such that STDP can lead to the emergence of a neuronal

specialisation in tens of minutes or hours (Kempter et al. 1999, Gütig et al. 2003, Burkitt

et al. 2007). In this realistic range, the weight dynamics exhibits a low level of noise and

a stable asymptotic distribution (Meffin et al. 2006).

In the version of STDP proposed by Kempter et al. (1999), δJ is independent of the

value of the weight J at the time of the change. In other words, f−(J) = f+(J) = 1, as

represented by the grey horizontal lines in Fig. 2.2(a). The time-difference contributions

in Eq. (2.2) can then be described using a single function W = W+ −W−, namely

W(tin − tout) at time max(tin, tout) . (2.3)

The impact on feed-forward single neurons is a homeostatic stability of the weight mean

(with a fast convergence) and then the emergence of a structure among the population

of weights according to the correlation between the inputs (with a slower emergence).

This type of learning can be robust to noise to a certain extent. This version of STDP is

referred to as “additive”. It requires the use of explicit (“hard”) bounds on the weights,

because the intrinsic competition between the weights causes them to individually di-

verge, even when the mean weight remains constant. This phenomenon also occurs for
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Figure 2.2: Example of STDP window function with weight dependence. (a) The weight depen-
dence is determined by the scaling functions f− and f+, which are chosen such that both − f−(J)
(bottom black curve) and f+(J) (top black curve) decrease with J, which leads to more depression
and less potentiation for (b) a strong synapse compared to (c) a weak synapse. The dependence
in the spike-time difference is taken care of by one decaying exponential W− for depression (right
curves) with time constant 17 ms and likewise W+ for potentiation (left curves) with 34 ms. See
Appendix D for details on the parameters.

homogeneous uncorrelated inputs and the neuron then specialises in an arbitrary fash-

ion, which is unsatisfactory.

Weight-dependence of the potentiation side of STDP has been demonstrated in ex-

perimental data (Bi and Poo 2001). Contrary to the additive version, weight-dependent

STDP rules can induce “soft” bounds on the weights: a stable distribution of the weights

can be obtained without explicit bounds on the synaptic weights, for example with a ver-

sion of STDP where only the potentiation is weight dependent: f−(J) = 1 and f+(J) =

1− J (van Rossum et al. 2000). A drawback of this version lies in the lack of intrinsic com-

petition between the synapses located on the same neuron; a renormalisation mechanism



24 Modelling the brain at the neuronal level

was thus used to correct this unwanted feature.

Gütig et al. (2003) extended this work to the more general version of STDP: f−(J) = Jα

and f+(J) = (1− J)α with the parameter α ∈ [0, 1]. This non-linear version (when α > 0)

proved capable of inducing stable weight dynamics for a broad range of parameters and

an interesting learning paradigm when a neuron is stimulated by two identical correlated

input pools: STDP can break the symmetry between initially homogeneous weights to

specialise the neuron to only one of the input pools. Such symmetry breaking is required,

for example, to obtain the emergence of spatio-temporal feature maps, such as the column

organisation of the primary visual cortex (Hubel and Wiesel 1962) and tonotopic maps

in the auditory cortex (Schreiner et al. 2000). Input selectivity using weight-dependent

SDTP for several homogeneous correlated input pools can lead to the selection of only a

portion of the input pools depending on the input and learning parameters (Meffin et al.

2006).

Usually, tin and tout in Eq. (2.2) correspond to the times when the pre- and post-

synaptic spikes affect the synaptic site, thus involving axonal and dendritic delays. Den-

dritic and axonal delay affects the weight dynamics when correlation is present (Senn

2002, Lubenov and Siapas 2008). Only axonal delays are considered in this work, which

accounts for the axonal propagation of action potentials and the diffusion time of the

neurotransmitters in the synaptic cleft. The framework can incorporate dendritic delays,

but a detailed analysis is left to subsequent work, together with broad distributions of

delays (as detailed in Chapter 3); some effects will also be discussed in Chapter 6.

2.3.2 Relation to rate-based models

A number of analyses (Burkitt et al. 2004, Elliott 2008) have shown the relation between

STDP and rate-based learning. For a synapse k with weight Jk, rate-based plasticity can

be formulated in the following general way (Sejnowski 1977, Bienenstock et al. 1982,

Gerstner and Kistler 2002)

∆Jk ∝ c0(Jk) + cpre
1 (Jk) φk + cpost

1 (Jk) φout + cpre
2 (Jk) φ2

k + cpost
2 (Jk) φ2

out + ccorr(Jk) φk φout ,

(2.4)
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where φk and φout are the pre- and post-synaptic firing rates, respectively, and the coeffi-

cients cx can be functions of the weight Jk; the dependence in t is omitted. Contrary to the

time-averaged firing rates considered by Kempter et al. (1999) and Burkitt et al. (2007)

in their analysis that correspond to a moving average over a window of, say, tens of sec-

onds (see Sec. 3.2.1 for the formal definition), the firing rates φ Eq. (2.4) may correspond

to a medium time scale (down to tenths of a second) and often for non-spiking neurons.

However, such rate-based models ignore spike-time correlations at a very short time scale

(order of milliseconds), which is captured by STDP in addition to time-averaged rate-

based information. This crucial limitation led to the proposition of STDP by Gerstner

et al. (1996).

Rate-based models have another notorious limitation: they fail to generate both sta-

bilisation and specialisation upon the synaptic weights at the same time (Bienenstock

et al. 1982, Miller and Mackay 1994, Miller 1996, Rao and Sejnowski 2001). To correct the

lack of stability, additional mechanisms such as a renormalisation for each neuron of the

synaptic weights after computing the changes have been used. The biological evidence

of such renormalisation is controversial, although some links with limited resources in

neurotransmitters have been argued.

STDP was shown to be capable of generating both stability and competition for the

input weights of a single neurons (Kempter et al. 1999, Song et al. 2000, Song and Abbott

2001,Morrison et al. 2007,Burkitt et al. 2007). One way to achieve stability for the output

spiking activity when using additive STDP is to use the rate-based terms win and wout

in Eq. (2.2) to perform a normalisation of the incoming weights for each neuron via a

dynamical equilibrium (Kempter et al. 1999, Burkitt et al. 2007). These rate-based terms

are equivalent to cpre
1 and cpost

1 in Eq. (2.4); they are not always incorporated in STDP

rules as their physiological origin is not so clear as the learning window function W±

that was observed experimentally. From a functional point of view, using win and wout or

another additional renormalisation mechanism, such as an adequate weight dependence

for STDP, appears to be equivalent. This will be discussed in more depth in Chapter 6.





Chapter 3

Dynamical system to model network
activity and synaptic plasticity

This chapter presents the derivation of a dynamical system that describe the evolution of the synap-

tic weights induced by STDP within the context of a neuronal network that receives stimulation from

external inputs.

3.1 Overview

IN order to incorporate the mechanisms related to the neuronal post-synaptic re-

sponse in the weight dynamics, it is necessary to extend the framework presented

by Burkitt et al. (2007), where the neuronal information contained in the spike trains is

conveyed by firing rates and spike-time correlations (Kempter et al. 1999, Gütig et al.

2003, Meffin et al. 2006). These variables of importance to describe the neuronal activity

are linked in a dynamical system together with the synaptic weights. This framework

is adapted to predict the evolution of the expectation values for the firing rates, correla-

tions and weights depending on the learning and stimulation parameters. This chapter

is constrained to additive STDP.

The following mathematical assumptions (Kempter et al. 1999, van Hemmen 2001,

Burkitt et al. 2007) are used in order to derive the dynamical system:

• the expectation values of the firing rates and pairwise covariances are constant in

time for the external inputs, which is equivalent, here, to constant time-averaged

firing rates and covariances for any realization of the spiking history;

• the separation of the time scales of the activation mechanisms and the learning

27
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dynamics, the latter happening on a slower time scale (adiabatic hypothesis);

• the expectation values of the firing rates and pairwise covariances are quasi-constant

in time for the network neurons, i.e., they only vary due to the slow learning on the

weights.

3.2 Description of the network

Let us consider a network of N Poisson neurons (indexed by 1 ≤ i, j ≤ N) with recur-

rent connections that is stimulated by M Poisson spike trains (a.k.a. external inputs or

sources, indexed by 1 ≤ k, l ≤ M) through input connections, as illustrated in Fig. 3.1(a).

Typically both M and N are large. In addition to receiving synaptic input from the exter-

nal sources, as shown for a sole neuron in Fig. 2.1, each neuron is also excited by other

neurons via connections that may form feedback loops in the network, but without self-

connections. The weight of the connection from input k to neuron i is denoted by Kik(t)

and the corresponding delay is d̂ik (as defined in Sec. 2.2.1); likewise, we define Jij(t) and

dij for the connection from neuron j to neuron i; see Fig. 3.1(b). Both input and recurrent

synapses share the same PSP kernel ε introduced in Sec. 2.2.1. We will consider both

fully- and partially-connected networks, where each neuron is stimulated by some of the

M inputs; nK will denote the total number of input connections and nJ the total number

of recurrent connections in the network. Partially-connected networks are generated by

randomly assigning input-to-neuron and neuron-to-neuron connections. The term ‘pool’

will always refer to the external inputs, the term ‘group’ to the neurons.

Spikes are considered to be instantaneous events. We define Ŝk(t) as the spike-time

series (Dirac comb) of the external input k; its value is zero except at the times when a

spike is fired and the spike train is described as a sum of Dirac delta-functions. If there is

a spike in a given small time interval [t, t + δt], then

∫ t+δt

t
Ŝk(t′) dt′ = 1 , (3.1)

where δt is “small” compared to the time scale of other neuronal mechanisms (ε, delays,

etc.) allowing us to consider Ŝk as approximate delta-functions. The spike-time series
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Si(t) for network neuron i is defined similarly.

a

b

external input-to- network
inputs neuron neurons

firing rates ν̂k(t) νi(t)
pairwise covariances Ĉkl(t, u) Fik(t, u) Cij(t, u)

weights Kik(t) Jij(t)
delays d̂ik dij

Figure 3.1: Presentation of the network and notation. (a) Schematic representation of one of the
M external inputs (bottom circle, indexed by 1 ≤ k ≤ M) and two of the N network neurons
(top circles, 1 ≤ i, j ≤ N). The input and recurrent connections have plastic weights Kik(t) and
Jij(t) respectively (thick arrows). The spike trains of the input k and neuron i are denoted by Ŝk(t)
and Si(t) respectively. (b) The table shows the variables that describe the neuronal activity: time-
averaged firing rates ν̂ and ν; time-averaged covariances Ĉ, F and C; and the variables related to
the synaptic connections: weights K and J; delays d̂ and d.

3.2.1 Definition of the state variables for the network

We now define a number of variables recapitulated in Fig. 3.1(b) to describe the activity

of the network neuronal activity and contain the relevant information for STDP.

The time-averaged firing rate νi(t) for neuron i corresponds to a duration T that will

be specified later in terms of the learning and neuronal dynamics (Kempter et al. 1999,

Burkitt et al. 2007)

νi(t) :=
1
T

∫ t

t−T

〈
Si(t′)

〉
dt′ , (3.2)

where 〈Si(t)〉 is the instantaneous firing rate averaged over the randomness. The firing

rate ν̂k(t) for input k is defined similarly.

For fixed weights and steady inputs, the network activity as a stochastic process is
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actually ergodic, which implies that 1
T

∫ t
t−T Si(t′) dt′ ' 〈Si(t)〉 = const. to a good approx-

imation for large T. Therefore, we could simply define νi(t) as 1
T

∫ t
t−T Si(t′) dt′ in Eq. (3.2),

when the weights change very slowly compared to T. We keep the notation of Eq. (3.2)

to comply with the formalism developed by Kempter et al. (1999) and Burkitt et al. (2007).

Instead of the correlation coefficients used by Burkitt et al. (2007), we use the neuron-

to-input time-averaged covariance Fik:

Fik(t, u) :=
1
T

∫ t

t−T

〈
Si(t′) Ŝk(t′ + u)

〉
dt′ − 1

T

∫ t

t−T

〈
Si(t′)

〉 〈
Ŝk(t′ + u)

〉
dt′ , (3.3)

FΨ
ik (t) :=

∫ +∞

−∞
Ψ(u)Fik(t, u− d̂ik) du ,

where Ψ is a given kernel function and Ψ̃ =
∫

Ψ(u) du its integral value. These two

formulas are usually defined for stationary second-order stochastic processes, which re-

quires in particular constant instantaneous firing rates 〈Si(t)〉 and 〈Ŝk(t)〉 (steady inputs

and fixed weights); we used ν̂k(t) ' ν̂k(t + u) for u in the range of the STDP window

function W.

Likewise, the time-averaged covariance Cij and covariance coefficient CΨ
ij between

neurons i and j are defined in the following way

Cij(t, u) :=
1
T

∫ t

t−T

〈
Si(t′) Sj(t′ + u)

〉
dt′ − 1

T

∫ t

t−T

〈
Si(t′)

〉 〈
Sj(t′ + u)

〉
dt′ , (3.4)

CΨ
ij (t) :=

∫ +∞

−∞
Ψ(u)Cij(t, u− dij) du ,

as are the time-averaged covariance Ĉkl and covariance coefficient ĈΨ
kl between inputs k

and l

Ĉkl(t, u) :=
1
T

∫ t

t−T

〈
Ŝk(t′) Ŝl(t′ + u)

〉
dt′ − 1

T

∫ t

t−T

〈
Ŝk(t′)

〉 〈
Ŝl(t′ + u)

〉
dt′ , (3.5)

ĈΨ
kl(t) :=

∫ +∞

−∞
Ψ(u)Ĉkl(t, u) du .

Note that the input covariance coefficients ĈΨ
kl do not involve delays. As explained in Ap-

pendix A.1.1, the covariances Ĉkl(t, u) by convention do not incorporate the atomic (or
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point) discontinuity at u = 0 due to the autocorrelation of the stochastic point processes

Ŝk for k = l, namely 〈Ŝk(t)〉 δ(u), where δ is the Dirac delta-function. This means that

Ĉ represents the input correlation structure (“spiking information”) but does not contain

the autocorrelation intrinsic to the neuron model.

For the sake of simplicity, we use matrix notation in the remainder of the text: vectors

ν(t) and ν̂(t), and matrices FW(t), ĈW(t), K(t) and J(t).

3.3 Slow weight evolution

We now derive a learning equation to describe the evolution of the input weights due to

STDP according to the activities of the pre- and post-synaptic neurons for each synapse.

For a small time interval [t, t + δt], the change in the input weight Kik(t) described in

Eq. (2.3) can be expressed using the pre- and post-synaptic spike trains (Kempter et al.

1999)

δKik(t) = η
∫ t+δt

t

[
win Ŝk(t′ − d̂ik) + wout Si(t′)

]
dt′ (3.6)

+ η
∫

(t′,u)∈I(t)
W(u) Si(t′) Ŝk(t′ − d̂ik + u) du dt′ .

Recall that d̂ik that was defined in Sec. 2.2.1 is assimilated here to the axonal delay de-

scribed in Sec. 2.3: d̂ik then accounts for the axonal propagation and the diffusion of neu-

rotransmitters and we neglect the dendritic delay compared to them. Dendritic delays are

not considered. Thus, Ŝk(t′− d̂ik) is the delayed time series of the pre-synaptic spikes; the

time difference at the synaptic site between the pre- and the post-synaptic spikes (at re-

spective times tpre and tpost at the somas of both neurons) is u = tpre + d̂ik − tpost. The

domain of integration I(t) is the subset (t′, u) ∈ R2 satisfying the three conditions

t′ ≤ t + δt ;

t′ − d̂ik + u ≤ t + δt ;

t ≤ t′ or t ≤ t′ − d̂ik + u .

(3.7)
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The first two lines require that the spikes occur before t + δt, and the last line that at least

one of them is in the time interval [t, t + δt].

The change in weights over many independent trials (repetitions) is equivalent to

averaging over a single long trial of length T. This self-averaging property of the learning

requires the learning rate η to be small (van Hemmen 2001); then T can be chosen to be

long compared to the time scale of the neuronal and synaptic activation mechanisms, but

small compared to η−1 (separation of time scales). Typically, T is of the order of seconds

(or tens of seconds) for synaptic mechanisms with characteristic times of tens of ms. This

allows us to choose η such that δKik in Eq. (3.6) is at most a thousandth of the weight

upper bound; for η = 5× 10−7 (Appendix D), the effective learning epoch is of the order

of tens of minutes. The ensemble average over the resulting random process is denoted

by the angular brackets 〈· · · 〉. The rate of change for the expectation value of the external

weight K̇ik(t) is approximated by the temporal average of the summation of all 〈δKik(t)〉,
i.e., the ensemble average taken of Eq. (3.6), over a time interval of duration T. This time-

averaging allows the bounds of integration of t′ in Eq. (3.6) to be slightly modified with

good approximation in order to obtain (Kempter et al. 1999)

K̇ik(t) ' η

T

∫ t

t−T

[
win 〈

Ŝk(t′ − d̂ik)
〉

+ wout 〈
Si(t′)

〉]
dt′ (3.8)

+
η

T

∫
W(u)

[∫ t

t−T

〈
Si(t′) Ŝk(t′ − d̂ik + u)

〉
dt′

]
du .

The terms of of Eq. (3.8) involving win and wout give the time-averaged firing rates of the

pre- and post-synaptic spike trains, ν̂k(t) and νi(t), respectively; see Fig. 3.1(b). The last

term involves the time-averaged pairwise correlation (Kempter et al. 1999, Burkitt et al.

2007),

Dik(t, u) :=
1
T

∫ t

t−T

〈
Si(t′) Ŝk(t′ + u)

〉
dt′ ; (3.9)

this expression is convolved with the STDP window function W(u) shifted by the delay

d̂ik, which is embodied by the coefficient

DW
ik (t) :=

∫ +∞

−∞
W(u)Dik(t, u− d̂ik) du . (3.10)
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In order to incorporate d̂ik, this correlation coefficient has been modified compared to

that used by Burkitt et al. (2007). They are related to the coefficient F and FW defined in

Eq. (3.3) with Ψ = W in the following way:

Fik(t, u) = Dik(t, u) − νi(t) ν̂k(t) , (3.11)

FW
ik (t) = DW

ik (t) − W̃ νi(t) ν̂k(t) ,

where W̃ is the integral value of the kernel function W. We finally obtain

K̇ik(t) ' η
[
win ν̂k(t) + wout νi(t) + W̃ ν̂k(t) νi(t) + FW

ik (t)
]

. (3.12)

Equation (3.12) clearly shows that STDP extends rate-based learning rules with the addi-

tional term FW
ik .

In a similar way to the previous derivation for the input weights, we obtain a differ-

ential equation in the expectation value of the recurrent weight J̇ij(t)

J̇ij(t) ' η
[
win νj(t) + wout νi(t) + W̃ νj(t) νi(t) + CW

ij (t)
]

, (3.13)

where we have used the approximation νj(t− dij) ' νj(t). We have also assumed that

the spike trains of neurons i and j are only weakly dependent from a probabilistic point

of view; this is a reasonable assumption when each neuron receives many inputs (Burkitt

et al. 2007).

The separation of time scales between the “fast” neuronal and synaptic activation

mechanisms on the one hand, and the “slow” learning dynamics (η ¿ 1) on the other

hand allows us to capture the evolution of the network activity. Under this assumption,

the neuron firing rates νi(t) can be expressed in terms of the weights Kik(t) and Jij(t) and

the input firing rates ν̂k(t); and likewise for the covariance coefficients DW
ik (t) with the

input covariance coefficient Ĉkl(t, u) in Fig. 3.1(b). This concept is used in the remainder
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of this section to rewrite Eq. (3.8) as a dynamical system of the general form

[
K̇ik(t), J̇ij(t)

]
= F

[
Kik(t), Jij(t), ν0, ν̂k(t), Ĉkl(t, u)

]
. (3.14)

This system of matrix equations is then used to predict the asymptotic evolution of the

weights Kik(t) and Jij(t), depending on the input parameters ν̂k(t) and Ĉkl(t, u).

3.4 Derivation of the network consistency equations

We now derive consistency equations to express ν(t) and FW(t) in terms of the input

parameters ν̂(t) and ĈW(t), as well as the synaptic weights K(t) and J(t). These equations

describe the constraint of the recurrent connectivity on the neuronal activity.

3.4.1 Short duration of the PSP kernel and of the recurrent delays

Assuming that the weights K(t) and J(t) are quasi-stationary compared to the time scale

of the PSP kernel ε and delays (Kempter et al. 1999), we take the ensemble average of

Eq. (2.1) for neuron i to obtain

〈
Si(t)

〉
=

〈
ρi(t)

〉
= ν0 + ∑

j 6=i
Jij(t)

〈
ε ∗ Sj(t− dij)

〉
+ ∑

k
Kik(t)

〈
ε ∗ Ŝk(t− d̂ik)

〉
, (3.15)

where ∗ denotes the convolution operation. Because T is very large compared to the

neuronal time scale (ε and the delays), the integral of 〈ε ∗Sj(t− dij)〉 over the time interval

[t− T, t] can be approximated by the integral of 〈Sj(t)〉 over the same time interval (recall

that
∫

ε(t) dt = 1). As a result we obtain the same matrix self-consistency equation as

Burkitt et al. (2007) for the firing rates

ν(t) =
[
1N − J(t)

]−1 [
ν0 e + K(t) ν̂(t)

]
, (3.16)
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where 1N is the identity matrix of size N and e is the column vector with N elements all

equal to one (‘T’ denotes the matrix transposition)

e := [1, . . . , 1]T . (3.17)

To ensure the stability of the firing rates, the matrix of the recurrent weights J(t) must

have all eigenvalues in the unit circle (modulus strictly smaller than one) at all times

(Burkitt et al. 2007).

We now derive a consistency equation similar to Eq. (3.16) for the neuron-to-input

covariance F defined in Eq. (3.3). The case of non-identical delays could be rigorously

dealt with using Fourier analysis (Hawkes 1971), as shown in Appendix A.2.4. However,

this method does not lead to an easily tractable solution for arbitrary PSP kernel ε and

distribution of delays. In the present study, we consider the simplified case where all the

recurrent delays are almost identical, i.e., dij ' d for all connections j → i, and likewise

the input delays satisfy d̂ik ' d̂ for all connections k → i. The impact of the PSP kernel ε

and of the recurrent delays dij can be evaluated when their two distributions are narrow

in comparison to the width of the learning window W, as detailed in Appendix A.2.7,

which gives

FW(t) =
[
1N − J(t)

]−1 K(t)
[
ĈW∗ε(t) + [W ∗ ε](0) diag

(
ν̂(t)

)]
. (3.18)

The input covariance structure Ĉ is filtered by the PSP kernel ε to obtain the neuron-

to-input covariance F: the effect of STDP embodied in FW involves ĈW∗ε (Kempter et al.

1999,Sprekeler et al. 2007). As a comparison, Burkitt et al. (2007) neglected this effect and

used ĈW instead. The use of the covariance coefficient F instead of D (Burkitt et al. 2007)

sheds a clearer light on the relationship between the neuron-to-input and the input-to-

input correlation structures: the network connectivity operates on the input covariance Ĉ

through the term (1N − J)−1 K. The following approximation is made in deriving these
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Figure 3.2: Impact of the PSP kernel ε on learning with the STDP window function W. The solid
line represents the function W and the dashed line its convolution W ∗ εd with the PSP kernel ε
delayed by d = 0.4 ms. Globally, the shape of W ∗ ε is similar to that of W, but for small u > 0
we have W(u) < 0 whereas W ∗ ε(u) > 0. Also plotted in dashed-dotted line is W ∗ εd for longer
delay d = 10 ms: increasing d shifts the curve of W ∗ εd to the right and increases the discrepancies
between the two curves. See Appendix D for details on the parameters.

equations and its accuracy is illustrated in Fig. 3.2:

∫
W(u− r)ε(r− d) dr ' W(u) . (3.19)

The derivation of the consistency equation for CW is detailed in Appendix A.3. Similar

to the derivation for FW , the effect of the PSP kernel ε and of the recurrent delays dij can

be evaluated when their two distributions in time are narrow in comparison to the width

of the learning window W

CW(t) (3.20)

=
[
1N − J(t)

]−1 K(t)
[
ĈW∗ζ(t) + [W ∗ ζ](0) diag

(
ν̂(t)

)]
KT(t)

[
1N − J(t)

]−1 T

+
[
1N − J(t)

]−1 W(d) diag
(
ν(t)

) [
1N − J(t)

]−1 T −W(d) diag
(
ν(t)

)
.

Equation Eq. (3.20) describes a spatial and temporal filtering on the input covariance Ĉ

to obtain the neuron covariance C. The network connectivity operates through the term

(1N − J)−1 K that appears twice in Eq. (3.20); the same term was found in the consistency

equation Eq. (3.18) for the neuron-to-input covariance F, where it appears once. The

function ζ describes the temporal filtering of the PSP kernel function on Ĉ to obtain C,

as does ε for F; this effect was ignored in a previous study by Burkitt et al. (2007). The
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Figure 3.3: (a) Plots of ε (dashed line) and ζ (dashed-dotted line). (b) Plots of W (grey thick
solid line) and W ∗ ζ (black dashed-dotted line). Globally, the shapes of the two functions are
similar, except for small u. We used the parameters listed in Appendix D, which correspond to
W(u) < 0 but [W ∗ ζ](u) > 0 for very small u > 0. The value [W ∗ ζ](0) > 0 relates to the effect
of delta-correlated inputs, cf. Eq. (3.29).

function ζ can be approximated by the self-convolution of ε, as illustrated in Fig. 3.3(a),

ζ(r) '
∫

ε(r + r′)ε(r′) dr′ ; (3.21)

see Eq. (A.39) in Appendix A.3.3 for details. The same approximation Eq. (3.19) as in the

derivation for F has been made.

3.4.2 The equations describing the dynamical system

In the limit of large networks (N À 1 and M À 1) with sufficiently many synapses per

neuron, we can ignore the effects due to autocorrelation, i.e., the term involving ‘diag’ in

Eqs. (3.18) and (3.20). The system of equations that describe the dynamics of the firing
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rates, covariance coefficients and weights reduces to

ν =
(
1N − J

)−1 (
ν0 e + K ν̂

)
, (3.22a)

FW =
(
1N − J

)−1 K ĈW∗ε , (3.22b)

CW =
(
1N − J

)−1 K ĈW∗ζ KT (
1N − J

)−1 T , (3.22c)

K̇ = η ΦK
(
win e ν̂T + wout ν êT + W̃ ν ν̂T + FW)

(3.22d)

J̇ = η ΦJ
(
win e νT + wout ν eT + W̃ ν νT + CW)

. (3.22e)

The time variable t has been omitted from all the vectors and matrices that evolve over

time. Recall that hats indicate variables related to the external inputs. The constant W̃

denotes the integral of the STDP window function W

W̃ :=
∫ +∞

−∞
W(u) du . (3.23)

The column vectors ê and e have all elements equal to one Eq. (3.17). The projectors

ΦK and ΦJ operate on the vector spaces of N × M and N × N matrices, respectively;

they nullify the matrix components that correspond to non-existent connections in the

network, in particular the diagonal terms for ΦJ .

3.4.3 Higher-order stochastic effects of the weight dynamics

The system of equations (3.22a-3.22e) describes the evolution of their expectation values,

i.e., the first order of the stochastic process. In the remainder of this thesis, we refer to this

leading order as the drift of the dynamics, in comparison to higher orders of the stochastic

process. Phenomena such as evolution of the weight variance or symmetry breaking rely

upon higher-order stochastic mechanisms and are not captured by Eqs. (3.22a-3.22e) but

they can nevertheless be analyzed using this formalism (Kempter et al. 1999,Burkitt et al.

2007).

In order to evaluate the second moment of the weight dynamics, we need to consider

single stochastic trajectories (realisations of the random process). The learning equation
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Eq. (3.6) can be rewritten

dKv
ik(t)
dt

=
[

win Ŝk(t− d̂ik) + woutSi(t) +
∫

W(u)Si(t) Ŝk(t + u− d̂ik)du
]

, (3.24)

where v denotes a given stochastic trajectory of the process. Using the expression in

Eq. (3.24), we can evaluate the multidimensional matrix coefficient

Υi,k,j,l(t, t′) :=
〈dKv

ik(t)
dt

dKv
jl (t′)
dt

〉
, (3.25)

which is related to the second moment of the weight dynamics (cf. Appendix B.3.1). The

ensemble average denoted by the brackets in Eq. (3.25) is performed over all stochastic

trajectories v. In comparison, the system of equations Eq. (3.22a-3.22e) describes the

expectation value of the expression Eq. (3.24) over all the trajectories, namely the drift of

the weight Kik

K̇ik(t) =
〈

dKv
ik(t)
dt

〉
. (3.26)

3.5 Generation of the input spike trains

We constrain this study to a specific type of external inputs with correlations, although

the present framework can be applied to arbitrary configurations. The inputs that stim-

ulate the network are partitioned into a predetermined number of homogeneous pools,

such that inputs from the same pool are correlated but independent of inputs from dif-

ferent pools. The firing rates of inputs within a pool are all equal to, say, ν̂0. The positive

within-pool correlation is generated so that, for any input, a given portion of its spikes

occur at the same time as some other spikes within its pool, while the remainder occur at

independent times (Gütig et al. 2003, Meffin et al. 2006).

The spikes from input k are selected from two homogeneous Poisson spike trains each

of rate ν̂0 such that the within-group correlation strength is 0 ≤ ĉ ≤ 1 (Meffin et al. 2006).

The first spike train is common to all inputs in the pool and generates the correlated

events; distinct pools have different common reference spike trains. For a given input, the

spikes are selected from this train with probability
√

ĉ, independently of other neurons in
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the pool. Thus only a portion of all the neurons in the pool participate in each correlated

event. The second spike train is the own independent train attached to each input and

the spikes are selected from this train with probability 1−√ĉ. For each input k, we create

a random variable X̂k(t) that is one if there is an input spike at time t and zero otherwise.

The correlation between the variables X̂k(t) and X̂l(t) corresponding to distinct sources

from the same pool is given by (Gütig et al. 2003)

Cov
[
X̂k(t), X̂l(t)

]
√

Var
[
X̂k(t)

]
Var

[
X̂l(t)

] = ĉ . (3.27)

In this way, we obtain input spike trains Ŝk(t) that have “instantaneous” firing rates

〈Ŝk(t)〉 = ν̂0 and pairwise covariances (for k 6= l)

Ĉkl(t, u) ' ĉ ν̂0 δ(u) (3.28)

that are both constant in time. The latter follows since Eq. (3.27) implies Cov[Ŝk(t), Ŝl(t +

u)] ' ĉ ν̂0 δ(u), as defined by Eq. (A.1) in Appendix A.1.1. Inputs from the same pool are

only correlated for u = 0, which we denote as ‘delta-correlated’ inputs. We only consider

positively delta-correlated inputs. It follows that, for inputs k 6= l,

ĈW∗ε
kl ' ĉ ν̂0 [W ∗ ε](0) . (3.29)

Due to the PSP kernel, delta-correlated inputs induce a non-trivial (richer) correlation

structure F in the network according to Eq. (3.18). Under the Hebbian assumption that

W(u) > 0 for u < 0 (cf. Sec. 2.3),

[W ∗ ε](0) =
∫

W(u)ε(−u)du > 0 (3.30)

and the matrix ĈW∗ε has non-negative elements for delta-correlation. Eq. (3.29) also im-

plies that the spike-triggering effect for FW , involving diag in the rhs of Eq. (3.18), is

always positive, as explained in Appendix A.2.6. This is similar to the case of a feed-

forward architecture (Kempter et al. 1999).
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Typically, we use small input correlations: 0 ≤ ĉ ≤ 10−1. Within this range of small cor-

relation strengths, we will discriminate between weak and sufficiently strong values when

discussing their impact on the weight dynamics. Numerical simulation uses discrete time

to generate the Poisson spike trains (Appendix D).

3.6 Analysis of the system dynamics

Our aim is to investigate the steady states of the firing rates and weights. For this pur-

pose, the dynamical system is analyzed in terms of fixed point and stability in order to

predict the asymptotic behaviour of the weights. This framework targets network dy-

namics beyond the mean-field approach in order to study the emergence of a network

structure due to external stimulation. In particular, we focus on the emergence of an

asymptotic weight structure in a network stimulated by two input pools, an idea inspired

by Kempter et al. (1999) and Gütig et al. (2003). Minimal assumptions are made about

the network connectivity (partial or full).

The term mean (applied to firing rates and weights) will refer to an average over the

neurons, inputs, connections, etc. of the network (topological averaging), whereas aver-

aged stands for time averaging, unless otherwise specified. The homeostatic equilibrium

describes the situation where the mean firing rate and mean weight have reached an

equilibrium, although individual firing rates and weights may continue to change. The

expression emergence of weight structure will refer to the situation where the learning dy-

namics has imposed a specific weight structure on the network, i.e., further learning may

cause individual weights to change but the qualitative character of the distribution (e.g.,

bimodal) will remain unchanged.

When using additive STDP (cf. Sec. 2.3 and Eq. (D.1) in Appendix D), it is necessary to

introduce bounds on the input weights in numerical simulation because of their tendency

to diverge due to the competition induced by STDP (Kempter et al. 1999, Burkitt et al.

2007). In this way, we focus on the splitting of the weight distribution and leave aside the

stabilisation issue. The issue of stabilisation will be addressed in Chapter 6 when using

weight-dependent STDP. The simulation results presented in this thesis were run using
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the neuron and learning parameters listed in Appendix D.



Chapter 4

Input selectivity by STDP

In this chapter, the weight dynamics are investigated in a recurrently connected network stimulated

by external inputs, where STDP modifies the plastic input connections while the recurrent weights

are kept fixed.

4.1 Introduction

THIS chapter investigates the situation illustrated in Fig. 4.1 where additive STDP

only modifies the input connections (thick arrows), while the recurrent weights are

kept fixed (thin arrows). The dynamical system (3.22a-3.22e) reduces to

ν =
(
1N − J

)−1 (
ν0 e + K ν̂

)
, (4.1a)

FW =
(
1N − J

)−1 K ĈW∗ε , (4.1b)

K̇ = ΦK
(
win e ν̂T + wout ν êT + W̃ ν ν̂T + FW)

. (4.1c)

Time has been rescaled to remove η. The study of the weight dynamics focuses on a

particular network configuration where the neuronal network (top circles) are excited

by two pools of input spike trains that have homogeneous within-pool firing rates and

spike-time correlations (bottom circles, fill-in indicates within-pool correlations), an idea

inspired by Kempter et al. (1999) and Gütig et al. (2003). Minimal assumptions are made

about the network connectivity (partial or full) and input structure.

We examine whether STDP can induce a homeostatic equilibrium on the input weights,

in which the mean pre-synaptic input weight and the output firing rate stabilise over

time, as well as a potentiation of some input weights depending on the input correla-

43
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a b

Figure 4.1: Network configurations studied in chapter 4. Top circles represent the neuronal
network and bottom circles the two input pools, for which filled circles indicate non-zero within-
pool correlation. Thick (resp. thin) arrows indicate plastic (fixed) weights.

tion structure. We especially investigate the differences between the present case of a

recurrently connected network and previous results of a single neuron or a feed-forward

network: does STDP always select the more correlated input pools? Sec. 4.4 focuses on

the particular case illustrated in Fig. 4.1(b) where the network is stimulated by two input

pools whose spike trains have similar characteristics, namely homogeneous initial input

weights, identical firing rates and equal within-pool spike-time correlations. This relates

to the concept of symmetry breaking, by which we mean the specialisation of the neu-

rons to just one of the input pools. It has been previously demonstrated that STDP can

implement this symmetry breaking for a single neuron stimulated by two input pools

having the same firing rate and spike-time correlation: STDP causes a neuron with ini-

tially homogeneous input weights to become sensitive to only one of the two pools (Gütig

et al. 2003). This weight specialisation can be related, for example, to the organisation

of the primary visual cortex into areas sensitive to different aspects of visual stimuli,

viz.,ocular dominance and orientation fields (Hubel and Wiesel 1962). Possible underly-

ing mechanisms have been the subject of many studies (von der Malsburg 1973,Swindale

1996, Choe and Miikkulainen 1998, Elliott and Shadbolt 1999, Wenisch et al. 2005, Good-

hill 2007) to reproduce and explain such synaptic self-organisation (Kohonen 1982). We

extend the previous studies by Kempter et al. (1999) and Gütig et al. (2003) to the case of

a recurrently connected network stimulated by two input pools as described above.
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4.2 General case of learning input weights with fixed recurrent
weights

4.2.1 Homeostatic equilibrium

The evolution equation of the mean input weight Kav := ∑i,k Kik/nK is given by

K̇av = winν̂av + woutνav + W̃ν̂avνav + FW
av (4.2)

= winν̂av +
ν0

(
wout + W̃ν̂av

)

1− nJ
av Jav

+ nK
avKav

ν̂av

(
wout + W̃ν̂av

)
+ ĈW∗ε

av

1− nJ
av Jav

.

The subscript ‘av’ denotes the mean-averaged variable over the network, i.e., when ne-

glecting the discrepancies among the external inputs, the neurons or the connections. We

have

νav =
ν0 + nK

avKav ν̂av

1− nJ
av Jav

. (4.3)

The constants nK
av := nK/N and nJ

av := nJ/N denote the mean number of pre-synaptic

input and recurrent connections (resp.) in the network. Eq. (4.2) is linear in Kav, which

converges towards an equilibrium if and only if

ν̂av

(
wout + W̃ν̂av

)
+ ĈW∗ε

av

1− nJ
av Jav

< 0 . (4.4)

We have 1− nJ
av Jav > 0 since the matrix J has a spectrum in the unit circle (to prevent

firing rates from diverging), so the mean recurrent feedback nJ
av Jav does not change the

stability of the network. For weakly correlated inputs, the covariance coefficient ĈW∗ε
av

is small compared to the mean stimulation firing rate ν̂av (Kempter et al. 1999) and the

previous stability condition reduces to

wout + W̃ν̂av < 0 . (4.5)

Consequently, there are four situations to consider for the homeostatic equilibrium, de-

pending on the mean input stimulation ν̂av:
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(i) W̃ < 0 and wout < 0: stable whatever the value of ν̂av;

(ii) W̃ < 0 and wout > 0: stable for ν̂av > −wout/W̃;

(iii) W̃ > 0 and wout < 0: stable for ν̂av < −wout/W̃;

(iv) W̃ > 0 and wout > 0: never stable for any value of ν̂av.

The input stimulation can thus change the stability in some cases, unlike the recurrent

feedback. We recall that W̃ < 0 in cases (i) and (ii) above leads to homeostatic stability

of the learning dynamics when STDP modifies only the recurrent weights in a network

with no external inputs (Burkitt et al. 2007). Case (iii) corresponds to a stability analysis

already elsewhere described (Kempter et al. 1999). The simulation parameters used in

numerical simulations (see Appendix D) correspond to case (i).

As a consequence of Eq. (4.2), the asymptotic value of Kav is given by the fixed point

(if it is stable)

K∗av =
−1
nK

av

(
1− nJ

av Jav

)
winν̂av + ν0

(
wout + W̃ν̂av

)

ν̂av

(
wout + W̃ν̂av

)
+ ĈW∗ε

av

. (4.6)

Since we require the weights K to remain positive, the equilibrium is realisable only if the

asymptotic value K∗av is positive, which requires, similar to the case of a single neuron

(Kempter et al. 1999),

win > −
ν0

(
wout + W̃ν̂av

)

ν̂av

(
1− nJ

av Jav

) > 0 . (4.7)

When the fixed point K∗av < 0 is stable, the input weights K(t) will all become quies-

cent. The presence of strong recurrent feedback nJ
av Jav can thus cause the homeostatic

equilibrium to become non-realisable. This condition is also consistent with the stability

analysis in the case of learning on the recurrent weights J with no external inputs, for

which win À |wout| ensures the stability of individual firing rates (Burkitt et al. 2007).

Note that the particular case where wout → 0 does not impair the equilibrium provided

win > 0 and W̃ < 0.
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From Eqs. (4.6) and (4.3), the fixed point ν∗av of the mean firing rate is given by

ν∗av =
−winν̂2

av + ν0

(
1− nJ

av Jav

)−1
ĈW∗ε

av

ν̂av

(
wout + W̃ν̂av

)
+ ĈW∗ε

av

. (4.8)

For weakly correlated inputs, it reduces to

ν∗av ' − winν̂av

wout + W̃ν̂av
. (4.9)

From Eq. (4.9), we see that the fixed point ν∗av is an increasing function of the mean input

firing rate ν̂av when wout < 0 (decreasing otherwise).

4.2.2 Emergence of a weight structure

The learning equation Eq. (4.1c) can be rewritten as a linear differential matrix equation

in K,

K̇ = ΦK

[
(1N − J)−1 KA + B

]
(4.10)

with the two following matrices containing the input firing-rate and correlation struc-

tures

A := woutν̂êT + W̃ν̂ν̂T + ĈW∗ε , (4.11)

B := win e ν̂T + (1N − J)−1 ν0e
(

woutêT + W̃ν̂T
)

.

We denote by MK the subspace of RN×M where the matrix K evolves, i.e., the vector

subspace of matrices X such that ΦK(X) = X.

We examine the solution of Eq. (4.10), first for the case of full input connectivity (ΦK

is the identity), which depends upon the invertibility of the matrix A. We then complete

the general analysis for partial connectivity (and any matrix A), which will be illustrated

though a specific network example in Sec. 4.3.
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Full input connectivity and invertible A

If the matrix A is invertible, the solution of Eq. (4.10) is given by

K(t) = K(∞) + ∑
n≥0

tn

n!
(1N − J)−n [

K(0)− K(∞)
]

An (4.12)

with the fixed point

K(∞) = − (1N − J) BA−1 (4.13)

and K(0) the initial weight matrix at t = 0. Note that without rescaling time, t would

be replaced by η t in Eq. (4.12). The weight stability of K(∞) is determined by the eigen-

values of A since the spectrum of 1N − J lies in the unit circle for the sake of bounded

(non-diverging) firing rates. In the same way as with the homeostatic equilibrium, the

presence of recurrent connections affects the asymptotic weight matrix K(∞) as well as

the rate of convergence (or divergence) of K(t). Note that the spike-triggering effect,

which we neglected, only adds the diagonal matrix [W ∗ ε](0) diag(ν̂) to B, which would

slightly change the fixed point K(∞), but not the stability.

The weight matrix K(t) converges exponentially fast towards K(∞) when the eigen-

values of A have negative real parts. The fixed point K(∞) may then be attained depend-

ing on the weight bounds. On the other hand, if A has any eigenvalue with positive real

part, some components of K diverge in the direction of the principal eigenvector until

hitting the bounds. Then, the relative position of the initial conditions K(0) compared to

that of the fixed point K(∞) in MK will determine the evolution of K(t). A combination

of stability and divergence gives interesting dynamics, as was shown by Kempter et al.

(1999) for the single-neuron case: the first corresponds to partial equilibria (e.g., home-

ostatic) while the second can imply robust weight specialisation through a splitting of

their distribution.

Partial input connectivity and/or non-invertible A

The matrix A is not invertible whenever there are symmetries in the input pools and

in the weights K; for example, in the case of homogeneous input pools. Details of the
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general analysis are provided in Appendix B.1. In summary, we can decompose the evo-

lution of K into three subspaces defined using the null-spaces of the matrices A and B:

• an exponential evolution (convergence in the stable case) on a subspace where “A

is invertible”, similar to the solution given in Eq. (4.12);

• a zero drift on a subspace related, for example, to symmetries of the input pools and

of the input connectivity, where higher stochastic orders of the weight dynamics

have a significant effect;

• a constant drift that drives weights towards their bounds in a particular direction

(this case corresponds in general to very specific parameter values and we ignore

it).

When the network has symmetries, the weight drift in the first subspace can be studied

using a reduction of dimensionality for K(t) as explained in Appendix B.1.1. In the sec-

ond subspace, the weight evolution is not constrained by STDP in a way that organises

the input weights and, consequently, does not correspond to learning of the input firing-

rate and correlation structure. It can nevertheless be the source of organisation in the

network, as will be described Sec. 4.4.

4.3 Network stimulated by two homogeneous input pools

We now illustrate the general analysis in Sec. 4.2, in particular how the input correlations

determine the asymptotic weight structure, through a specific network example inspired

by Kempter et al. (1999). The network is stimulated by external inputs that are divided

into two homogeneous pools of the same size (indices 1 ≤ k ≤ M/2 vs. M/2 + 1 ≤
k ≤ M); the two input pools may have distinct parameters, as illustrated in Fig. 4.1(a).

The analysis below is carried out for full input connectivity for the sake of simplicity, but

simulations show corresponding cases with partial connectivity.
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4.3.1 Reduction of dimensionality to study the weight drift

The vector ν̂ and the matrix ĈW∗ε that appear in A and B, cf. Eq. (4.11), can be expressed

in terms of the M-column vector ê, defined similarly to e in Eq. (3.17),

ê := [1, . . . , 1]T , (4.14)

and the M-column vector ĥ, whose first M/2 elements are 1 and last M/2 elements are

−1:

ĥ := [1, . . . , 1,−1, . . . ,−1]T . (4.15)

Denoting the mean firing rates by ¯̂ν1 and ¯̂ν2 for each input pool and their correlation

strengths by ĉ1 and ĉ2, we have

ν̂ =
¯̂ν1

2
(ê + ĥ) +

¯̂ν2

2
(ê− ĥ) , (4.16)

ĈW∗ε =
ĉ1 ¯̂ν1[W ∗ ε](0)

4
(ê + ĥ)(ê + ĥ)T +

ĉ2 ¯̂ν2[W ∗ ε](0)
4

(ê− ĥ)(ê− ĥ)T ,

where we have used Eq. (3.29). Substituting the above expressions into Eq. (4.11), we

obtain the following special form for the matrices A and B

A = αêêT + βĥêT + γêĥT + κĥĥT , (4.17)

B = α′eêT + β′ (1N − J)−1 eêT + γ′eĥT + κ′ (1N − J)−1 eĥT ,

where the constants α, β, γ, κ, α′, β′, γ′, κ′ absorb all the input and learning parameters,

α = wout
¯̂ν1 + ¯̂ν2

2
+ W̃

( ¯̂ν1 + ¯̂ν2
)2

4
+ [W ∗ ε](0)

ĉ1 ¯̂ν1 + ĉ2 ¯̂ν2

4
, (4.18)

β = wout
¯̂ν1 − ¯̂ν2

2
+ W̃

¯̂ν2
1 − ¯̂ν2

2
4

+ [W ∗ ε](0)
ĉ1 ¯̂ν1 − ĉ2 ¯̂ν2

4
,

γ = W̃
¯̂ν2
1 − ¯̂ν2

2
4

+ [W ∗ ε](0)
ĉ1 ¯̂ν1 − ĉ2 ¯̂ν2

4
,

κ = W̃

( ¯̂ν1 − ¯̂ν2
)2

4
+ [W ∗ ε](0)

ĉ1 ¯̂ν1 + ĉ2 ¯̂ν2

4
,
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Figure 4.2: Dimension reduction for weight matrices K and J for a network of two homogeneous
groups of neurons (top circles) stimulated by two homogeneous input pools (bottom circles). The
variable K̄11, for example, corresponds to the mean input weights from pool 1̂ to group 1. The
drift of the input weights can be completely studied using a reduced system of equations with K̄
and J̄.

α′ = win
¯̂ν1 + ¯̂ν2

2
,

β′ = woutν0 + W̃ν0
¯̂ν1 + ¯̂ν2

2
,

γ′ = win
¯̂ν1 − ¯̂ν2

2
,

κ′ = W̃ν0
¯̂ν1 − ¯̂ν2

2
.

The drift K̇(t) is clearly zero in the subspace orthogonal to both ê and ĥ. The in-

teresting values to predict are the mean input weights for each neuron, embodied in

the vector Kê/M, and the difference between the mean weights from the first and the

second pools, contained in Kĥ/M. This reduction of dimensionality, explained in Ap-

pendix B.1.1, would still be valid for homogeneous partial input connectivity and input

pools of different sizes. For the network configuration detailed in Fig. 4.2, the corre-

sponding equivalence classes for the input weights to describe the drift K̇(t) are simply

the mean input weights over each input pool and neuron group, such as K̄21 from pool 1̂

to group 2.

In the following, we study the drift of the input weights using the two vectors Kê and
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Kĥ, which evolve over time according to

K̇ê = M (1N − J)−1 K
(

αê + βĥ
)

+ Mα′ e + Mβ′ (1N − J)−1 e , (4.19a)

K̇ĥ = M (1N − J)−1 K
(

γê + κĥ
)

+ Mγ′ e + Mκ′ (1N − J)−1 e . (4.19b)

This reduced system evolves according to the eigenvalues of the matrix

Ar :=


 α β

γ κ


 . (4.20)

4.3.2 Firing-rate equilibrium for weak correlations

First, we constrain our study to weakly correlated inputs. In this case, we have |α| À |β|
in Eq. (4.19a) and we can separate the evolution of Kê from that of Kĥ, namely

α = ξ + (ĉ1 + ĉ2)ν̂av [W ∗ ε](0)/4 ' ξ , (4.21)

ξ := woutν̂av + W̃ν̂2
av .

Here ξ is much larger in absolute value than β (as well as γ and κ) in Ar, cf. Eqs. (4.18)

and (4.20). It follows that Kê evolves much faster than Kĥ, because |κ| ¿ |α|, in a similar

way to the corresponding analysis for a single neuron (Kempter et al. 1999). We can thus

consider Kê to be at its fixed point K(∞)ê when stable, and then study the structure of

the input weights through Kĥ. The condition ξ < 0 ensures the stability of K(t)ê, i.e., of

the mean input weight for each neuron, and is the same as the condition in Eq. (4.5). The

equilibrium of all individual firing rates at ν∗av is equivalent to the stability of the mean

input weight for each neuron at K∗av.

In the remainder of Sec. 4.3, we consider small input correlations and require the

stability of the firing rate for each neuron (embodied in Kê) with an equilibrium value

within the bounds, even if Eq. (4.21) is not strictly satisfied. Otherwise, input weights

would end up clustered at a bound and the learning would then be null. When neglecting

the inhomogeneities of J, the vector Kê can be approximated at the equilibrium by Kave at
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all times. However, discrepancies between the effective equilibrium value of Kê and the

homeostatic equilibrium value K∗ave may occur depending on the correlation strengths,

weight bounds or inhomogeneities in the network and initial conditions; see Fig. 4.3 for

an example.

The evolution of Kĥ described by Eq. (4.19b) corresponds to the fixed point

K(∞)ĥ = −γ

κ
K(∞)ê− γ′

κ
(1N − J) e− κ′

κ
e (4.22)

and it is determined by the sign of κ for the stability as well as the respective positions

of K(0)ĥ and K(∞)ĥ. We now elucidate the dynamics of Kĥ depending on the input

parameters.

4.3.3 Two uncorrelated input pools with any firing rates

For uncorrelated inputs with different firing rates, κ = W̃( ¯̂ν1 − ¯̂ν2)2/4, so it follows from

Eq. (4.19b) that Kĥ is stable when W̃ < 0. The terms in the rhs of Eq. (4.22) are γ/κ =

2ν̂av/( ¯̂ν1− ¯̂ν2), γ′/κ = 2win/W̃( ¯̂ν1− ¯̂ν2) and κ′/κ = 2ν0/( ¯̂ν1− ¯̂ν2), so the vector elements

of the fixed point K(∞)ĥ have the same sign for homogeneous recurrent connectivity,

which is given by

−2
nK

avK∗avν̂av + win(
1− nJ

av Jav
)
/W̃ + ν0

¯̂ν1 − ¯̂ν2
= −

2
(

1− nJ
av Jav

)
win

¯̂ν1 − ¯̂ν2

wout/W̃
wout + W̃ν̂av

. (4.23)

We have used the expression of K∗av in Eq. (4.6).

Since we required Kê to be stable, the conditions for homeostatic stability given in

Sec. 4.2.1 must be satisfied: win > 0 and wout + W̃ν̂av < 0. Consequently, the sign of the

vector elements of K(∞)ĥ is the same as that of wout/W̃( ¯̂ν1 − ¯̂ν2). In both cases where

the fixed point K(∞)ĥ is stable or unstable, depending on the sign of W̃, the condition

wout < 0 corresponds to the potentiation of the input weights coming from the pool with

stronger firing rate. Recall that the same condition wout < 0 implies that the neuron firing

rate νav increases with ν̂av at the homeostatic equilibrium (cf. Sec. 4.2.1).
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4.3.4 The two input pools have correlations and the same input firing rate

We now consider the special case where both input pools have the same firing rate equal

to ν̂0 and the vector ν̂ = ν̂0ê is homogeneous. We thus have γ′ = κ′ = 0 in Eq. (4.22), and

the fixed point for Kĥ reduces to

K(∞)ĥ = −γ

κ
K(∞)ê ' − ĉ1 − ĉ2

ĉ1 + ĉ2
nK

av K∗av e , (4.24)

where K∗av is given in Eq. (4.6). This fixed point is always unstable since κ = [W ∗
ε](0)ν̂0(ĉ1 + ĉ2)/4 > 0, cf. Eq. (4.18), similar to the case of a single neuron (Kempter

et al. 1999). This holds since [W ∗ ε](0) > 0 (see Sec. 3.5) and the correlation strengths ĉ1

and ĉ2 are positive. All the elements of the vector K(∞)ĥ have the opposite sign to ĉ1− ĉ2

when the equilibrium of the mean input weight for each neuron is realisable, viz., the

vector K(∞)ê has positive elements. It follows that the fixed point K(∞)ĥ is determined

by the balance between the input correlation strengths.

The instability will lead Kĥ to evolve in the opposite direction to the fixed point

K(∞)ĥ. As a result, if the network starts with random initial input weights such that

K(0)ĥ ' 0, the weights coming from the input pool with stronger correlation will be po-

tentiated compared to the weights from the other pool, as illustrated in Fig. 4.4(a). This

is similar to that seen in the case of feed-forward architecture with W̃ > 0 described by

Kempter et al. (1999). It actually holds whatever the sign of W̃ and the recurrent connec-

tions do not qualitatively change this behaviour. When the initial conditions correspond

to K(0)ĥ 6= 0 but not too far from 0, then regardless of their initial specialisation the input

weights evolve into the “naturally” expected distribution, as shown in Fig. 4.3(a). Note

that the homeostatic equilibrium did not hold asymptotically (discrepancy between the

thin solid and dotted lines) in that simulation; this can happen when weights saturate

and Eq. (4.2) breaks down.

However, if the input weights are initially already specialised such as K̄11(0) À
K̄12(0) then, despite ĉ2 > ĉ1 = 0, the initial “wrong” specialisation may be preserved,

contrary to the expected potentiation of the weights from the more correlated input pool,
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Figure 4.3: Comparison between the weight evolution of different initial conditions for the same
network configuration. The network consisted of N = 100 neurons and two pools of M = 100
inputs each, for the topology described in Fig. 4.1(a). The partial input and recurrent connectivity
were randomly generated with probability 30%. Input pool 2̂ had correlation (ĉ2 = 0.1) while
pool 1̂ had none; the firing rates were ¯̂ν1 = ¯̂ν2 = 30 Hz. The two plots show the evolution of
individual weights (grey bundle); the mean weight Kav from the simulation (thin solid line); the
analytically-predicted equilibrium value K∗av (thin dotted line); the two simulated mean weights
K̄11 (thick dashed-dotted line) from the uncorrelated pool 1̂ and K̄12 (thick dashed line) from
the correlated pool 2̂. (a) For an initial distribution corresponding to the means K̄11(0) = 0.028
and K̄12(0) = 0.012, STDP inverted the weight distribution to potentiate K̄12 (thick dashed line)
eventually. The homeostatic equilibrium held momentarily and then broke down. (b) When
starting with means K̄11(0) = 0.038 and K̄12(0) ' 0.002, the initial weight distribution was not
inverted by STDP. The weights corresponding to K̄12 (thick dashed line) are barely visible at zero
in the plot. The homeostatic equilibrium held satisfactorily throughout the simulation, which
determined the equilibrium value of K̄11 (thick dashed-dotted line).

as illustrated in Fig. 4.3(b).

The specific case K(∞)ĥ = 0, which occurs for example when the two pools have the

same correlation strength ĉ1 = ĉ2, will be studied in details in Sec. 4.4. When at least one

of the input pools has correlation, the specific case where the matrix Ar in Eq. (4.20) is

not invertible almost always leads to an unstable mean over the two input pools of the

input weights for each neuron, i.e., K(∞)ê will diverge to the bounds. This case is not

interesting for learning and will not be considered further.

4.3.5 Distinct firing rates for the two correlated input pools

For a general choice of learning and input parameters, we have γ′ 6= 0 and κ′ 6= 0, and the

signs of the vector elements of the fixed point K(∞)ĥ in Eq. (4.22) depend on a complex

relationship between the two mean input firing rates ( ¯̂ν1 and ¯̂ν2) and mean correlation

strengths (ĉ1 and ĉ2). Neglecting the inhomogeneities in the network, we approximate
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Figure 4.4: Asymptotic weight specialisation dependence upon the difference between the input
correlation strengths; influence of the firing rates. The network corresponded to Fig. 4.1(a) with
30%-random partial connectivity for both input and recurrent connections; the weights were ini-
tially homogeneous with respective means Kav(0) = 0.02 and Jav = 0.015, and±10% spread; both
input and recurrent delays were randomly chosen with mean 7 ms±2 ms. In each case, the four
simulations corresponded to, respectively, ĉ1 = 0.05 and ĉ2 = 0; ĉ1 = 0.02 and ĉ2 = 0; ĉ1 = 0 and
ĉ2 = 0.02; and ĉ1 = 0 and ĉ2 = 0.05. The plotted points represent the mean of K(∞)ĥ over the
neurons at the end of the simulation: it is positive if the network specialised to pool 1̂ and neg-
ative for pool 2̂. The dotted line indicates the demarcation border between the specialisations to
pool 1̂ and pool 2̂, estimated using similar calculations to those for Eq. (4.25). (a) For equal input
firing rates ¯̂ν1 = ¯̂ν2 = 30 Hz, the difference ĉ1 − ĉ2 determines the specialisation scheme and the
squares have the same sign as ĉ1 − ĉ2. (b) When the firing rates ¯̂ν1 = 40 Hz and ¯̂ν2 = 30 Hz, the
correlation strength ĉ2 required for the network to specialise to pool 2̂ is higher: weak correlation
strength still leads to the selection of pool 1̂ (triangle on the right of the demarcation dotted line
with ĉ1 = 0 and ĉ2 = 0.02).
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K(∞)ê ' nK
avK∗ave and (1N − J)e ' (1− nJ

av Jav)e in Eq. (4.22), in order to obtain

K(∞)ĥ ' −nK
avK∗avγ + (1− nJ

av Jav)γ′ + κ′

κ
e . (4.25)

If the input firing rates are very different, the γ′ and κ′ terms may dominate the γ term

in Eq. (4.25), and hence K(∞)ĥ depends on the input firing rates and not the input cor-

relation strengths. On the other hand, we can obtain an approximate condition on the

mean parameters to ensure that the input correlation strengths determine the sign of the

numerator of Eq. (4.25), namely

∣∣∣∣
ĉ1 ¯̂ν1 − ĉ2 ¯̂ν2

¯̂ν1 − ¯̂ν2

∣∣∣∣ > h
(
ν̂av, ĈW∗ε

av
)

, (4.26)

where the function h is defined by Eq. (B.6) in Appendix B.2. The formula is more in-

teresting qualitatively than quantitatively: this condition is satisfied when the difference

between the correlation strengths ĉ1 − ĉ2 is sufficiently large for given input firing rates

¯̂ν1 and ¯̂ν2, which can always be obtained when the difference ¯̂ν1 − ¯̂ν2 is not too large. The

recurrent connectivity generally affects such a balance between the input firing rates and

correlations.

Under the qualitative condition of small discrepancies between the input firing rates,

all the vector elements have the same sign given by

sgn
[
K(∞)ĥ

]
= sgn

[
−γ

κ
K(∞)ê

]
= sgn [ĉ2 − ĉ1] ê . (4.27)

In this situation, the input weights from the more correlated input pool will be poten-

tiated, as illustrated in Fig. 4.5 for partial input and recurrent connectivity, ¯̂ν1 > ¯̂ν2 and

ĉ1 < ĉ2. The corresponding simulation with uncorrelated inputs would lead to a poten-

tiation of the input weights from the first input pool since we have used wout < 0 (see

Sec. 4.3.3). In that simulation, because of the inhomogeneities in J, the firing rates ended

up stable though not clustered near that value, as shown in Fig. 4.5(a); the homeostatic

equilibrium for the weights was not strictly satisfied, cf. the discrepancies between the

black thin solid line compared to the thin dashed line in Fig. 4.5(b). This discrepancy
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is due to the inhomogeneous recurrent connections that affect the vector of equilibrium

neuronal firing rates; in other words, Eq. (4.25) is not a good approximation in this case

and Eq. (4.22) should be used. Consequently, the number of potentiated weights weights

is different for the first half and the second half of the simulated neurons in Fig. 4.5(c).

Figure 4.4(b) illustrates the dependence of the asymptotic weight specialisation upon

the input firing rates and correlation strengths with the same learning parameters: stronger

input correlation is necessary to select a correlated input pool when its firing rate is

smaller than that of the uncorrelated pool. Compared to the case where the two input

pools have the same firing rate in Fig. 4.4(a), the border (dotted line) between the poten-

tiation of pool 1̂ and pool 2̂ is shifted to the left.

4.3.6 Extension to several homogeneous input pools

The analysis in Sec. 4.3 can be generalised to the case of an arbitrary number m of homo-

geneous input pools. It is possible to construct m− 1 vectors, ĥ1, . . . , ĥm−1, in a similar

way to ĥ above, in order to form an orthogonal basis together with ê in which A and B

can be expressed in a form analogous to Eq. (4.17). For m pools of the same size, the vec-

tors ĥ1, . . . , ĥm−1 can be constructed using the mth root of unity (ê corresponding to one),

and the decomposition of K using this basis can be obtained using the discrete Fourier

transform.

4.4 Symmetry breaking of the distribution of input weights with
fixed recurrent weights

4.4.1 Previous results concerning the weight drift

We now focus on the special case where we have two input pools of the same size that

have the same firing rate ν̂0 and same correlation strength ĉ0, as defined in Eq. (3.28). The

evolution of the matrix K of the input weights can be described through two vectors Kê

and Kĥ, where ê is a column vector with all M elements equal to one Eq. (4.14), and ĥ is

the column vector defined in Eq. (4.15) that has the first M/2 elements are 1 and the next
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Figure 4.5: Weight evolution for unbalanced correlations. The network of N = 100 neurons was
stimulated by two pools of M/2 = 100 inputs each, with partial input and recurrent connectivity
(30%). The input weights were initially homogeneous around the mean value 0.02 (±10%) while
the recurrent weights were inhomogeneous with lumped feedback J̄11 = 0.45, J̄12 = 0, J̄21 = 0.9
and J̄22 = 0.45; see Fig. 4.2. The input firing rates and correlations were set to ¯̂ν1 = 35 Hz,
¯̂ν2 = 30 Hz, ĉ1 = 0.05 and ĉ2 = 0.1 respectively. (a) The firing rates ν (grey bundle; mean νav
in black thin solid line) eventually stabilised not far from the predicted value for the homeostatic
equilibrium in Eq. (4.8) (thin dashed line; the dotted line shows the corresponding value for un-
correlated inputs); the means for each half of the network are plotted (ν̄1 in thick dashed-dotted
line and ν̄2 in thick dashed line). (b) The input weights K individually diverged (grey bundle)
while the mean weight Kav (thin solid line) first converged towards and then stabilised close to
the homeostatic equilibrium value (thin dashed line; the thin dotted line stands for uncorrelated
inputs); see Eq. (4.6). The weights from the more correlated pool 2̂ (K̄12 in thick dashed line) be-
came potentiated compared to those from pool 1̂ (K̄11 in thick dashed-dotted line). (c) Emerged
structure in the weight matrix K. Darker pixels represent potentiated weights. Generally only
weights coming from the more correlated input pool became potentiated (input indices #101 to
#200, right side).
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M/2 elements are −1. The elements for index i of the column vectors Kê and Kĥ thus

are, for each neuron, the lumped sum of all input weights and the difference between the

weight sums coming from each of the two pools, respectively (cf. Sec. 4.3).

We assume weak correlation and that the condition in (4.5) is satisfied, ensuring

homeostatic equilibrium, that is, the stability of the mean input weights for all neurons.

When the inhomogeneities of J are neglected, we can approximate Kê ' nK
avK∗ave, where

nK
av is the mean number of input weights per neuron and K∗av is the equilibrium value of

the mean input weight; the N-column vector e is defined similarly to ê in Eq. (4.14). The

mean neuron firing rate νav is then also stable and its equilibrium value can be approxi-

mated by the expression in (4.9). Details are provided in Sec. 4.3.

When the network is in homeostatic equilibrium, Kĥ describes the specialisation of

each neuron to one of the two input pools: if the ith vector element grows positively

(negatively), then neuron i becomes sensitive to input pool 1̂ only (resp. 2̂). Since the

input pools have identical firing rates and correlation strengths, the evolution of Kĥ is

given by

K̇ĥ = FWĥ = M κ (1N − J)−1 Kĥ . (4.28)

The present case corresponds to the analysis in Sec. 4.3 with γ = γ′ = κ′ = 0 in

Eq. (4.19b); FW , as defined in Eq. (3.3) with Ψ = W, is expressed in (4.1b). The constant κ

is given by (4.18)

κ =
1
2

ĈW∗ε
kl (0) = [W ∗ ε](0)

ĉ0ν̂0

2
, (4.29)

where we have used Eqs. (3.5) and (3.28) with k and l in the same input pool, Ψ = W ∗ ε

and ĉ = ĉ0.

The fixed point K(∞)ĥ = 0 is unstable since κ > 0. This holds because [W ∗ ε](0) > 0

for any “Hebbian” choice of STDP window function W such that W(u) > 0 for u < 0, cf.

Fig. 2.2, which we assume throughout what follows. For initial conditions in which each

neuron is already specialised to a given input, STDP should reinforce the initial special-

isation. However, for homogeneous initial input weights (in other words the network is

unorganised), K(0)ĥ ' 0 and the state of the dynamical system lies at the unstable fixed
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point so that Kĥ will grow either positively or negatively until most input weights be-

come either saturated or quiescent. In this case, the drift for Kĥ is initially zero according

to Eq. (4.28) and it is not modified by the convergence towards the homeostatic equilib-

rium; higher-order terms may then come into play and influence the symmetry breaking.

If the neurons are not recurrently connected (in a purely feed-forward network), half

of them should specialise to one input pool and the other half to the other pool (Gütig

et al. 2003). In the remainder of this section, we examine the dynamics of such symme-

try breaking, focusing on the impact of the recurrent connections on the specialisation

pattern.

4.4.2 Impact of fixed recurrent connections

To evaluate the second moment of the stochastic evolution of the weights K, we proceed

in a similar manner to Kempter et al. (1999) and Burkitt et al. (2007) for the analysis of the

weight variance by evaluating Υi,k,j,k(t, t′) as defined in Eq. (3.25) for indices i, j and k = l.

In the remainder of this section, we assume that all the input delays are identically equal

to d̂, and likewise all the recurrent delays are equal to d. For each pair of input weights

Kjk and Kik from the same external input k to two neurons i and j, a connection from

neuron j to neuron i induces an extra contribution to the expectation value Υi,k,j,k(t, t′).

This contribution relates to the spike-triggering effect for each pair of spikes fired by

input k and neuron j, as shown in Appendix B.3, which results in a positively correlated

evolution of the weights Kjk and Kik for positive recurrent weights. In other words, these

two weights tend to vary in the same way, either potentiated or depressed. It follows

that the ith and jth elements of Kĥ tend to behave in the same way at the beginning of

learning, when the input weights split between the two pools. This means that neurons i

and j should have similar input specialisation patterns. A connection back from neuron i

to neuron j reinforces this phenomenon for each pair of spikes at input k and at neuron i.

The contribution is stronger when win is large and when wout and W̃ have the same sign;

see Eq. (B.16) in Appendix B.3.

For a randomly connected network with roughly nK
av = nK/N and nJ

av = nJ/N

pre-synaptic input and recurrent connections per neuron, respectively, the sum over the
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whole network of the terms related to the spike-triggering effect that impact upon all the

weight changes is
nKnK

avnJ
av

MN
Jav νav

(
wout + W̃ν̂av

)2
. (4.30)

Note that this expression would be multiplied by η2 if time had not been rescaled. The

positive correlation of the evolution of all the input weights Kik coming from all the inputs

k in a homogeneous pool is stronger for denser input and recurrent connectivity, i.e.,

larger values of nK
av and nJ

av. The expression in Eq. (4.30) is to be compared with the

increase of the variance (Kempter et al. 1999, Eqs. (30) and (31)) lumped for all the nK

input weights

nK
{
(win)2ν̂av + (wout)2νav + W̃2ν̂avνav + 2W̃ν̂avνav

[
win + wout + W̃ (ν̂av + νav)

] }
,

(4.31)

where W̃2 =
∫

[W(u)]2du. The difference in order of magnitude related to the connectiv-

ity between the expressions in Eqs. (4.30) and (4.31) is given by nK
avnJ

av/MN, a fraction

that is almost equal to one for full input and recurrent connectivity. This means that

spike-triggering effects may impact the weight dynamics in sufficiently dense networks.

As a result, neurons from a recurrently connected group tend to specialise together

to the same input pool, with probability 50% for each pool, as illustrated in Fig. 4.6(a-

b). This is in contrast to a network with no recurrent connections, in which each neu-

ron specialises individually and independently to one of the two pools, as illustrated in

Fig. 4.6(c-d).

A sufficiently large correlation strength ĉ0 is required to ensure that the diverging

behaviour of the input weights corresponds to a splitting between the two pools and

therefore input selectivity (Gütig et al. 2003). This finding can be qualitatively repro-

duced in a calculation similar to Appendix B.3 involving Kik and Kil for one neuron i and

two inputs k and l, see Appendix B.4.
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Figure 4.6: Symmetry breaking of the input weights for a group of N = 60 neurons and two
pools of M/2 = 30 inputs each. (a & b) Full recurrent connectivity versus (c & d) no recurrent
connections. The plots (a & c) show the traces of the elements of Kĥ for each neuron (grey thin
solid lines) and the mean over all the neurons of Kĥ (black thick dashed line). The grey dashed
line at zero corresponds to no specialisation. The matrix graphs (b & d) show the matrix K (neu-
ron indexed vertically; input horizontally with first pool on the left and second pool on the right)
at the end of learning; darker pixels stand for potentiated weights. For full recurrent connec-
tivity, almost all neurons (b: 60 vs. 0) specialised to the first input pool and the mean of the Kĥ
is clearly positive (a). In contrast, for no recurrent connections, the neurons specialised almost
evenly between the two input pools (d: 33 vs. 27) and the mean of the Kĥ is almost zero (c).
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Figure 4.7: Symmetry breaking of the input weights for two pools of M/2 = 100 correlated
inputs each, and a network made of two groups of N = 200 neurons each. Input weights are
initially random (±10% of the mean value 0.03), with partial connectivity (30%). The two groups
of neurons have stronger connectivity within each (30% with mean 0.015±10%) than between
them (10% with mean 0.008±10%). The plot line coding is similar to Fig. 4.6(a,c). The first group
of neurons (#1-100, weight mean in thick dashed line with only a representative portion plotted)
specialised to the first input pool while the second group (#101-200, mean in thick dashed-dotted
line) to the second input pool.

4.4.3 Non-homogeneous fixed recurrent connections

Partial connectivity with low density and/or small recurrent weights weakens the group

symmetry-breaking effect. This is illustrated in Fig. 4.7 for a network made of two groups

of neurons (cf. Fig. 4.2) with partial connectivity both for the plastic input (30%) and the

fixed recurrent connections (30% within-group and 10% between-group). The speciali-

sation is weaker than that for full connectivity, cf. Fig. 4.6(a). In addition, neuron group

1 (weight mean represented by the thick dashed trace) weakly specialised to input pool

1̂, while group 2 (thick dashed-dotted trace) specialised to pool 2̂. This relates to the

fact that the neuron groups have stronger feedback within themselves than between each

other and thus may evolve in an independent way. The behaviour illustrated in Fig. 4.7

is interesting in that it contrasts with the expected specialisation of the network, where

the two neuron groups select the same input pool because of positive coupling (recurrent

weights) between them; in general, specialisation to the same input pool is more likely to

occur than to different input pools.

For stronger fixed recurrent weights, the two neuron groups tend to specialise to the

same input pool, whereas for smaller recurrent weights they may specialise to different

input pools, as illustrated in Fig. 4.8. The y-axis indicates the degree of specialisation
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Figure 4.8: Illustration of the specialisation of two neuron groups as a function of the coupling
between them. Each plotted point represents the outcome of a simulation for one network config-
uration. The simulated network was similar to that of Fig. 4.7, except for the strength of coupling
between the two groups, that is, the recurrent weights between them that have a fixed mean
weight (x-axis in the plot) with partial connectivity (15%). The y-axis is a measure of the differ-
ence in the specialisation between the two neuron groups: high values indicate specialisation to
different input pools (the vector h is defined in the text).

to different input pools measured by the scalar value |hTKĥ|/NnK
avKav, where h is the

N-column vector defined similar to ĥ with N/2 elements equal to 1 and N/2 equal to

−1. The probability of selecting different input pools decreases when the between-group

coupling increases. The recurrent connections only have a higher-order impact on the

symmetry breaking of the input weights, which induces a (probabilistic) trend to jointly

specialise. For more complex network architectures, the coupling related to the recurrent

connections may lead to non-trivial competition between network areas.

4.4.4 Dependence upon neuron model, initial conditions and learning param-
eters

The results shown here correspond to W̃ < 0 and short recurrent delays (cf. Appendix D);

similar results were obtained with W̃ > 0 and/or larger recurrent delays (e.g. 10 ms).

Note that the presence of recurrent connections changes the equilibrium value of the

mean input weight K∗av, which has an impact on the weight saturation through the num-

ber of potentiated vs. quiescent weights.

From a population-statistics point of view, the input firing rates, spike-time correla-

tions and initial weights need not be exactly fine-tuned to ensure that symmetry breaking
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in one way or the other is equally probable over all neurons. In other words, when K(∞)ĥ

and K(0)ĥ are not strictly zero, the uncertainty due to the initial distribution of the input

and recurrent weights (when homogeneous) still leads to an equiprobable specialisation

to one of the two input pools. This situation occurs in particular for partial input con-

nectivity, where individual neurons may receive more connections from one input pool

than the other. We observed that spike-triggering effects were sufficiently strong to play a

role even for 30% random input connectivity and 10% spread of the initial input weights

around their mean (Fig. 4.7).

In addition to the input connectivity and the initial distribution of the input weights,

the stochastic nature of the Poisson neurons has an influence upon the weight dynam-

ics: the intrinsic randomness of the output favours equiprobability of specialisation to

each of the two input pools for any input spiking history. Similar results were obtained

using a deterministic version of the integrate-and-fire neuron model, which required the

addition an external source of background activity in place of the spontaneous rate ν0

of the Poisson neuron model. For this purpose, we have used an extra input pool of

uncorrelated Poisson spike trains with random and fixed input connectivity.

4.5 Partial conclusion on plastic input connections

In the case of learning input connections while the recurrent weights are kept fixed,

homeostatic stability of both the firing rates and weights can be obtained for a wide range

of learning parameters. The stability condition Eq. (4.5) was derived for weak input corre-

lations, but it proved to be sufficient beyond the limitation of weak correlation strengths.

Stability for additive STDP requires that the effect of a single pre-synaptic spike increases

the weight. In numerical simulations, we chose win > 0, wout < 0 and W̃ < 0, which

leads to homeostatic stability whatever the input firing rate. This is in agreement with

earlier numerical studies of integrate-and-fire neurons in feed-forward networks (Song

et al. 2000) and recurrent networks (Song and Abbott 2001).

While homeostatic equilibrium is satisfied, the individual weights exhibit a diverging
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behaviour, indicating strong competition between them. For two correlated input pools

with firing rates in the same range (but not necessarily identical), this generally results

in selecting the input connections coming from the more correlated pool (Sec. 4.3), as il-

lustrated in Fig. 4.9(a ⇒ b) for the case where only one input pool has correlations. Both

the convergence of the mean input weight and the specialisation (asymptotic bimodal

weight distribution) are exponentially fast, the latter occurring on a slower time scale for

weak input correlations. The value of the learning rate η was chosen to obtain a con-

vergence towards the homeostatic equilibrium in hundreds of seconds, similar to Burkitt

et al. (2007), and a development of a weight structure in tens of thousands of seconds (i.e.,

hours). Similar results were obtained with faster learning rates (η = 10−5). Our results

show that, even for small learning rates, the combination of equilibrium and diverging

behaviour leads to the emergence of a weight structure.

When starting with an initial homogeneous distribution of input weights, the pres-

ence of the fixed recurrent connections does not qualitatively change this robust special-

isation of the weights compared to a purely feed-forward architecture (Kempter et al.

1999). This behaviour is obtained whatever the shapes of the PSP kernel ε and the STDP

window function W provided STDP is “Hebbian” (cf. Sec. 2.3). Short durations of both

ε and the recurrent delays were required for the analysis but similar conclusions at the

mesoscopic network scale held when varying these parameters (Fig. 4.4). An exception to

this expected behaviour occurs for initial conditions in which the weights are already dra-

matically specialised in the “wrong” way or large difference between input firing rates

(under certain conditions on the learning parameters); then STDP does not always select

the more correlated input pathway, as shown in Fig. 4.3(b) and Fig. 4.4(b).

In the particular case of input pools with balanced firing rates and within-pool cor-

relations, the competition induced by STDP results in symmetry breaking for a homoge-

neous initial distribution of the input weights (Gütig et al. 2003). For two input pools

with balanced within-pool correlation but no between-pool correlation, sufficiently cor-

related inputs (but in the range of small correlations) are necessary in order to obtain an

asymptotic bimodal distribution of the input weights that corresponds to a splitting be-
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tween the two pools. This holds for a broad range of STDP parameters, provided they

correspond to a stabilisation of the firing rates. The influence of non-identical but similar

input firing rates and spike-time correlations has yet to be studied in more depth. This

robust specialisation occurs whatever the detail of the shape of the STDP learning win-

dow function W (provided it is “Hebbian”, cf. Sec. 2.3), PSP kernel ε and homogeneous

input delays.

During symmetry breaking, the non-learning connections can play a determining

role, for example, in causing neurons with fixed excitatory recurrent connections to spe-

cialise in the same way, as illustrated in Fig. 4.9(c ⇒ d). This group effect takes place

at the beginning of learning; when the neurons become sufficiently specialised, the drift

takes over and reinforces the initial symmetry breaking because of the instability of the

fixed point related to the differential equation Eq. (4.28). Inhomogeneous fixed recur-

rent connectivity can cause neuron groups in the network to specialise to different input

pathways, as shown in Fig. 4.9(e ⇒ f). STDP thus provides a framework for cortical

self-organisation in the textbook case where learning takes place on the excitatory con-

nections from some external inputs whereas the remaining connections are considered

fixed. Our results can be linked, for example, to the emergence of ocular-dominance ar-

eas in the primary visual cortex, when specialising to one ocular pathway (left or right

eye) in the first weeks of life of new-born mammals. The two assumptions of stronger

local excitatory connections than those at a longer range and of more correlation for spike

trains within each ocular pathway than between the two pathways, are sufficient to qual-

itatively obtain the emergence of specialised recurrently connected areas sensitive to the

inputs from only one eye. Other versions of STDP are expected to generate similar group

specialisation so long as they generate both a homeostatic equilibrium and a splitting

of the weight distribution depending upon the input correlations. Higher-order effects

due to the recurrent connections may combine with non-linearities in other STDP models

(Gütig et al. 2003,Burkitt et al. 2004,Appleby and Elliott 2006) or specific input structures

(e.g., Leibold et al 2002) to introduce further complexity in the weight dynamics.
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Figure 4.9: Schematic representation of the input weight distribution (a, c & e) before and (b, d
& f) after learning. The neuron groups (top circles) in the network become sensitive to only one
of the two correlated input pools (bottom circles) through the potentiation of some input weights
(very thick arrow) at the expense of the other input weights that are depressed (dashed thick
arrow).





Chapter 5

Plastic recurrent connections

This chapter investigates the weight dynamics in a network with plastic recurrent connections

stimulated by fixed external inputs (in particular, fixed input weights).

5.1 Introduction

IN THIS chapter, a network where additive STDP only affects the recurrent connec-

tions with fixed input weights is considered, which is the converse situation of that

studied in the previous chapter. The focus in on several specific cases illustrated in

Fig. 5.1: (a) no external inputs, (b) unbalanced input pools (one has correlations while

the other does not) and (c) two correlated input pools.

Previous theoretical studies have primarily investigated the weight dynamics induced

by STDP for single neurons and the implications for feed-forward networks (Gerstner

et al. 1996, Kempter et al. 1999, Gütig et al. 2003, Burkitt et al. 2004, Meffin et al. 2006).

The cortex, however, is dominated by recurrent connections and the effect of STDP has

only begun to be addressed in such recurrent networks, mainly using numerical sim-

ulation (Song and Abbott 2001, Morrison et al. 2007, Câteau et al. 2008, Lubenov and

Siapas 2008). In contrast to a feed-forward architecture, the weight dynamics induced

by spike-timing-dependent plasticity (STDP) in a recurrent neuronal network is not yet

well understood. We investigate how the weight structure develops within the network

when stimulated by input pools with homogeneous firing rates and within-pool (but no

between-pool) spike-time correlations, an idea inspired by Kempter et al. (1999).

In Sec. 5.5, the study is constrained to the case of two input pools when the input

weights are kept fixed (cf. Fig. 5.1). We formulate stability conditions for the mean fir-

71
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a b c

Figure 5.1: Network configurations studied in chapter 5. Top circles represent the neuronal
network and bottom circles the two input pools, for which filled circles indicate non-zero within-
pool correlation. Thick (resp. thin) arrows indicate plastic (fixed) weights.

ing rate and weight (homeostatic equilibrium defined in Sec. 3.6), and study the asymp-

totic weight distribution through a fixed-point analysis. The evolution of the recurrent

weights is decomposed in order to understand how stability and specialisation can occur

together.

5.2 Equilibrium in a partially connected recurrent network with
no external inputs

In the case of no external inputs, the dynamical system (3.22a-3.22e) reduces to

ν =
(
1N − J

)−1
ν0 e , (5.1a)

J̇ = ΦJ
(
win e νT + wout ν eT + W̃ ν νT)

. (5.1b)

Time has been rescaled to remove η. The study of the weight dynamics induced by STDP

for a network with no external inputs was demonstrated for the case of full recurrent con-

nectivity (Burkitt et al. 2007), which described the fixed points of the firing rates and of

the recurrent weights, their stability, and the evolution of the weight variance. In partic-

ular, Burkitt et al. (2007) derived the stability conditions for the homeostatic equilibrium,

namely the situation where the mean firing rates and mean weights stabilize although

individual firing rates and weights may continue to change, and the same analysis can
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be applied to the present case of partial connectivity. The stability for the mean firing rate

and the mean weight over all neurons is ensured provided

win + wout > 0 and W̃ < 0 . (5.2)

Here we study the equilibria of the dynamical system Eqs. (5.1a-5.1b) in terms of in-

dividual firing rates and mean weights (taking into account the network topology) and

the corresponding stability conditions. The present analysis of the weight drift is similar

to that of Burkitt et al. (2007), but here the projector ΦJ in Eq. (5.1b) is non-trivial and

nullifies not only the diagonal elements, but also other elements according to the partial

connectivity of the network. The matrix J belongs to the vector subspace of RN×N de-

fined by MJ := {X ∈ RN×N , ΦJ(X) = X}, whose dimension is the number of existing

connections nJ .

5.2.1 Fixed point of the firing rates

We first find the equilibrium states of the network dynamics in terms of the firing rates.

Setting J̇ = 0 in Eq. (5.1b) leads to the following condition on the firing rates for all

existing connections j → i:

winνj + woutνi + W̃νjνi = 0 , (5.3)

that is,

νi = q(νj) := − winνj

wout + W̃νj
. (5.4)

For any loop of synaptic connections from a given neuron i0 back to itself through

neurons i1, i2, . . . , in−1, we have

νim+1 = q(νim) for m = 0, . . . , n− 1 , (5.5)

and thus νi0 = q{n}(νi0) where q{n} is the self-composition of q defined in Eq. (5.4) iterated

n times. In other words, νi0 is a fixed point of q{n} whenever there exists a loop of length
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n in which neuron i0 takes part. Similarly for all the νim of the loop. Due to the special

form of q, the function x 7→ q{n}(x) has only two fixed points, namely those of q (see

Appendix C.2.1). This means that at the equilibrium of the learning weight dynamics,

any neuron i with non-zero firing rate νi within a loop of arbitrary length must satisfy

νi = µ := −win + wout

W̃
. (5.6)

We discard silent neurons at the equilibrium since the consistency equation for the firing

rates Eq. (5.1a) would then imply infinitely large weights.

Consequently, the firing rates at the steady state are homogeneous provided the net-

work connectivity is such that each neuron is part of a loop. This assumption holds

when the network has sufficiently many connections (this can be related to the existence

of Hamiltonian cycles in the corresponding graph). The existence of loops for every neu-

ron is a reasonable assumption for recurrently connected networks that will be made

throughout this section.

5.2.2 Fixed points of the weights

A fixed point of the network dynamics denoted by (ν∗ = µe, J∗) must satisfy the follow-

ing condition on the weight matrix J∗ according to Eq. (5.1a)

J∗ e =
µ− ν0

µ
e . (5.7)

Similar to the case of full connectivity (Burkitt et al. 2007), this equation characterizes

an affine space of dimension nJ − N (recall that nJ is the number of connections). For

example, a fully connected network without self-connections corresponds to nJ = N(N−
1). A redistribution of the strengths of the incoming weights for each neuron, while

keeping the sum of these weights constant at (µ − ν0)/µ, gives all the solutions J∗. In

other words, the sum of the elements for each row of any J∗ is equal to that constant.

In general, the dimension of the affine hyperplane of the J∗ is non-zero and there is a

continuum of fixed points, except for the case where a single loop links all the neurons
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together (or several disjoint loops). In a single loop there is only one incoming weight

per neuron, which must be equal to (µ − ν0)/µ at the equilibrium; in other words, no

redistribution is possible.

Recall that the matrix 1N − J∗ must be invertible (cf. Appendix C.1); this condition

can be enforced by placing bounds on the weights, which is the case in the numerical

simulations. The weight matrix can then move on a manifold of fixed points denoted

by M∗, where the drift of the weights arising from the learning equation is zero and

the weight evolution is only due to higher orders of the stochastic process (cf. Sec. 3.6),

similar to the case of full connectivity (Burkitt et al. 2007).

5.2.3 Stability analysis

We derive from the learning equation Eq. (5.1b) the following linear operator that de-

scribes the evolution at the first order of the variation of the weight matrix ∆J := J − J∗

around a given fixed point J∗ (Burkitt et al. 2007, Sec. 5)

∆̇J ' L(∆J) (5.8)

:= −µ ΦJ

[
win (1N − J∗)−1 ∆J e eT + wout e eT ∆JT (1N − J∗)−1 T

]
.

The matrices X such that Xe = 0 form a linear subspace of MJ of dimension nJ − N; for

∆J in this subspace, Eq. (5.8) clearly gives ∆̇J = 0. This corresponds to a displacement

along the fixed-point manifold M∗ where the learning equation does not provide any

constraint to the leading order, i.e., the drift term of the stochastic weight evolution is

zero (Burkitt et al. 2007).

The eigenmatrices related to the linear operator defined in the rhs of Eq. (5.8) de-

pend on the detail of the connectivity topology in a non-trivial way, as described in Ap-

pendix C.2.2. In addition to nJ − N eigenvalues equal to zero for the matrices X ∈ MJ

such that Xe = 0, the spectrum of the linear operator L also contains all the eigenvalues
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of the following matrix Lr, as discussed in Appendix C.2.3,

Lr = winLin + woutLout , (5.9)

Lin := −µ R
(
1N − J∗

)−1 ,

Lout := −µ ΦJ
[
e eT] (

1N − J∗
)−1 ,

where R is the diagonal matrix whose ith element is the number of incoming connections

for neuron i, namely

R = diag
[
ΦJ

(
e eT)

e
]

. (5.10)

In the case of homogeneous recurrent connectivity, the spectrum of Lr for |win| À
|wout| is almost the same as that of Lin, which lies in the left half-plane as illustrated in

Fig. 5.2(a). It follows that the condition win À |wout| ensures eigenvalues with large neg-

ative real parts for L, as illustrated in Fig. 5.2(c) and Fig. 5.2(e). On the other hand, if

|wout| À |win|, the eigenvalues of L are almost those of Lout. Because of the large number

of almost-zero eigenvalues in the spectrum of Lout as shown in Fig. 5.2(b), the eigenval-

ues of L are then more clustered around zero, and the sign of their real parts may vary

according to win. For wout À win > 0, the spectrum of L has eigenvalues with negative

real parts (Fig. 5.2(d)). However, for wout À −win > 0, the spectrum of L has eigenvalues

with positive real parts (Fig. 5.2(f)). These conclusions on stability are independent of the

fixed point J∗ used to define L in Eq. (5.8), which means that the fixed-point manifold

M∗ is actually either attractive or repulsive as a whole, i.e., either all fixed points are

attractive or none of them is attractive.

It follows that in the case of random connectivity, where each neuron has the same

number of incoming connections, the condition

win À |wout| (5.11)

is sufficient to ensure stability. On the other hand, the condition wout À |win| leads

to weaker stability or even instability when win < 0. For inhomogeneous connectivity
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Figure 5.2: Illustration of spectra for the linear operator L. The scale is the same for the five plots
and the axes are the grey solid lines. (a & b) Spectrum of the matrices Lin (each eigenvalue is a
plus) and Lout (circle) defined in Eq. (5.9), for a network of N = 100 neurons with homogeneous
partial connectivity (30%) and a randomly generated fixed point J∗. These two matrices were
rescaled by win + wout. Spectrum of L for: (c) win = 4 and wout = 1 with squares; (d) win = 1 and
wout = 4 with triangles; (e) win = 4 and wout = −1 with crosses; (f) win = −1 and wout = 4 with
stars. The cases (c) and (e) show a spectrum similar to that of Lin in (a), where the eigenvalues
have larger negative real parts than in case (d), whose spectrum is more similar to that of Lout in
(b). The case (f) shows many eigenvalues with positive real parts.

topology, we also expect win À |wout| to ensure stability. The condition Eq. (5.11) on the

rate-based learning parameters is slightly stronger than that derived in the case of full

connectivity (Burkitt et al. 2007). In order to ensure that the firing-rate equilibrium is

realisable, i.e., µ ≥ ν0 > 0 in Eq. (5.6), the condition Eq. (5.11) implies that W̃ < 0, similar

to the analysis by Burkitt et al. (2007). Last, the denser the recurrent connections are, the

more attractive M∗ is, when the stability conditions on win and wout are satisfied (details

are provided in Appendix C.2.4).

5.3 Diffusion of the recurrent weights

We now look in more detail at the evolution of the individual weights, when the stabil-

ity conditions for the fixed-point manifold determined in Sec. 5.2, namely Eq. (5.11) and

W̃ < 0, are met. Similar to the case of full connectivity (Burkitt et al. 2007), the recurrent

weights individually diverge due to the autocorrelation of the Poisson neurons, which

are stochastic point-processes. In this section, we show that this weight dispersion is af-

fected by the connectivity density. Then we investigate some properties of the asymptotic
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weight distribution.

5.3.1 Dispersion of the individual weights

To study the impact of recurrent connectivity upon the evolution of the recurrent weights,

we use calculations involving the higher stochastic orders of the weight dynamics similar

to those in Sec. 4.4. The connectivity density affects the weight dispersion, which stems

from spike-triggering effects induced by the recurrent connections. This can be studied

through the coefficients

Γi,j,i′,j(t, t′) :=

〈
dJv

ij (t)

dt

dJv
i′ j(t′)
dt

〉
, (5.12)

which are related to the second moment of the weight dynamics, as explained in Sec. 3.4.3.

The derivative dJv
ij (t)/dt of the weight Jij corresponds to one trajectory v of the stochas-

tic process (one realisation of the network spiking history), and it consists of weight

jumps for each spike and pair of spikes; see Appendix C.3 for details. Over a homoge-

neously connected network with nJ recurrent connections, the sum of the contributions

to ∑ Γi,j,i′,j(t, t′) of these spike-triggering effects is

(nJ
av)

3 Jav µ win (
win + wout) , (5.13)

where nJ
av = nJ/N is the mean number of incoming recurrent connections per neuron.

Details are given in Appendix C.3, Eq. (C.20); note that η2 would be present if we had

not rescaled time. Under the stability conditions win À |wout| and W̃ < 0 (cf. Sec. 5.2.3),

this sum is positive, which means limiting the increase of the weight variance; this effect

is stronger when win is large and W̃ is small.

The expression Eq. (5.13) is to be compared with the terms due to the first-order au-

tocorrelation of the neurons. These first-order terms are independent of the connectivity

and cause the variance of the recurrent weights J to increase, hence the divergence of in-

dividual weights. For a homogeneously connected network, the sum of these terms over



5.3 Diffusion of the recurrent weights 79

a

0  1800
0

0.01

0.02

0.03

0.04

0.05

time (s)

w
e
ig

h
ts

J

b

0  1800
0

0.01

0.02

0.03

0.04

0.05

time (s)

w
e
ig

h
ts

J

Figure 5.3: Comparison of the evolution of the weight variance between two networks of N = 50
neurons each, with (a) full connectivity and (b) 30% partial random connectivity. The weights
were initialized to 0.01 (± 10%) for both networks. The individual weights (grey bundles) of the
fully connected network (a) tended to remain more clustered, whereas those of the partially con-
nected network (b) became more dispersed over time; note that the equilibrium values for the
mean weight in the two cases are different because of the connectivity density. After an initial pe-
riod of linear growth at the predicted rate given in Eq. (5.14) (dashed line), the non-linear increase
of the variance (thick solid lines - multiplied by a factor 1000 here) of the fully connected network
(a) is slower than that for the partially connected network (b). No weight saturated or became
quiescent during this simulation.

all connections is given by (Burkitt et al. 2007, Eq. (45))

nJ
{

µ
[
(win)2 + (wout)2] + µ2W̃2

}
. (5.14)

The ratio of the expressions in Eqs. (5.13) and (5.14), is given by

(nJ
av)3 Javwin (

win + wout)

nJ
{[

(win)2 + (wout)2
]
+ µ2W̃2

} ∼ nJ

N2 nJ
av Jav . (5.15)

This ratio ignores the details of the STDP parameters to focus on the connectivity den-

sity. We consider nJ
av Jav = (µ− ν0)/µ < 1 to be of order one. The denser the recurrent

connections, the closer to one the ratio is. In the case of full connectivity, the ratio is ap-

proximately nJ
av Jav. This indicates that the weight variance increases more slowly for a

network with full connectivity (Fig. 5.3(a)) than with partial connectivity (Fig. 5.3(b)).
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5.3.2 Asymptotic pattern of recurrent weights

After a sufficiently long learning epoch, the recurrent weights J have evolved to either

saturation or quiescence due to their increasing variance, while J remains on the fixed-

point manifold M∗ (Burkitt et al. 2007). The matrix of the weights J exhibits a constant

number of saturated weights on each row, when J remains in the attractive manifold

M∗, because the sum of incoming weights is then constant for each neuron as discussed

in Sec. 5.2.2. However, the number of potentiated weights on each column, i.e., the sum

of the outgoing weights for each neuron, may vary depending on the initial conditions,

as shown in Appendix C.4 and illustrated in Fig. 5.4. The emerged weight structure in

the recurrent network is thus strongly affected by the initial weight distribution. In other

words, this asymptotic structure is not learned by the network in the sense of being con-

strained by STDP.

In the absence of external inputs, there is no weight structure to learn per se, but a

structure may still emerge in addition to that remaining from the initial weight distri-

bution, as described previously. For example, starting with full connectivity (except for

self-connections), STDP tends to break the synaptic loops of length two between two neu-

rons i and j, i.e., from a neuron to another one and then back to itself j → i → j. This

can be explained by the second stochastic moment for two recurrent weights Jij and Jji

in a similar manner to the calculation for the weight dispersion in Sec. 5.3.1. This second

moment is related to Γi,j,j,i(t, t′), cf. Eq. (5.12), and its evaluation during the homeostatic

equilibrium leads to a negative expression,

−2µ
[
(win)2 + (wout)2 + winwout] < 0 , (5.16)

whatever the values for the STDP parameters, as explained in Appendix C.3.3. This

means that STDP causes the weights Jij and Jji to diverge from each other due to the neu-

ron autocorrelation effects in the network. Consequently, when the equilibrium value for

the mean weight and the bounds are set such that half of the weights become saturated

and half quiescent, the weight matrix J tends to become antisymmetric as illustrated in
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Figure 5.4: Evolution of the distributions of incoming and outgoing weights for N = 100 neu-
rons. The connectivity was random with 30% probability and the initial weights were respectively
set with a spread of ± 10% around the following values: 0.1 from group 1 to 1; 0.5 from 1 to 2 and
from 2 to 1; 0.25 from 2 to 2. (a) The individual weights (grey lines, with only a representative
portion plotted) diverged to the bounds. The means of the incoming weights for group 1 and 2
(dotted lines, almost undistinguishable from each other) quickly converged to the same predicted
equilibrium value. The measns of the outgoing weights for groups 1 and 2 (dotted-dashed lines)
stabilized to different values for a slightly longer period. (b) The sums for each neuron of the in-
coming weights (black traces) converged towards the predicted equilibrium value and remained
clustered together whereas the sums of outgoing weights (grey traces) individually stabilized at
different values eventually. (c) Matrix of J after 50000 s of learning. Darker elements indicate
potentiated weights. The left side corresponding to weights coming from group 1 had more po-
tentiated weights than the right side (weights from 2) at the end of the simulation, similar to the
initial conditions.
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Figure 5.5: Illustrative results of numerical simulations with N = 30 neurons. Dark pixels in-
dicate potentiated weights. The spontaneous rate ν0 has been set to 22 Hz in order to obtain a
equilibrium Jav = 0.0177 roughly equal to half of the weight bound Θ = 0.3 such that the asymp-
totic matrix J has almost as many saturated as quiescent weights. (a) Antisymmetric pattern
observed in the asymptotic matrix J when starting from initial full connectivity. For each pair of
weights Jij and Jji, STDP almost always depressed one while potentiating the other, resulting in
the breaking of most synaptic loops of length two in the network except for (b) 37 pairs of indices
(i, j) and (j, i) (dark pixels). This corresponds to 4.25% of the total number of initial loops, which
is to be compared with the expectation value of discrepancies Jav/Θ − 0.5 = 9%. The actual
weight distribution is closer to an antisymmetric matrix than the theoretical prediction.

Fig. 5.5.

Other subtle constraints may be imposed on the recurrent weights by STDP, depend-

ing upon the specific connectivity topology and/or the distribution of delays. However,

these are not the primary aim of this study and will not be pursued further here.

5.4 General case of learning on the recurrent weights with fixed
input weights

In the remainder of this chapter, we consider that the network is stimulated by external

input pools with fixed input connections. We analyze the general solution of Eqs. (3.22a-
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3.22e), which for non-learning input weights K reduces to

ν = (1N − J)−1 ν̃ , (5.17a)

J̇ = ΦJ

[
wineνT + woutνeT + W̃ννT + (1N − J)−1 C̃ (1N − J)−1 T

]
, (5.17b)

where we have rescaled time to remove η, and the following vector and matrix absorb

the input parameters

ν̃ := ν0 e + K ν̂, (5.18)

C̃ := KĈW∗ζKT .

We show how STDP applied on the recurrent connections can induce both

• stable firing rates and thus stable mean incoming weights for each neuron;

• a specialisation of the recurrent weights through splitting of the outgoing weight

distribution for each neuron.

5.4.1 Homeostatic equilibrium

We first examine the case of homeostatic equilibrium in the network, namely the situa-

tion when the means of the firing rates and of the weights over the whole network have

reached an equilibrium. The mean value for a variable averaged over inputs, neurons or

connections will be denoted using the subscript ‘av’. The following differential equation

for Jav is derived from Eq. (5.17b)

J̇av =
(
win + wout) νav +

(
W̃ +

C̃av

ν̃2
av

)
ν2

av , (5.19)

where we have used the following equality that comes from the averaging of Eq. (5.17a),

(
1− nJ

av Jav

)−1
=

νav

ν̃av
, (5.20)

nJ
av := nJ/N being the average number of presynaptic recurrent connections per neuron.

This equation has the same form as that in the case with no external inputs in (5.1a-



84 Plastic recurrent connections

5.1b) and can be analyzed in a similar manner, the change lying in replacement of W̃ by

W̃ + C̃av/ν̃2
av. The fixed point (ν∗av, J∗av) is

ν∗av = − win + wout

W̃ + C̃av/ν̃2
av

, (5.21)

J∗av =
ν∗av − ν̃av

nJ
avν∗av

.

Provided the homeostatic equilibrium is realisable, i.e., the mean firing rates and weights

have positive equilibrium values, it is stable if and only if

W̃ +
C̃av

ν̃2
av

< 0 . (5.22)

For weak correlation, this condition reduces to W̃ < 0. In order to ensure that the equi-

librium mean firing rate is positive (ν∗av > 0), we require in addition that win + wout > 0.

These two conditions are the same as for the case of no external inputs (Burkitt et al.

2007). Note that the weight equilibrium is realisable only if ν∗av > ν̃av (where ν̃av '
ν0 + nK

av Kav ν̂av), which requires win + wout to be sufficiently large.

5.4.2 Learning the input correlation structure

We now show that the stabilisation corresponding to the homeostatic equilibrium actu-

ally holds for all the individual neurons. In addition, STDP can also cause the weights to

diverge according to the input correlation structure, thus implementing a robust special-

isation in a similar way to the case of learning on the input connections (Chapter 4).

We decompose C̃ into two components, one proportional to ν̃ν̃T and its complement

C̃ = C̃‖ + C̃⊥ , (5.23)

C̃‖ := c‖ ν̃ν̃T with c‖ :=
ν̃TC̃ν̃

(ν̃Tν̃)2 ,

ν̃TC̃⊥ν̃ = 0 ,

where ν̃ is defined in Eq. (5.18). Recall that the matrix J belongs to the vector subspace of

RN×N defined by MJ := {X ∈ RN×N , ΦJ(X) = X}, whose dimension is the number of
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existing connections nJ .

5.4.3 Sufficient condition for existence of fixed points

We first analyze the special case where C̃⊥ = 0. Here, Eqs. (5.17a-5.17b) reduce to the

same form as that obtained in the case of no external inputs (5.1a-5.1b), where ν0e and W̃

are replaced by ν̃ and W̃ ′, respectively, with

W̃ ′ := W̃ + c‖ . (5.24)

In particular, the fixed points (ν∗, J∗) of the dynamics correspond to homogeneous neu-

ron firing rates

ν∗ = µ′e , (5.25a)

(1N − J∗) ν∗ = ν̃ , (5.25b)

where

µ′ := −win + wout

W̃ ′ . (5.26)

For weak input correlations, µ′ can be approximated by the equilibrium value µ for un-

correlated inputs

µ′ ' µ := −win + wout

W̃
, (5.27)

which means that the firing rates are in this case close to the equilibrium value corre-

sponding to uncorrelated inputs. This characterizes all the fixed points provided each

neuron in the network is part of a loop of synaptic connections (Sec. 5.2).

The manifold of all fixed points J∗ denoted by M∗ is contained in an affine subspace

of MJ of dimension nJ − N, where nJ is the number of recurrent connections, according

to Eq. (5.25b). Note that the matrix 1N − J∗ must be invertible to be a valid fixed point

as discussed previously in Sec. 3.4.2. When the fixed-point manifold M∗ is attractive,

STDP causes J to converge towards M∗, where it evolves due to higher orders of the

stochastic process, the drift J̇ (cf. Sec. 3.6) being zero on M∗. For homogeneous recurrent
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connections, sufficient conditions such that M∗ is attractive are

win À |wout| and W̃ < 0 ; (5.28)

refer to Sec. 5.2 for more details of the analysis and on higher stochastic orders than the

drift, such as the resulting weight dispersion.

The condition C̃⊥ = 0 occurs in two particular situations: for uncorrelated inputs

where C̃ = 0; and in the case of homogeneous input connections since we have then

ν̃ ∝ e and C̃ ∝ eeT. In the first case, the recurrent weights J can compensate for inhomo-

geneous input firing rates ν̂, causing the neuron firing rates ν to become homogeneous:

the incoming recurrent weights of the less stimulated neurons become potentiated and

those of the more stimulated neurons become depressed. In both cases, however, the

asymptotic distribution of the outgoing recurrent weights is not constrained by STDP and

strongly depends on the initial conditions, analogous to what happens in the case of no

external inputs.

5.4.4 Weight dynamics for arbitrary matrix C̃⊥

The analysis above indicates that a non-zero input correlation structure and inhomoge-

neous input weights are required so that the recurrent network organizes in a way that

represents the input structure, i.e., at least differently from the weight dynamics for the

case of no external inputs. In other words, the interesting case in terms of weight special-

isation corresponds to the absence of a fixed point for the dynamical system.

When C̃⊥ 6= 0, the equation J̇ = 0 in Eq. (5.17b) may have no solution, but the

evolution of the recurrent weights J can still be related to the manifold M∗. Equation

Eq. (5.17b) can be rewritten

J̇ = ΦJ

[
− wouteGT − winGeT + W̃ ′GGT + (1N − J)−1 C̃⊥ (1N − J)−1 T

]
, (5.29)

where the vector G := ν− µ′e evaluates for each neuron the difference between its fir-
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ing rate and the common equilibrium value. For weakly correlated inputs, C̃⊥ is small

and, since (1N − J)−1 is kept invertible with bounded norm, the last term in Eq. (5.29)

can be considered to be a small perturbation on the evolution of G. When the conditions

Eq. (5.28) such that the manifold M∗ is attractive are met, there exist initial conditions

on the recurrent weights such that G will converge towards zero and remain in a neigh-

borhood of zero for bounded perturbations C̃⊥. This means that individual neuron firing

rates are then all quasi-stable and close to the equilibrium value µ′ ' µ, and that J con-

verges towards the vicinity of M∗, provided the input correlations are sufficiently small.

A rigorous analysis would consider the domain of attraction for G, namely the set of ini-

tial recurrent weights for which J(t) will be driven towardsM∗. We assume that this do-

main is sufficiently large based on our study of the homeostatic equilibrium in Sec. 5.4.1,

which suggests that homogeneous initial recurrent weights will converge towards M∗.

While remaining in the neighborhood of M∗, C̃⊥ 6= 0 may cause ongoing structural

evolution of the weights J when it becomes the leading order while the sum of the terms

involving G in Eq. (5.29) converge to a quasi-equilibrium around zero. However, the

analysis is difficult in the general case and we will only consider a simple but biologically

relevant special case.

5.5 Network with two distinct input pathways

We now consider a network with two homogeneous input pools that each excite half of

the recurrently connected neurons, as illustrated in Fig. 5.6. The input pools have ho-

mogeneous characteristics (viz., firing rates and correlations) within each of them and

no correlation between them; the neuron groups also have homogeneous characteristics.

The connectivity is homogeneous from pools to groups and between groups. This net-

work topology can be obtained after symmetry breaking by applying STDP on the input

connections with balanced correlation strength between the two input pools, similar to

the analysis in Sec. 4.4 (Gütig et al. 2003). We show in this section how the recurrent

weights can then organize in an unsupervised way according to the input correlation

structure, leading to the emergence of functional organisation.
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Figure 5.6: The recurrently connected neurons are divided into two groups (top circles), each
being stimulated by one pool of external inputs (bottom circles). The pools and groups have
homogeneous characteristics within each. The overline and the subscripts ‘1’ and ‘2’ correspond
to the mean variables (ν̂, ν, K, J, . . . ) over each pool of external inputs, group of neurons, etc.

Similar to the case of learning input weights K with fixed recurrent weights J analysed

in Chapter 4, symmetries in the network allow us to reduce the dimensionality of the

vector space MJ where the matrix J evolves, in order to study the drift of J. For example,

we define the variable J̄12 as the sum of the incoming weights coming from group 2

averaged over the neurons of group 1, which gives, for full recurrent connectivity,

J̄12 ' 2
N ∑

1≤i≤N/2
∑

N/2+1≤j≤N
Jij . (5.30)

Likewise, ν̄1 is the mean firing rate of group 1. The variables in the reduced space cor-

respond to equivalence classes defined modulo redistributions of incoming weights that

do not modify the drift J̇: in other words, two weight matrixes J and J′ are in the same

class J̄ if they induce the same drift J̇ = J̇′ expressed in Eq. (5.17b). For the topology

described in Fig. 5.6, these variables are

K̄ =


 K̄11 0

0 K̄22


 , (5.31)

C̃ = [W ∗ ζ](0)


 K̄2

11ĉ1 ¯̂ν1 0

0 K̄2
22ĉ2 ¯̂ν2


 ,

J̄ =


 J̄11 J̄12

J̄21 J̄22


 ,
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ν̄ =


 ν̄1

ν̄2


 .

The expression for C̃ with the correlation strengths ĉ1 and ĉ2 come from Eq. (3.29).

The inverse of 12 − J̄ is

(12 − J̄)−1 =
1

Θ J̄


 1− J̄22 J̄12

J̄21 1− J̄11


 , (5.32)

where Θ J̄ is the determinant of 12 − J̄

Θ J̄ := (1− J̄11) (1− J̄22)− J̄12 J̄21 . (5.33)

Substituting Eq. (5.32) in Eq. (5.17a), we obtain


 ν̄1

ν̄2


 =

1
Θ J̄


 (1− J̄22) ¯̃ν1 + J̄12 ¯̃ν2

J̄21 ¯̃ν1 + (1− J̄11) ¯̃ν2


 . (5.34)

The learning equation Eq. (5.17b) becomes

˙̄J = win


 ν̄1 ν̄2

ν̄1 ν̄2


 + wout


 ν̄1 ν̄1

ν̄2 ν̄2


 + W̃


 ν̄2

1 ν̄1ν̄2

ν̄1ν̄2 ν̄2
2


 + Ω, (5.35)

Ω :=
[W ∗ ζ](0)

Θ2
J̄


 1− J̄22 J̄12

J̄21 1− J̄11





 K̄2

11ĉ1 ¯̂ν1 0

0 K̄2
22ĉ2 ¯̂ν2





 1− J̄22 J̄21

J̄12 1− J̄11


 .

Since the weights J are all positive and the spectrum of the matrix J is in the unit circle,

as explained in Appendix C.1 (Burkitt et al. 2007), we have 0 ≤ ∑j J̄ij < 1 for all i.

When the correlations strengths ĉ1 and ĉ2 are non-zero, the expression for C̃ in Eq. (5.31)

generally corresponds to C̃⊥ 6= 0; hence the equation ˙̄J = 0 has no solution except for spe-

cific choices of learning parameters. In the remainder of this section, we assume that the

stability conditions in Eq. (5.28) are met and the correlation strengths ĉ1 and ĉ2 are small.

As explained in Sec. 5.4.4, Eq. (5.35) causes the firing rates ν̄1 and ν̄2 to stabilize over time
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Figure 5.7: Evolution of the neuron firing rates. The network consisted of N = 60 neurons such
that each half (#1-30 and #31-60) was stimulated by just one pool of 30 inputs, as illustrated by
Fig. 5.6. The input firing rates were ν̂1 = 35 Hz and ν̂2 = 30 Hz; only input pool 1̂ had correlation
(ĉ1 = 0.1). After a transient from quiescence at time t = 0 up to 55 Hz, the individual firing
rates (grey bundle) quickly converged towards the predicted equilibrium value µ′ (calculated
using Eq. (5.21), black thin dashed line), close to the value µ corresponding to uncorrelated inputs
(black thin dotted line), and then remained quasi-homogeneous in the neighborhood of µ′. The
thick dashed line (bottom) represents the mean firing rate for group 1 and the dashed-dotted line
(top) the mean for group 2.

close to µ′ ' µ, as illustrated in Fig. 5.7; the weight matrix J thus remains in the neighbor-

hood ofM∗. This implies in particular that J̄11ν̄1 + J̄12ν̄2 = ν̄1 ' const., and consequently

J̄11 and J̄12 will evolve in opposite directions. Likewise, J̄21ν̄1 + J̄22ν̄2 = ν̄2 = const. and

J̄21 and J̄22 will diverge from each other. These two diverging behaviours are determined

by the matrix C̃⊥ when it is non-zero, which induces a specialisation of the recurrent

connections. In the following, we analyze Ω directly in order to study the specialisation

scheme, instead of C̃‖ and C̃⊥ separately.

5.5.1 One input pool with spike-time correlation and one uncorrelated pool

We first consider the case where only one pool has homogeneous non-zero spike-time

correlation (ĉ1 > 0) while the other has none (ĉ2 = 0). The term of the learning equation

Eq. (5.35) related to C̃ is

Ω =
[W ∗ ζ](0)K̄2

11ĉ1 ¯̂ν1

Θ2
J̄


 (1− J̄22)2 (1− J̄22) J̄21

(1− J̄22) J̄21 J̄2
21


 . (5.36)
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Subtracting the second term from the first term in the first row of Eq. (5.36) to evaluate

the evolution of J̄11 − J̄12, we obtain

Ω11 −Ω12 =
[W ∗ ζ](0)K̄2

11ĉ1 ¯̂ν1

Θ2
J̄

(1− J̄22)(1− J̄22 − J̄21) . (5.37)

The invertibility of 1N − J to ensure that the firing rates ν̄ do not diverge implies that

J̄22 + J̄21 < 1; it follows that J̄22 < 1 also holds. Consequently, the evolution of J̄11 and J̄12

is determined by the sign of [W ∗ ζ](0): there is potentiation of J̄11 at the expense of J̄12

for [W ∗ ζ](0) > 0, as illustrated in Fig. 5.8.

Likewise for J̄21 − J̄22, subtracting the second term from the first term in the second

row of Eq. (5.36) leads to

Ω21 −Ω22 =
[W ∗ ζ](0)K̄2

11ĉ1 ¯̂ν1

Θ2
J̄

J̄21(1− J̄22 − J̄21) , (5.38)

and when [W ∗ ζ](0) > 0, J̄21 will be potentiated and J̄22 depressed.

Putting it all together, neuron group 1, which receives correlated input, has its out-

going weights J̄11 and J̄21 potentiated when [W ∗ ζ](0) > 0. If this outcome can be in-

tuitively understood for J̄11, it is not so straight-forward for J̄21. The converse situation

occurs when [W ∗ ζ](0) < 0. Note that the particular value W(0) does not play any role

in this analysis.

In any case, the weights will diverge due to the drifts in Eqs. (5.37) and (5.38) until

reaching the bounds. The distribution of the neuron firing rates may become bimodal but

the discrepancies between ν̄1 and ν̄2 remain small for inputs with small delta-correlation,

as illustrated in Fig. 5.7. Recall that the discrepancies between the individual firing rates

and µ′ ' µ (weak correlation) relate to the absence of a fixed point for the dynamical

system. The same applies for the homeostatic equilibrium of the weights in Fig. 5.8(a).

In summary, the input correlation structure determines the asymptotic distribution of

the recurrent weights by strengthening (or weakening) the outgoing weights of the group

that receives correlated inputs when [W ∗ ζ](0) is positive (negative). The divergence of

the weights ( J̄11 and J̄21 vs. J̄12 and J̄22) induces a robust specialisation, cf. Fig. 5.8(b).
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Figure 5.8: Strengthening of the outgoing weights of the neuron group that receives correlated
input. The network has the same parameters as that in Fig. 5.7. (a) Evolution of the recurrent
weights J. The individual weights (grey bundle, only a representative portion is plotted) diverged
towards the bounds, while the homeostatic equilibrium (Jav in black thin solid line) was satisfied
close to the predicted equilibrium value (black thin dotted line) calculated using Eq. (5.21). The
recurrent weights coming from the first half ( J̄11 + J̄21 in thick dashed line) increased at the ex-
pense of those from the second half ( J̄12 + J̄22 in thick dashed-dotted line), i.e., the weights coming
out of the first group that received correlated inputs were potentiated. (b) Weight matrix J after
the emergence of the structure. Darker pixels indicate potentiated weights. Weights on the left
side (corresponding to the mean in dashed line) were more potentiated than those on the right
side.
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These results are similar to those described in Chapter 4 when STDP is applied on the in-

put connections with fixed recurrent weights: stability of some components of the weight

matrix (in that case, the incoming weights for each neuron) in parallel with a diverging

behaviour corresponding to a splitting between the different weight sets according to the

input correlations.

This specialisation described above contrasts with the “redistribution” of the incom-

ing weights in the case of uncorrelated inputs, which results in homogeneous equilib-

rium firing rates for the neurons, as explained in Sec. 5.4.3. In particular, when ν̂1 > ν̂2,

we have
(
1− J̄22 − J̄21

) ¯̂ν1 =
(
1− J̄11 − J̄12

) ¯̂ν2 , (5.39)

which means that the incoming weights to group 2, namely J̄22 + J̄21, are potentiated

at the expense of the weights to group 1, i.e., J̄22 + J̄21. This weight compensation is a

consequence of an equilibrium, hence it is weaker than the potentiation resulting from

the diverging behaviour due to input correlation.

5.5.2 Two input pools with balanced spike-time correlations

For ĉ1 > 0 and ĉ2 > 0, we use an equivalent equation to Eq. (5.36) for ĉ2 by permuting

the indices in order to obtain an equation similar to Eq. (5.37) that gives the direction of

the evolution of J̄11 − J̄12,

Ω11 −Ω12 =
[W ∗ ζ](0)K̄2

11ĉ1 ¯̂ν1

Θ2
J̄

(1− J̄22)(1− J̄22 − J̄21) (5.40)

− [W ∗ ζ](0)K̄2
22ĉ2 ¯̂ν2

Θ2
J̄

J̄12(1− J̄11 − J̄12) .

Consider balanced input firing rates equal to ν̂av, balanced correlation strengths equal

to ĉav and balanced input weights K̄11 = K̄22. For homogeneous initial recurrent weights

equal to Jav, Eq. (5.40) reduces to

Ω11 −Ω12 =
[W ∗ ζ](0)K̄2

11ĉavν̂av

Θ2
J̄

(1− nJ
av Jav)2 . (5.41)
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Consequently, for [W ∗ ζ](0) > 0, J̄11 will be initially potentiated at the expense of J̄21.

Likewise, J̄22 will be initially potentiated at the expense of J̄12. When starting from ho-

mogeneous recurrent weights, the weight evolution satisfies J̄11 ' J̄22 and J̄12 ' J̄21 at the

beginning of learning. This leads to

Ω11 −Ω12 =
[W ∗ ζ](0)K̄2

11ĉavν̂av

Θ2
J̄

(1− J̄11 − J̄12)2 . (5.42)

As a result, J̄11 becomes increasingly potentiated and J̄12 depressed. The condition [W ∗
ζ](0) > 0 implies the strengthening of the within-group connections due to the input

correlation when starting from homogeneous initial weights J, as illustrated in Fig. 5.9.

This conclusion still holds when there are small inhomogeneities between the input firing

rates, correlations or input weights. In the converse situation, when [W ∗ ζ](0) < 0,

the within-group connections were weakened and the between-group connections were

strengthened.

Recall that the analysis in Chapter 3 assumed very short recurrent delays d. Sim-

ulations run using d = 0.4 ± 0.2 ms showed the expected outcomes described above

for both [W ∗ ζ](0) positive and negative. However, for longer delays d ' 3− 50 ms,

results similar to that in Sec. 5.5.1, or even the opposite of the expected behaviour for

[W ∗ ζ](0) > 0 were observed, i.e., depression instead of potentiation of the within-group

weights. The specialisation observed in numerical simulation was weaker in this case

than that described in Sec. 5.5.1. The desired strengthening of within-group connections

was obtained for larger recurrent delays (d = 3± 1 ms) using a different learning win-

dow function W shifted such that W(u) = 0 for u = tin − tout = 1 ms, which corresponds

to potentiation around the origin, as illustrated in Fig. 5.10. The potentiation observed

in simulations is weaker for larger recurrent delays; shifting the curve of W more to

the right allows the use of longer delays. This indicates the importance of the shape

of W around the origin when interacting with the narrowly correlated neuronal activity

within the network, due to the narrow within-pool input correlations. This is illustrated

in Fig. 5.11, which shows that the correlation extends over the domain from −20 ms and

+20 ms. The discrepancies between the theoretical prediction and the simulation result
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Figure 5.9: Within-group strengthening of the recurrent connections due to stimulation by cor-
related inputs. The network and figure are similar to Fig. 5.8, except that the two input pools
have the same firing rate ν̂1 = ν̂2 = 30 Hz and balanced within-pool correlation (ĉ1 = ĉ2 = 0.1).
(a) Evolution of the recurrent weights J. The individual weights (grey bundle, only a represen-
tative portion is plotted) diverged towards the bounds, while the homeostatic equilibrium) was
satisfied (mean Jav in black thin solid line, prediction in black thin dotted line). The two means
of the within-group connections ( J̄11 and J̄22 in dashed lines) were potentiated while those of the
between-group connections ( J̄12 and J̄21 in dashed-dotted lines) were depressed. (b) Matrix J after
the emergence of the weight structure. Darker pixels indicate potentiated weights. The weights
in the top-left and bottom-right quarters (corresponding to the two means in dashed line) were
more potentiated than those in the top-right and bottom-left quarters.
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Figure 5.10: (a) Example of a different STDP window function. Each branch is an alpha function
with the same time constants 17 ms (potentiation) and 34 ms (depression) as for Fig. 2.2. (b)
Enlarged portion of (a) around the origin (a: dashed box) illustrating that the curve has been
shifted to the right such that its zero corresponds to u = 1 ms (see insert on the right).
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Figure 5.11: Cross-correlogram (black thin line) for two neurons from the same group in the
network in Fig. 5.9 (without learning) simulated for 100 s. The black thick line represents the
curve smoothed over 10 ms. The dashed-dotted line indicates the theoretical prediction using
Eq. (3.18).

relates to the approximation made to derive Eq. (3.18), which only considered the first

order of recurrence for the feedback connections, cf. Eq. (A.21). This explains why the

actual distribution is broader.

5.6 Partial conclusion on plastic recurrent connections

Stability of the neuron firing rates, and thus of the incoming weight means, can be ob-

tained for a wide range of learning parameters. The conditions win > |wout| > 0 and

W̃ < 0 are sufficient in the case of weak input correlation. They correspond, respectively,

to an increase of the weight due to each pre-synaptic spike, by a greater amount than
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the effect of each single post-synaptic spike (either potentiation or depression), and to

more depression than potentiation induced by the STDP window function W for uncor-

related inputs (negative integral value). This is in agreement with the theoretical analysis

of the learning dynamics in a recurrently connected network with no external inputs

(Burkitt et al. 2007) and earlier studies of numerical simulations of recurrently connected

integrate-and-fire neurons (Song and Abbott 2001, Morrison et al. 2007).

The rate-based learning constants win and wout were used in order to obtain home-

ostatic equilibrium for the weights, so that a structure could emerge depending on the

input correlation. Unlike the STDP learning window W, they are not experimentally mo-

tivated. We expect the stability conclusions to hold in most cases for similar stabilizing

mechanisms, such as weight normalisation (van Rossum et al. 2000) or a suitable weight-

dependency for W (van Rossum et al. 2000, Gütig et al. 2003), so long as the resulting

weight dynamics leads to an effective homeostatic equilibrium.

In order to obtain a non-trivial specialisation of the recurrent weights during the firing

rate equilibrium, a network topology is necessary where different neuron groups receive

distinct inputs with correlation. Otherwise, the weight dynamics is equivalent to that

in a network with no external inputs. When conditions are met such as those described

in Sec. 5.5.1 and 5.5.2, the individual weights exhibit strong competition that can result

in the emergence of a feed-forward synaptic pathway or the strengthening of within-

group connections for learning on J, as illustrated in Fig. 5.12 for two input pools. Very

short recurrent delays were required to obtain within-group strengthening of recurrent

connections (Sec. 5.5.2), which corresponds to the assumption in Sec. 3.4.1 that was made

in order to derive the dynamical system Eqs. (3.22a-3.22c).

This robust specialisation scheme is determined by the covariance coefficient matrix

ĈW∗ζ in Eq. (3.22b). This matrix embodies the interplay between the correlation struc-

ture of the external inputs, the STDP window function W, and the PSP response kernel ε.

The asymptotic weight distribution will be determined by the input correlations, when

they are sufficiently large, rather than the input firing rates. For the network configura-

tions in Fig. 5.12, the durations of ε and of the delays played a crucial role when STDP



98 Plastic recurrent connections

modifies the recurrent connections. This is in contrast to the case of plastic input con-

nections (Chapter 4) where the weights specialise in the same fashion irrespective of the

delays and shapes of ε and W for Hebbian STDP. The different schemes of potentiation

vs. depression that were observed depending upon ĈW∗ζ may explain the contradictory

behaviours observed in numerical simulations by Izhikevich et al. (2004) and Iglesias

et al. (2005), which generated debate about whether STDP induces more or less synchro-

nisation in recurrent networks. Indeed, stronger synchrony can be obtained by potenti-

ating within-group connections, whereas desynchronisation would correspond to their

depression.
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a b

c d

Figure 5.12: Schematic representation of the recurrent weight specialisation (a & c) before and
(b & d) after the learning epoch for two input configurations (top vs. bottom). In each case,
among the two sets of incoming connections to each neuron group (top circle) in the network,
one becomes potentiated at the expense of the other. (a ⇒ b) When one input pool dominates in
terms of spike-time correlations (filled bottom circle) compared to the other (open bottom circle),
the neuron group that receives more correlations takes over in the recurrent network through the
potentiation of its outgoing recurrent weights (thick arrow), while those of the other group are
depressed (dashed arrow). (c ⇒ d) For two input pools with balanced spike-time correlations
(filled bottom circles), the within-group recurrent connections are potentiated (thick arrow) while
the between-group connections are depressed (dashed arrow).





Chapter 6

Self-organisation

This chapter relates the results presented in Chapter 4 and 5 to the context of network self-

organisation such as that observed in the visual cortex. The framework developed in Chapter 3 is

extended to incorporate a weight-dependent STDP. In Sec. 6.3, preliminary results of the implications

of STDP in term of signal processing are presented, as a further step in the theory towards the domain

of machine learning.

6.1 Introduction

IN THIS chapter, a weight-dependent STDP rule is considered as described in Eq. (2.2).

The influence of the corresponding non-linearity will be illustrated through the scal-

ing functions f+ and f− inspired by Gütig et al. (2003):

f+(J) =
(

1− J
Jmax

)γ

, (6.1)

f−(J) =
(

J
Jmax

)γ

.

The parameter γ (in this chapter) relates to the degree of the weight dependence in the

model: γ = 0 corresponds to additive STDP and γ = 1 to a multiplicative version similar

to that used by van Rossum et al. (2000) for the depression side. The influence of γ is

illustrated in Fig. 6.1.

101
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Figure 6.1: Example of weight-dependent STDP window function. (a) Representation of the
functions − f− (bottom curve) and f+ (top curve) that determine the weight dependence in the
STDP model. The thick black solid curves correspond to γ = 0.01, the thick dashed-dotted grey
curves to γ = 0.1 for the expression in Eq. (6.1); additive STDP (γ = 0) corresponds to constant
functions at +1 and −1, respectively. The use of f+ and f− leads to less potentiation and more
depression for (b) a strong synapse J = 0.9Jmax compared to (c) a weak synapse J = 0.1Jmax.
The dependence upon the spike-time difference is taken care of by one alpha function W+ for
depression (right curves) with time constant 8.5 ms and likewise W− for potentiation (left curves)
with time constant 17 ms.
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6.2 Effect of the weight dependence of STDP upon the learning
dynamics

We obtain the following differential equations to describe the evolution of the drift of the

input weight Kik and recurrent weight Jij:

K̇ik ' η
{

win ν̂k + wout νi +
[

f+(Kik) W̃+ − f−(Kik)W̃−
]

ν̂k νi (6.2a)

+ f+(Kik) FW+
ik − f−(Kik) FW−

ik

}

J̇ij ' η
{

win νj + wout νi +
[

f+(Jij) W̃+ − f−(Jij)W̃−
]

νj νi (6.2b)

+ f+(Jij) CW+
ij − f−(Jij) CW−

ij

}
.

6.2.1 Homeostastic equilibrium

Neglecting the inhomogeneities of the network and the covariance terms in the learning

equations Eqs. (6.2a) and (6.2b), we obtain the following equations for the mean input

and recurrent weights:

K̇av ' η
{

win ν̂av + wout νav +
[

f+(Kav) W̃+ − f−(Kav)W̃−
]

ν̂av νav

}
(6.3a)

=: η G(νav, Kav)

J̇av ' η
{(

win + wout) νav +
[

f+(Jav) W̃+ − f−(Jav)W̃−
]

ν2
av

}
(6.3b)

=: η H(νav, Jav) .

For the sake of simplicity, the functions G and H have been defined, as well as

g(x) := f+(x) W̃+ − f−(x) W̃− . (6.4)

A fixed-point (ν∗av, K∗av, J∗av) of this dynamical system must nullify the above expressions

for K̇av and J̇av. We require a non-zero equilibrium value for the mean firing rate ν∗av 6= 0

in Eqs. (6.3a) and (6.3b). Note that weight-dependent STDP is necessary here, as additive
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STDP leads to the two following equalities

νav = − win ν̂av

wout +
(

W̃+ − W̃−
)

ν̂av

(6.5)

νav = − win + wout

W̃+ − W̃−
,

which cannot be satisfied simultaneously for general choices of input and learning pa-

rameters.

Influence of rate-based learning terms

The particular case where win = wout = 0 has been previously studied for a single neuron

(van Rossum et al. 2000, Burkitt et al. 2004). From Eqs. (6.3a) and (6.3b), we have

g(K∗av) = g(J∗av) = 0 . (6.6)

In this case, the equilibrium values of the mean weights, K∗av and J∗av, only depend upon

the function g; they are independent of the input firing rate ν̂av. The equilibrium value of

the mean firing rate for the neurons is then determined by Eq. (3.22a).

In the case where win 6= 0 and wout 6= 0, the following necessary conditions must be

satisfied in order to obtain a non-zero equilibrium mean firing rate ν∗av

win ν̂av +
[
wout + g(K∗av) ν̂av

]
ν∗av = 0 (6.7a)

win + wout + g(J∗av) ν∗av = 0 . (6.7b)

Except for particular values of the input and learning parameters, this implies

win g(J∗av) ν̂av =
(
win + wout) [

wout + g(K∗av) ν̂av
]

. (6.8)
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The consistency equation Eq. (3.22a) for the firing rates gives the additional constraint

−
(
win + wout) (

1− nJ
av J∗av

)

g(J∗av)
= ν0 + nK

avK∗av ν̂av , (6.9)

after using the equality Eq. (6.7b). Combining Eqs. (6.8) and (6.9), the mean recurrent

weight Jav must be a zero of the following function h at the equilibrium:

h (J∗av) = 0 (6.10)

with

h(Jav) := win g(Jav) ν̂av (6.11)

− (
win + wout)

[
wout + g


−

(
win + wout

) (
1− nJ

av Jav

)

nK
avg(Jav) ν̂av

− ν0

nK
avν̂av


 ν̂av

]
.

Fig. 6.2 illustrates the change of h defined in Eq. (6.11) and the corresponding equilibrium

values of K∗av and J∗av for different input firing rates ν̂av. In the presence of win and wout,

the weight equilibrium values are still uniquely determined, but depend upon the mean

input firing rate ν̂av. It is possible to choose parameters such that this dependency is

weak: see Fig. 6.2(c) for J∗av.

Stability

In the presence of win and wout, the stability of the fixed point (ν∗av, K∗av, J∗av) is given by

the Jacobian matrix expressed using the partial derivatives of G and H in Eqs. (6.3a) and

(6.3b): 


∂G
∂Kav

(ν∗av, K∗av, J∗av)
∂G
∂Jav

(ν∗av, K∗av, J∗av)

∂H
∂Kav

(ν∗av, K∗av, J∗av)
∂H
∂Jav

(ν∗av, K∗av, J∗av)


 =:


α1 α2

α3 α4


 , (6.12)
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Figure 6.2: Influence of weight-dependent STDP upon the homeostatic equilibrium. Comparison
between (a & b) almost additive STDP corresponding to γ = 0.01 and (c & d) a stronger weight
dependence with γ = 0.1. (a & c) Plots of the function h in Eq. (6.11) for ν̂av = 20, 40, 60, 80 and
100 Hz (thin to thick line). The zero of h when crossing the origin (grey dashed line) corresponds
to the equilibrium value J∗av. The plot is restricted to the domain of Jav for which the value Kav
given by Eq. (6.9) is within the bounds. (b & d) Equilibrium mean weights K∗av (solid line) and
J∗av (dashed-dotted line) as functions of the input firing rate ν̂av. Parameters were nK

av = 100,
nJ

av = 100, Kmax = 0.06, Jmax = 0.02, 30% partial connectivity and those detailed in Appendix D.

where

α1 = −win nK
avν̂av

(1− nJ
av Jav) ν∗av

+ g′(K∗av) ν̂av ν∗av , (6.13)

α2 = −win nJ
avν̂av

1− nJ
av Jav

,

α3 = −(win + wout)
nK

avν̂av

1− nJ
av Jav

,

α4 = −(win + wout)
nJ

avν∗av

1− nJ
av Jav

+ g′(J∗av) (ν∗av)
2 .
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We have used the equalities in Eq. (6.7a) and

∂νav

∂Kav
=

nK
avν̂av

1− nJ
av Jav

(6.14)

∂νav

∂Jav
=

nJ
avνav

1− nJ
av Jav

.

The stability of the mean weights K∗av and J∗av implies that of ν∗av; it requires that the

Jacobian matrix has eigenvalues with negative real parts. In other words, the trace of the

Jacobian matrix must be negative and its determinant must be positive:

α1 + α4 < 0 (6.15)

α1α4 − α2α3 > 0 .

We actually require the stronger conditions α1 < 0 and α4 < 0 to ensure stability for

the weight dynamics when only the input or the recurrent weights are plastic, while the

other set remains fixed. The following conditions are sufficient to ensure stability for any

input firing rate

win + wout > 0 (6.16)

win > 0

g′ < 0 ,

where g is defined in Eq. (6.4). Note that, in the absence of the rate-based terms win and

wout, the condition g′ < 0 leads to stability since g′(K∗av) and g′(J∗av) are negative.

6.2.2 Weight specialisation

Now we consider the homeostatic equilibrium to be satisfied, which means that the term

related to the spike-time covariance in (6.2a) becomes the leading order. For all these

terms to generate effective weight specialisation amongst the synapses, they must cause

the weights to exhibit a diverging behaviour in a similar manner to additive STDP when

starting from a homogeneous weight distribution (see Sec. 4.5). This means that, for each
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k, the term f+(K∗av) FW+
k − f−(K∗av) FW−

k must have the same sign as FW+
k − FW−

k . This

is the case irrespective of the input correlation structure whenever the fixed point K∗av

corresponds to similar values:

f−(K∗av) ' f+(K∗av) . (6.17)

It follows that the splitting of the weights is not affected by the weight dependence of

STDP provided the mean weight equilibrium value is far from the bounds (cf. Fig. 6.1),

which means that Eq. (6.17) is satisfied. This is supported by previous results, which

showed that our choice of monotonic functions f− and f+ ensures the splitting of weights

between homogeneous pools with the same correlation level, not within pools (Meffin

et al. 2006). This effective neuronal specialisation requires sufficiently strong input cor-

relations, in agreement with the studies by Gütig et al. (2003) and results presented in

Chapter 4.

In the special case of two input pools that have within-pool correlation with respective

levels ĉ1 and ĉ2 and firing rate ν̂0 as described in Sec. 3.5, we have, for two inputs k and l

from the first pool,

CW+∗ε
kl = ĉ1 ν̂0 [W+ ∗ ε](0) > 0 (6.18)

CW−∗ε
kl = 0 ,

and likewise for ĉ2 for the second pool. Since f+ is positive, the signs of the vector FW+ ĥ

are determined . Consequently, the scheme of potentiation vs. depression for the input

weight starting from an initially homogeneous distribution is given by the relative corre-

lation levels, in the same fashion as for additive STDP. For the recurrent connections and

CW± , the coefficients CW+∗ζ
kl and CW−∗ζ

kl are strong and weak, respectively, for a suitable

choice of STDP window functions W± which results in potentiation at the origin for small

u (STDP function shifted to the right, cf. Fig. 5.10). It then follows that the specialisation

scheme for the recurrent weights is similar to that for additive STDP.

Figure 6.3 corroborates these predictions for an initially homogeneous network stim-

ulated by two input pools: STDP induces both stabilization of the mean weights (rep-
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resented in Fig. 6.3(a-b) by thick dashed lines) and a specialisation of the individual

weights. Neurons in the network become selective to one of the two input pools (Fig. 6.3(c)).

After labelling each neuron according to its specialisation, thus defining two groups, the

within-group connections (solid lines in Fig. 6.3(d)) in the recurrent network are observed

to be strengthened at the expense of the between-group connections (dashed lines). At

the end of the learning epoch, we obtain the emergence of two groups of neurons (40 and

60 neurons, respectively, in this simulation), each being selective to a different input pool,

see Fig. 6.3(e-f).

6.3 Representation of the input correlation in the weight struc-
ture for a single neuron

The previous section showed that weight-dependent STDP can perform effective neu-

ronal specialisation in a recurrent network stimulated by two external pools. In order

to further investigate the functional implications, we now focus on some aspects of the

computation performed by STDP and show how the input spike-time correlation struc-

ture can be encoded in the input weight structure. We constrain this section to a single

neuron and consider a more elaborate input structure than previously. The purpose of

these preliminary results is to obtain more insight in the general unsupervised learning

scheme induced by STDP and establish links with the domain of machine learning.

6.3.1 Structure of the input spike trains

Previous work (Kempter et al. 1999, Gütig et al. 2003, Meffin et al. 2006) showed the

major role played by the input correlations in determining the weight dynamics induced

by pairwise STDP. We consider in this section an extension of the configurations previ-

ously studied: M inputs are partitioned into m homogeneous pools of the same size with

distinct within-pool correlation levels ĉl , 1 ≤ l ≤ m; inputs from different pools are not

correlated with each other. We assume the correlations to be sorted in increasing order:

0 ≤ ĉ1 < · · · < ĉl < · · · < ĉm < 1. We constrain our study to the same input firing

rate ν̂0 for all input pools, assuming that not-too-large inhomogeneities in the firing rates
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Figure 6.3: Simultaneous evolution of the input and recurrent weights. The network consists of
N = 100 neurons stimulated by two pools of M/2 = 50 inputs each. The two pools have the same
firing rate 30 Hz and correlation level ĉ = 0.2. The initial weights were homogeneous. (a-b) Traces
of the individual weights (grey bundles) and stabilisation of their means (thick dashed lines). The
input weight distribution (a) clearly became bimodal whereas the recurrent weight (b) remained
unimodal. (c) Neuronal specialisation. Traces of the difference between the input weights from
the first and second pools. A first group of 40 neurons become selective to the first input pool
(increasing curves) while a second group of 60 did so to the second pool (decreasing curves). (d)
Structuring of the recurrent connections. The connections within the two neuronal groups de-
fined above became potentiated (solid lines) while those between the two groups were depressed
(dashed lines). (e-f) Asymptotic weight matrices for the input and recurrent weights. Darker
pixels indicate potentiated weights. The indices of the neurons have been arranged according to
which group they belong to.
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Figure 6.4: Schematic representation of one neuron (top circle) stimulated by M inputs (bot-
tom circles) partitioned into m pools (dashed ellipsoids). The input connection from the external
source k has a plastic weight Kk(t); the mean weight over pool l is denoted by K̄l(t).

between the pools do not impair the conclusions, as was shown for the case of two input

pools.

We study the weight dynamics for the input connections of a single neuron that is

stimulated by these m pools, as illustrated in Fig. 6.4. We denote by S(t) and Ŝk(t) the

spike trains of the neuron and each external input k, respectively. The connection from

input k to the neuron has plastic weight Kk(t).

6.3.2 Capturing the weight dynamics

We use the framework developed in Chapter 3 to analyse the evolution of the input

weights Kk. We obtain a differential equation to describe the evolution of the drift of

the input weights Kk

K̇k ' win ν̂k + wout ν +
[

f+(Kk) W̃+ − f−(Kk)W̃−
]

ν̂k ν + f+(Kk) FW+
k − f−(Kk) FW−

k ,

(6.19)

where

W̃± :=
∫

W±(u) du . (6.20)

Time has been rescaled to remove the learning rate η. In this section, we use the following

simplified notation: ν(t) and ν̂k(t) for the time-averaged firing rates of the neuron and

each input k, respectively, and the covariance coefficient FW±
k between the neuron and

input k; cf. Eq. (3.3).
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We consider the weight-dependent STDP to lead to an effective homeostatic equi-

librium, which means that the term related to the spike-time covariance in Eq. (6.19)

becomes the leading order. We also assume that the spike-time covariances generate

proper weight specialisation over the pool of synapses, i.e., Eq. (6.17) is satisfied. Now

we examine the weight specialisation for the case of several input pools with within-

pool correlation, cf. Sec. 6.3.1. We first use additive STDP and similar calculations to the

analysis in Chapter 4, then we take the weight dependence in to account.

6.3.3 Initial splitting of the input weights

For input pools that have within-pool correlation but no between-pool correlation, as

described in Sec. 6.3.1, we have for two inputs k and l from a pool with correlation level

ĉl and firing rate ν̂0

CW+∗ε
kl = ĉl ν̂0 [W+ ∗ ε](0) > 0 , (6.21)

CW−∗ε
kl = 0 .

We assume pools of the same size and reduce the dimension of the problem and examine

the mean weights K̄l over each pool l to investigate the emergence of the structure. In this

reduced space, the input covariance matrix Ĉ is diagonal for the input structure detailed

in Sec. 6.3.1. To simplify the notation, we write ĈW+∗ε = ν̂0 [W+ ∗ ε](0) Λ with

Λ =




ĉ1 0 0

0
. . . 0

0 0 ĉm


 . (6.22)

Using the expression for the activation dynamics of the Poisson neuron Eq. (2.1), the

learning equation (6.19) for additive STDP can be rewritten in the matrix equation,

˙̄K = win ¯̂νT + wout [ν0 + (M/m)K̄ ¯̂ν] ¯̂eT + W̃ [ν0 + (M/m)K̄ ¯̂ν] ¯̂νT (6.23)

+ (M/m)K̄ ĈW+∗ε

= β1 ¯̂eT + K̄
(

β2 ¯̂e ¯̂eT + β3 Λ
)

,
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where ˙̄K is a row vector, ¯̂ν = ν̂0 ¯̂e is the column vector of the mean firing rates over each

pool, and the superscript T is the matrix transposition. The coefficients β1, β2 and β3

absorb the input and learning parameters:

β1 = win ν̂0 + wout ν0 + W̃ ν0 ν̂0 , (6.24)

β2 = wout M
m

ν̂0 + W̃
M
m

ν̂2
0 ,

β3 = [W+ ∗ ε](0)
M
m

ν̂0 .

When starting from an initially homogeneous distribution, i.e., K̄(0) ∝ ¯̂eT, it follows from

(6.23) that K̄ can be decomposed into components in the basis ¯̂eT Λr with 0 ≤ r ≤ m− 1:

K̄ = ∑
0≤r≤m−1

ζr ¯̂eT Λr (6.25)

and the evolution of the coefficients ζr is given by

ζ̇0 = β1 + β2 ∑
r

ζr

(
∑

l
ĉr

l

)
− p0 β3 ζm−1 , (6.26a)

ζ̇r = β3 (ζr−1 − pr ζm−1) , for 1 ≤ r ≤ m− 1 . (6.26b)

We have used the equality

¯̂eT Λr ¯̂e = ∑
l

ĉr
l (6.27)

and the following expression for the polynomial P that nullifies the matrix Λ,

P(X) = ∏
l

(X− ĉl) = Xm + ∑
0≤r≤m−1

prXr , (6.28)

which implies Λm = −∑r prΛr.

When assuming small correlation levels ĉ < 1, the stability conditions for the home-

ostatic equilibrium, namely wout < 0 and W̃ < 0, imply β2 < 0 and thus lead to the

stability of the component ζ0. In this case, the terms ∑l ĉr
l for r ≥ 1 and p0 = (−1)m ∏l ĉl

in Eq. (6.26a) are indeed then much smaller than the leading-order factor β2 for ζ0 in the
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rhs and the stability is given by the homogeneous differential equation in ζ0 without the

perturbation:

ζ̇0 = β1 + β2 ζ0 . (6.29)

This equation is equivalent to Eq. (6.3a) in the study of the homeostatic equilibrium. Con-

sequently, the stable asymptotic value ζ∗0 for small correlations is close to the solution of

the homogeneous equation Eq. (6.29), which we assume to be positive (realisable equilib-

rium), namely

ζ∗0 ' −β1

β2
' K∗av > 0 . (6.30)

Since β3 > 0 Eq. (6.21), the stability of the other coefficients ζr for r ≥ 1 is given by

the following matrix according to Eq. (6.26b)

R =




0 0 0 −p1

1 0 0 −p2

0
. . . 0

...

0 0 1 −pm−1




. (6.31)

The spectrum of the matrix R comprises the roots of the polynomial

Q(X) = Xm−1 + ∑
1≤r≤m−1

prXr−1 = [P(X)− P(0)] /X . (6.32)

Since the roots of P are non-negative reals, all roots of Q have positive real parts. This is

illustrated in Fig. 6.5 for a specific example with m = 10 pools.

It follows that the behaviour of the ζr (r ≥ 1) is unstable and these coefficients each

diverge from their respective fixed point given by Eq. (6.26b), namely

ζ∗m−1 =
ζ∗0
p1

, (6.33)

ζ∗r = pr+1 ζ∗m−1 =
pr+1 ζ∗0

p1
, for 1 ≤ r ≤ m− 2 .

The leading order for the structure of the input weights is given by ζ1 since Λ has much
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Figure 6.5: Distribution of the roots (+) of Q for ten input pools with correlations ĉl =
0.02, 0.04, . . . , 0.2 (4). The horizontal axis stands for the real part, the vertical axis for the imagi-
nary part. All the roots have positive real parts.

larger elements than Λr for r ≥ 2 under the assumption of small correlations. We have

ζ∗1 =
p2

p1
ζ∗0 =

∑l′ 6=l′′
p0

ĉl′ ĉl′′

∑l
p0
−ĉl

K∗av = −
(

∑l
1
ĉl

)2 −∑l
1
ĉ2

l

∑l
1
ĉl

K∗av . (6.34)

Neglecting the inhomogeneities in the correlation levels ĉl , we obtain the following ap-

proximation of ζ∗1 to give an idea of its order of magnitude:

ζ∗1 ' −m− 1
ĉav

K∗av ¿ 0 . (6.35)

As a result, ζ1 will always increase when starting from roughly homogeneous weights,

which corresponds to ζ1(0) ' 0. The weights will then become structured according

to êT Λ, synonymous to stronger potentiation for larger Ĉl . In addition, as ζ0 remains

roughly constant at ζ∗0 , the weights from pools with weaker ĉl will actually be depressed.

This means that the degree of potentiation or depression of the input weights depends

upon the correlation level of the corresponding pool.

6.3.4 Saturation of the weights for weight-dependent STDP

Now we consider the effect of scaling functions f+ and f− similar to those in Fig. 2.2:

they gradually attenuates the potentiation for the individual weights above the homeo-

static equilibrium value J∗av and likewise with the depression for the weights below J∗av.
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The weight dependence used here acts as a spring: moving towards the bounds becomes

harder when getting closer. This means that the weights with stronger potentiation due

to the magnitude of the spike-time correlation coefficients FW+ , in relation to ĈW+∗ε as de-

scribed in Se. 6.3.3, will grow towards a higher stabilization value than those with weaker

potentiation. The weights that are depressed experience a similar graduated stabilization

towards quiescence.

When varying γ, strong weight dependence (γ = 0.1) leads to a weak specialization

of the weights and their distribution may actually remain unimodal, as illustrated in

Fig. 6.6(a) for a single neuron stimulated by m = 5 input pools. On the contrary, almost-

additive STDP (γ = 0.02) induces stronger weight specialization: the asymptotic weight

distribution in Fig. 6.6(b) is multimodal. In both cases, stronger correlation results in

more potentiation, but the spreading of the asymptotic distribution is broader for almost-

additive STDP, as illustrated in Fig. 6.6(d) to be compared with Fig. 6.6(c).

6.3.5 Generalisation to arbitrary input structure

These results can be extended to the case of an arbitrary input correlation structure. Since

the set of diagonalisable matrices is dense, Ĉ can be transformed to be roughly diagonal

after a change of basis. For that new basis, the evolution of the input weights will proceed

according to the principal components of the correlation structure in a similar way to

the case of increasing input correlation levels ĉl studied above. Following (6.26b), the

evolution of ζ1 is given by

ζ̇1 = β3 (ζ0 − p1ζm−1) . (6.36)

Making the further assumption p1 ' mp0/ĉav ' mĉm−1
av ¿ 1, the evolution of ζ1 will

always be increasing, which means that the weights will become structured according

to Λ. In other words, the evolution of the input weights will occur in a similar way to

Sec.6.3.4: the weights will evolve in increasing order with respect to stronger covariance

components of the input correlation structure.

To illustrate this, we examine another example of a neuron stimulated by three input

pools: one pool with no spike-time correlations, two pools with within-pool correlations
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Figure 6.6: Evolution of the weight structure for the single neuron. Comparison between
two degrees of weight dependence: (a & c) γ = 0.1 and (b & d) γ = 0.02. The neuron is
stimulated by m = 5 pools of 30 inputs with the same firing rate ν̂0 = 10 Hz and corre-
lation levels ĉl = 0, 0.05, 0.1, 0.15 and 0.2, respectively (cf. Sec. 6.3.1). (a & b) Evolution of
the weights Jk (grey bundle) over 104 s. The thick black line represents the mean weight.
(c & d) Asymptotic distribution of the weights Jk (+). The thick grey lines represent the
means over each pool.

as described in Sec 6.3.1, but also with correlations between them such that the inputs

from the second pool tend to fire 5 ms before those of the third pool. In this case, STDP

select only the second pool, as illustrated in Fig. 6.7. The repression of the third pool

can be explained by the matrix Λ, whose elements have signs according to the following

diagram:

Λ ∼




0 0 0

0 + +

0 − +


 . (6.37)

The form of Λ in this case follows from our choice of Hebbian STDP, which favors causal-

ity. The repeated firing of the third pool, which has within-pool spike-time correlation,

after the second one causes STDP to discard the third pool, as it does for the first uncor-

related pool.
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Figure 6.7: Evolution of the weight structure of a neuron stimulated by m = 3 input
pools, as described in Sec. 6.3.5. (a) Evolution of the weights Jk (grey bundle) over 104 s.
(b) Asymptotic distribution of the weights Jk (+). The plot formats and the parameters
(γ = 0.02) are similar to Fig. 6.6.

In summary, STDP performs a kernel PCA, with the kernels determined by an inter-

play between the learning and neuronal parameters, namely W and ε. Another particu-

larity is the normalization of the weights due to the homeostatic equilibrium, which may

depend upon the input firing rate, as illustrated in Fig. 6.2. Previous work showed that

a normalization constraint on the weights can scale between different flavors of PCA,

such as k-means and graph-cut algorithms (Xu et al. 2009). STDP for a single neuron is

thus capable to perform a generalized version of kernel PCA in a elaborate manner that

depends upon the external inputs, as was suggested previously by van Rossum and Tur-

rigiano (2001). In this way, STDP extends Oja’s rule that extracts the strongest component

of the rate-based correlation (Oja 1982). Partial connectivity and inhomogeneities are ex-

pected to bring more computational power since different areas in the network will then

deal with various aspects of the input correlation structure. These results link the level of

physiological modeling to machine learning and sheds light to the functional property of

STDP through the induced learning dynamics.



Chapter 7

Stability of neuronal activity in
recurrent networks

This chapter studies the ergodicity of the stochastic process representing the spiking activity of

recurrently connected neurons. The neuron model used here extends the Poisson neuron introduced

in Chapter 2. The focus is on the stationary properties of the spiking activity. Learning does not occur

in the network, that is, all weight are kept fixed here.

7.1 Introduction

IN this chapter, an extension of the Poisson neuron model presented in Sec. 2.2.1 is

considered, introducing a non-linear activation function to model the neuronal firing

saturation. A framework to investigate the spiking dynamics in a network with (pos-

sibly) both excitatory and inhibitory synapses with fixed weights is developed, leaving

aside the learning mechanisms. This chapter can be seen as a first step to the study of

the neuronal correlation structure in a recurrently connected network of neurons that are

more elaborate than the model used in the previous chapters of this thesis. Further re-

sults arising from this new framework will be important to understand learning in more

elaborated neuronal networks, beyond the Poisson neuron model.

7.1.1 Non-linear Poisson neuron

Extending the original model corresponding to Eq. (2.1), the soma potential ρi(t) is deter-

mined by an activation function σ (assumed to be continuous) that operates on the total

119
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Figure 7.1: A typical choice of neuronal activation function. The boundedness of σ relates to
the saturation of the neuron for strong stimulation observed in the biology. The plot represents a
function of the form σ(x) = a/(1 + eb−x) for two positive constants a and b.

synaptic influx (sum of PSPs):

ρi(t) = σ
[
ν0 + ∑

k,n
Kik εik(t− t̂k,n)

]
. (7.1)

At rest (absence of pre-synaptic activity), the synaptic influx (within the square brackets)

is equal to ν0, which models background activity that is not considered in detail; ρi(t)

is then equal to the spontaneous firing rate σ(ν0). The total synaptic influx (within the

square brackets) is thus the sum of ν0 and the PSPs determined by the PSP kernel func-

tion εik(t) ≥ 0 and the synaptic weight Kik. Note that the use of σ allows the weights Kik

to be negative, which corresponds to inhibitory synapses.

The original Poisson model (Kempter et al. 1999) used in the previous chapters cor-

responds to the case where σ is the identity function. In this section, we assume σ to be

positive and bounded,

0 < σ(x) ≤ Λ < ∞ for x ∈ R . (7.2)

The positivity of σ ensures that neurons spontaneously fire spikes at rest. A typical choice

of σ is illustrated in Fig. 7.1. All neurons have the same background activity ν0 and the

same activation function σ. This extended model accounts for the firing saturation of real

neurons.
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Figure 7.2: Schematic representation of two of the N network neurons (top circles) that
are stimulated by one of the M external sources (bottom circle). The fixed weights of the
input connections are denoted by K and the fixed recurrent weights by J. The network
topology can be arbitrary.

7.1.2 Network model

Similar to Chapter 3, we consider a network of N Poisson neurons with firing intensities

ρi(t), 1 ≤ i ≤ N, as defined in Eq. (7.1). The network neurons are excited by M external

sources (or external inputs), with respective constant intensities ρ̂k,

ρ̂k ≤ Λ < ∞ , k = 1, . . . , M . (7.3)

The connection from external input k to neuron i is specified by a fixed weight Kik and

a PSP kernel function ε̂ik, cf. Eq. (7.1). Likewise, the connection from neuron j to neuron

i is specified by a fixed weight Jij and a PSP kernel function εij. We assume that all PSP

kernels ε̂ik(t) and εij(t) fade out when t is larger than a certain value (compact support),

in addition to being non-negative and continuous. Note that ε̂ik(t) and εij(t) absorb the

synaptic delays in this chapter.

The framework developed in Chapter 3 corresponds to the situation where the PSP

kernels are identical and equal to ε for all synapses (both input and recurrent connec-

tions), but incorporate individual synaptic delays d̂ik and dij, namely

ε̂ik(t) = ε(t− d̂ik) and εij(t) = ε(t− dij) . (7.4)

We keep the general formulation in the present study.

Physiologically speaking, there is no “self-connection” from a neuron to itself (Jii = 0
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for all i). However, we keep the general formulation where such Jii can be non zero for

the sake of generality, since this framework could be applied to other problems where

this condition may not be relevant.

7.1.3 Description of the network activity

We set the time origin at t = 0, the network being silent before that. Following Eq. (7.1),

only the recent history of the network activity affects the potential of the network neurons

and thus their probability of firing. We denote by Θ the “short-term memory depth” of

the network:

Θ := max
{

sup
{

t : max
i,k

ε̂ik(t) > 0
}

, sup
{

t : max
i,j

εij(t) > 0
}}

. (7.5)

This means that the “immediate” effect of a spike at time t0 in the network will have

faded out after the time Θ has passed (for t ≥ t0 + Θ).

The variable ν̂k(t) counts the number of spikes fired by the kth external source in the

time interval ]t−Θ, t]. When ν̂k(t) ≥ 1, we denote by τ̂k,1(t) the time till the disappear-

ance of the last spike from the memory window ]t−Θ, t]:

τ̂k,1(t) := t̂k,n − t + Θ ∈]0, Θ] , (7.6)

where n = n(k, t) is the number of spikes fired by external source k in the time interval

[0, t]. Likewise,

τ̂k,2(t) := t̂k,n−1 − t + Θ > τ̂k,3(t) > . . . > τ̂k,ν̂k(t)(t) > 0 (7.7)

are the respective times elapsed since the second last, third last, etc., spikes coming from

the external source k. The state of source k is determined by the collection of all these time

points complemented by infinitely many zeros:

ζ̂k(t) :=
(
τ̂k,1(t) , . . . , τ̂k,ν̂k(t)(t) , 0 , 0 , . . .

) ∈ E0, (7.8)
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where

E0 :=
{
(s1, s2, . . .) ∈ [0, Θ]N : s1 > · · · > sn > 0, sn+1 = · · · = 0 for some n ≥ 0

}
. (7.9)

Similarly, for the network neuron i, we define the spike-count variable νi(t) and the vector

of the time points ζ i(t) := (τi,1, . . . , τi,νi(t), 0, 0, . . .).

The state of the whole network,

X(t) :=
(
ζ̂(t), ζ(t)

)
=

(
ζ̂1(t), . . . , ζ̂M(t), ζ1(t), . . . , ζN(t)

)
, (7.10)

is composed from the two vectors ζ̂(t) and ζ(t), whose components are the infinite-

dimensional vectors of time points defined similarly to Eq. (7.8). It is also convenient

to use vector notation for the event-counting variables: ν̂(t) =
(
ν̂1(t), . . . , ν̂M(t)

)
for the

external sources and ν(t) =
(
ν1(t), . . . , νN(t)

)
for the network neurons.

7.2 Network dynamics

7.2.1 Evolution of X(·)

First note that all the trajectories of the process X(·) are right-continuous by construction

and X(·) is a cadlag process (Doob 1953). The dynamics of the process X(·) can be de-

scribed in the following way. All the time points τ̂k,· and τi,· decrease at a unit rate over

time, until they “disappear” from our description when reaching 0. Indeed, they do not

have any direct influence on the network state after that time. If t0 is the time when τ̂k,ν̂k(t)

reaches 0, the spike-counting variable is decreased by one unit at time t0

ν̂k(t0) = ν̂k(t0−)− 1. (7.11)

So long as source k does not fire a spike, all components of the vector ζ̂k satisfy for h > 0

τ̂k,m(t + h) =
(
τ̂k,m(t)− h

)
+ , m = 1, . . . , ν̂k(t) , (7.12)
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where s+ = max{s, 0} denotes the positive part of s ∈ R. The same applies to ζ i(t) =

(τi,1, . . . , τi,νi(t), 0, 0, . . .) for the network neurons.

Sources and neurons can fire at any time. The probability of firing one spike for the

external source k during the time interval ]t, t + h] is

ρ̂kh
(
1 + o(1)

)
as h → 0 + . (7.13)

The probability of firing more than one spike (even for different sources or neurons) dur-

ing that time interval is o(h). This implies that the probability for different neurons to

have a spike at the same time is zero. When the external source k fires (say, at time t1), its

spike-counting variable is increased by one:

ν̂k(t1) = ν̂k(t1−) + 1 , (7.14)

and a new time point (time till disappearance of the immediate influence of the new

spike) τ̂k,1(t1) = Θ is inserted in the first position of the “spike history” of the source k,

while all the already listed ones are relabelled by shifting their subscripts by one. That is,

the state variable immediately prior to t1,

ζ̂k(t1−) =
(
τ̂k,1(t1−) , . . . , τ̂k,2(t1−) , . . . , τ̂k,m(t1−) , 0 , 0 , . . .

)
, (7.15)

is updated to become

ζ̂k(t1) =
(
τ̂k,1(t1) = Θ , τ̂k,2(t1) = τ̂k,1(t1−) , . . . , τ̂k,m+1(t1) = τ̂k,m(t1−) , 0 , . . .

)
,

(7.16)

where m = ν̂k(t1−) = ν̂k(t1)− 1.

The state variable ζ i(t) related to the network neuron i evolves in a similar way. The

only difference lies in the probability of firing in the time interval ]t, t + h], which is

ρi(t)h
(
1 + o(1)

)
where ρi(t) is determined by the network state X(t) in a similar fash-
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ion to Eq. (7.1):

ρi(t) = σ

[
ν0 + ∑

j,n
Jijεij(Θ− τj,n) + ∑

k,m
Kik ε̂ik(Θ− τ̂k,m)

]
. (7.17)

In summary, we see that the value of X(·) can change by a jump (firing of a spike), while

between the jumps it varies in a continuous deterministic way.

7.2.2 Markov property

Due to the definition of Θ, the network state X(t) entirely determines the firing rate for

each network neuron at time t using Eq. (7.17), and the firing rate for the external input

k is constant at ρ̂k. Thus, the probability of transition from the current state X(t) = x

(all state variables will be underlined) to another state X(t + h) = x′ after an arbitrary

time increment h > 0 is completely specified by the information contained in X(t). This

means that, for a given event

A =
{

X(t + h1) ∈ B1, . . . , X(t + hm) ∈ Bm
}

, (7.18)

where 0 < h1 < · · · < hm and B1, . . . , Bm are Borel sets, we have

Pr [A | F (t)] = Pr [A |X(t)] , (7.19)

where F (t) denotes the natural filtration (past history up to time t) of the process X(·).

In other words, X(·) is a continuous-time homogeneous piecewise-deterministic Markov

process.

7.2.3 Formalism of piecewise deterministic Markov process

We now adapt notation from Davis (1984) and Jacobsen (2006) to the present study.
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State space and filtration

All sources and neurons have the same “individual state space” E0 defined in Eq. (7.9),

in which each of the respective variables ζ̂k(t) or ζ i(t) evolves. The set E0 is contained

in the infinite-dimensional cube [0, Θ]N. The silent state of a source or neuron, when no

spike has been fired in the recent history (determined by Θ), i.e. all time points are zeros,

is denoted by 0; the silent state for the whole network is 0 := (0, . . . , 0).

The process X(·) takes values in the measurable product space (E, E), where E =

EM+N
0 and E is the product σ-algebra generated by cylindrical sets in E0 with Borel bases.

In the following sections, when considering a given state X(t) = x ∈ E, the variables v̂,

v, ẑ, z will refer to the corresponding values associated with ν̂, ν, ζ̂, ζ, respectively.

Deterministic vector field

Without a stochastic jumps (firing of a spike), the deterministic evolution of the state is

the uniform decrease of the positive components (time points) of x at a unit rate. When

the smallest of them turns into zero, that component stops changing. Consider the state

x = (ẑ, z) ∈ E. The deterministic trajectory of the state variable X(t) starting from x at

time t0 > 0 is denoted by Φ(t− t0, x):

Φ(h, x) =
(
(ẑ1 − h)+ , . . . , (ẑM − h)+ , (z1 − h)+ , . . . , (zN − h)+

)
, (7.20)

where the positive part (·)+ applies to all components of each infinite-dimensional vector

s = (s1, s2, . . .) and s− h = (s1 − h, s2 − h, . . .) for h ∈ R. Note that the specific value of

t0 does not matter here since the process is time homogeneous. For the particular case of

the silent state 0, we have for h ≥ 0

Φ(h, 0) = 0 . (7.21)

In Fig. 7.3, the straight arrows (1), (2) and (5), as well as staying at the origin (3), illustrate

the deterministic evolution of the state.
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Figure 7.3: Example of evolution of the process for the time point of one single source.
Starting from x0 = (s1, s2, 0, . . .) corresponding to two time points, both s1 and s2 decrease
at unit rate until s2 reaches zero (1); then only s1 varies until reaching zero (2). After some
time in the silent state (3), the source fires (4) and a new time point s1 set to Θ starts
decreasing (5).

We define the time-invariant one-sided vector field X at state x such that (Davis 1984)

X f (x) =
∂ f

[
Φ(h, x)

]

∂h
(7.22)

using the right-sided derivative for any given smooth enough real-valued function f :

E → R. Following Sec. 7.2.1, X simply operates on a differentiable function f as

X f (x) =
∂ f (x)
∂u(x)

(7.23)

for x ∈ E, where the vector u(x) = (û1, . . . , ûM, u1, . . . , uN) has components

ûk,m(x) := −1(ẑk,m > 0) , ui,n(x) := −1(zi,n > 0) . (7.24)

We require f in Eq. (7.23) to be path-continuous and path-differentiable (Jacobsen 2006).

Jump times and survivor function

We denote by Tn (n ≥ 0) the jump times of our process, namely each time a spike is

fired in the network (including the external sources). Due to the boundedness of the

stochastic intensities for the neurons and sources, only a finite number of jumps occur
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during a finite time interval, with probability 1. As in Davis (1984), we define the function

λ : E → R+ that determines the probability of any event occurring in the whole network

when the system is in a given state x. It lumps the probabilities of all neurons or sources to

fire a spike (cf. Sec. 7.2.1) by summing up the intensities ρ̂k and ρi in Eq. (7.17) determined

by the state x:

λ(x) = ∑
k

ρ̂k + ∑
i

ρ̃i(x) , (7.25)

where we have defined ρ̃i(x) as the potential of neuron i evaluated according to Eq. (7.17)

when the network is in state x:

ρ̃i(x) := σ

[
ν0 + ∑

j,n
Jijεij(Θ− zj,n) + ∑

k,m
Kikεik(Θ− ẑk,m)

]
. (7.26)

Note that the function λ is clearly bounded according to Eq. (7.2).

Consider the network in a state X(t0) = x at time t0. According to the definition of Φ

in Sec. 7.2.3, the “survival function” at time for h ≥ 0 is given by

F(x, t0 + h) := Pr {no jump in [t0, t0 + h]|X(t0) = x} = exp
(
−

∫ h

0
λ
(
Φ(h′, x)

)
dh′

)
.

(7.27)

Note that the survival function only depends upon the network state x at time t0 and the

time h elapsed since t0, but not upon the specific time t0.

Stochastic transitions

We now introduce some notation to handle more easily the modifications of the lists of

time points at the jump epochs. We define the two following operations on any given

state x = (ẑ, z). First, for a given state x ∈ E and a source index k, x◦,k is the state of E

corresponding to the source k firing: the value ẑk = (ẑk,1, ẑk,2, . . . , ẑk,m, 0, 0, . . .) is replaced

by (Θ, ẑk,1, . . . , ẑk,m−1, ẑk,m, 0, . . .), cf. Eqs. (7.15) and (7.16). This is illustrated by the curved

arrow (4) in Fig. 7.3. Likewise, x•,i modifies the vector zi for neuron i.

The function Q(y, x) : E× E → [0, 1] determines the probability of transition from the
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state x to y, given that a jump from x occurs. For x ∈ E, we have

Q(y, x) =





ρ̂k λ(x)−1 if y = x◦,k ,

ρ̃i(x) λ(x)−1 if y = x•,i ,

0 otherwise.

(7.28)

7.2.4 Description of the generator

From Davis (1984, Theorem 5.5) and Jacobsen (2006, Eq. (7.76)), the (extended) generator

A of our piecewise deterministic process X(·) is defined by

A f (x) = X f (x) + λ(x)
∫ (

f (y)− f (x)
)
Q(dy, x) , (7.29)

for f ∈ F, where the domain F of the generator consists of all bounded functions f : E →
R that are path-continuous and path-differentiable for the deterministic vector field X
(Jacobsen 2006). Using Eqs. (7.23) and (7.28), the expression for the generator applied to

f ∈ F at x ∈ E has the form

A f (x) =
∂ f (x)
∂u(x)

+ ∑
k

ρ̂k

[
f (x◦,k)− f (x)

]
+ ∑

i
ρ̃i(x)

[
f (x•,i)− f (x)

]
. (7.30)

7.3 Stability in the network

We want to know if the piecewise deterministic Markov process X(·) from Sec. 7.2.3 is

ergodic. A positive answer to this question was given in Bremaud and Massoulie (1996,

Massoulie (1998) for a larger class of kernels ε (no requirement for a compact support)

and both linear and non-linear activation functions σ. In particular, the convergence of

the process towards a stationary regime (stable spiking intensities) is ensured by either

the boundedness of the activation function σ or a condition on the strength of the recur-

rent connections otherwise. However, our framework gives a simpler proof of the ergod-

icity for the bounded case and is more general than the process studied in Bremaud and

Massoulie (1996, Massoulie (1998) in the sense that it can be extended to more complex
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models than Hawkes processes (Poisson neurons). We show the positive recurrence of

the silent state, which is visited by the system in finite mean time.

7.3.1 Ergodicity

Consider the silent state 0 = (0, . . . , 0). Starting from an arbitrary state X(t0) = x0 at

time t = t0, there exists a lower bound for the probability to enter 0 at time t = t0 + Θ.

Because the ρ̂k and the function σ are all bounded by Λ, we have according to (7.27)

F(x, t0 + Θ) ≥
(

exp
(
−

∫ t0+Θ

t0

Λ dt
))M+N

= e−Λ(M+N)Θ > 0 . (7.31)

Now consider the network starting at the state x0 at time t = 0. Denote by s∗ the first

time point on the time lattice with span Θ when the network is in the state 0:

s∗ = inf{mΘ : X(mΘ) = 0, m ≥ 1} , (7.32)

and by t∗ the first time the network is in the state 0:

t∗ = inf{t > 0 : X(t) = 0}. (7.33)

Since t∗ ≤ s∗, we have from the uniform lower bound of Eq. (7.31) that, for any state x0

and a given integer m ≥ 1

Pr
{

t∗ ≥ mΘ
∣∣ X(0) = x0

} ≤ Pr
{

s∗ ≥ mΘ
∣∣ X(0) = x0

}

≤
(

1− e−Λ(M+N)Θ
)m

. (7.34)
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This clearly implies that the expected first hitting time of the state 0 is finite:

E
(
t∗

∣∣ X(0) = x0
)

=
∫ ∞

0
Pr

{
t∗ > tΘ

∣∣ X(0) = x0
}

dt

≤ ∑
m≥0

Θ Pr
{

t∗ ≥ mΘ
∣∣ X(0) = x0

}

≤ ∑
m≥0

Θ
(

1− e−Λ(M+N)Θ
)m

= Θ eΛ(M+N)Θ . (7.35)

Thus 0 is a positive recurrent state for our network and clearly Pr{t∗ < ∞ | X(0) = x0} =

1 for any initial state x0. As it is obvious that the Markov process X(·) is aperiodic and

stochastically continuous, it follows that it is strongly ergodic (Borovkov 1998, Th.1 in

§18). This implies that there exists a stationary distribution Π on E for the process X(·).

7.3.2 Stationary distribution

In the special case of a linear activation function σ, the equilibrium firing rate is the same

for any PSP kernels, ε̂ik and εij (Hawkes 1971). However, the stationary distribution Π in

the state space E may depend on these parameters. For a function f in the domain F of

the generator, we have (Jacobsen 2006, pp. 184)

∫

E
A f (x)Π(dx) = 0 . (7.36)

This functional equation allows us in principle to determine Π in the general case, but

we will now focus on a particular illustrative case.

Single neuron with one feedback self-connection

Consider a single neuron with a feedback self-connection with weight J and for the sake

of simplicity without input connection. The intensity function of the neuron is simply

denoted by ρ̃(x). In other words, the neuron is driven by the spontaneous activity related

to ν0 and its own past activity. The state x of the single neuron evolves in E0, which will
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Figure 7.4: Illustration of the intervals considered when evaluating the transitions be-
tween simplices.

be considered for convenience as a union of finite-dimensional simplices

E(n)
0 := {(s1, . . . , sn) ∈ [0, Θ]n : s1 > · · · > sn > 0} (7.37)

so that E0 =
⋃

n≥0 E(n)
0 . The case n = 0 corresponds to the silent state and we use the

convention E(0)
0 = 0. We will assume that the stationary distribution has a density ψn on

each simplex E(n)
0 , n ≥ 1, with respect to the corresponding volume (Lebesgue) measure,

and an atom at the silent state 0. We further assume that each ψn has well-defined finite

limits on the boundaries of the corresponding simplex. This implies in particular that the

densities are bounded.

Fix an arbitrary x ∈]0, Θ[⊆ E(1)
0 and consider two scalars h → 0+ and δ → 0+ such

that Ix,h :=]x, x + h[⊂ E(1)
0 and assuming w.l.o.g. that also Ix+δ,h ⊂ E(1)

0 , as illustrated in

Fig. 7.4. We have

∫

Ix,h

ψ1(x′) dx′ = Pr{X(t) ∈ Ix,h} (7.38)

= Pr{X(t + δ) ∈ Ix,h}
=

∫

E0

Pr
{

X(t + δ) ∈ Ix,h
∣∣ X(t) = x′

}
Pr{X(t) ∈ dx′} .

For the integrand in the last integral to be non-zero, we need to have either
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X(t) ∈ Ix+δ,h (7.39a)

or X(t) ∈ (Ix,h×]0, δ[) ⊂ E(2)
0 (7.39b)

or . . . (7.39c)

and no jump happened during the time interval ]t, t + δ[; note that we have considered δ

sufficiently small such that ]x, x + h[
⋂

[Θ− δ, Θ] = ∅. In the first case of Eq. (7.39a), the

corresponding contribution to the integral is given by

∫

Ix+δ,h

Pr
{

no jump during ]t, t + δ[
∣∣ X(t) = x′

}
Pr{X(t) ∈ dx′} (7.40)

=
∫

Ix+δ,h

exp
[
−

∫ δ

0
ρ̃(x′ − t′)dt′

]
ψ1(x′) dx′ ,

where x′ = (x′, 0, 0, . . .). Using continuity of ρ̃, we see that, for x′ ∈ Ix+δ,h, t′ ∈]0, δ[, one

has ρ̃(x′ − t′) = ρ̃(x) + o(1). It follows that the integral in the rhs of Eq. (7.39a) is equal to

[
1− (

ρ̃(x) + o(1)
)
δ
] ∫

Ix+δ,h

ψ1(x′) dx′ =
∫

Ix+δ,h

ψ1(x′) dx′ − ρ̃(x) ψ1(x) hδ + o(hδ) , (7.41)

after constraining the evaluation up to the order hδ. Furthermore, using our assumption

of continuity of ψ2 in the closure of E(2)
0 , we see that the corresponding contribution to

the rhs of Eq. (7.38) when Eq. (7.39b) holds is

∫

Ix+δ,h×]0,delta[
Pr

{
no jump during ]t, t + δ[

∣∣ X(t) = x′
}

Pr{X(t) ∈ dx′} (7.42)

=
∫

Ix+δ,h×]0,delta[
exp

[
−

∫ δ

0
ρ̃(x′ − t′)dt′

]
ψ2(z′1, z′2) dz′1 dz′2

=
(
1 + o(1)

)
ψ2(x, 0+) hδ

with x′ = (z′1, z′2, 0, . . .). Other contributions involving E(3)
0 , . . . are o(hδ). Putting it all

together, we obtain the following relation by rewriting Eq. (7.38):

∫

Ix,h

ψ1(x′) dx′ =
∫

Ix+δ,h

ψ1(x′) dx′ − ρ̃(x) ψ1(x) hδ + ψ2(x, 0+) hδ + o(hδ) . (7.43)
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Subtracting the first term on the rhs from the lhs, we have

∫ x+h

x
ψ1(x′) dx′ −

∫ x+δ+h

x+δ
ψ1(x′) dx′ =

∫ x+h

x
[ψ1(x′)− ψ1(x′ + δ)] dx′ , (7.44)

which gives after reorganising Eq. (7.43) and dividing by hδ

1
h

∫ x+h

x

ψ1(x′)− ψ1(x′ + δ)
δ

dx′ = −ρ̃(x) ψ1(x) + ψ2(x, 0+) + o(1) . (7.45)

Finally, assuming that ψ1 is continuously differentiable on E(1)
0 , we obtain the relation

ψ′1(x) = ρ̃(x) ψ1(x)− ψ2(x, 0+) , x = (x, 0, 0, . . . ) . (7.46)

Similar calculations for x = (z1, . . . , zn, 0, . . .) and ψn, n ≥ 1, lead to

∂ψn(z1, . . . , zn)
∂un

= lim
h→0+

ψn(z1 + h, . . . , zn + h)
h

(7.47)

= ρ̃(x) ψn(z1, . . . , zn)− ψn+1(z1, . . . , zn, 0+) ,

where un is the n-dimensional vector with all elements equal to one: un = (1, . . . , 1).

Now considering the atom 0 for the stationary distribution Π, we proceed similarly:

Π({0}) = Pr{X(t) = 0} (7.48)

= Pr{X(t + δ) = 0}
=

∫

E0

Pr
{

X(t + δ) = 0
∣∣ X(t) = x′

}
Pr{X(t) ∈ dx′} .

Non-zero contributions to the integrand of the rhs correspond to

X(t) = 0 (7.49)

or X(t) ∈]0, δ[⊂ E(1)
0

or X(t) ∈ (
]0, δ[2

) ⋂
E(2)

0

or . . .
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and no jump happened during the time interval ]t, t + δ[. The contribution in the first

case is given by

exp
[
−

∫ δ

0
ρ̃(0)dt′

]
Π({0}) =

[
1− (

ρ̃(0) + o(1)
)

δ
]

Π({0}) . (7.50)

The contribution corresponding to X(t) ∈ E(n)
0 in Eq. (7.49) is

∫

(]0,δ[n)
⋂

E(n)
0

Pr
{

no jump during ]t, t + δ[
∣∣ X(t) = x′

}
Pr{X(t) ∈ dx′} (7.51)

=
∫

(]0,δ[n)
⋂

E(n)
0

exp
[
−

∫ δ

0
ρ̃
(
(x′ − t′)+

)
dt′

]
ψn(z′1, . . . , z′n) dz′1 . . . dz′n

=
[
1− (

ρ̃(0) + o(1)
)

δ
] (

1 + o(1)
) δn

n!
ψn(0, . . . , 0) ,

using the assumption of continuity for ρ̃ and ψn. Taking the leading order in δ for the

expression in Eq. (7.48), we obtain

Π({0}) =
[
1− (

1 + o(1)
)

δ ρ̃(0)
]

Π({0}) + δ ψ1(0+) + o(δ) . (7.52)

Reorganising, dividing by δ and taking the limit when δ → 0+ finally leads to

ρ̃(0) Π({0}) = ψ1(0+) . (7.53)

We finally give an example about how to use Eqs. (7.46), (7.47) and (7.53) to evaluate

the stationary densities ψn of the process on each simplex E(n)
0 , n ≥ 1. We can construct a

truncated process Xn(·) that behaves similarly to X(·) when the number of spikes ν(t) <

n for a given n > 1 and that does not fire a spike when ν(t) = n. In this way, . Using the

fact that X(·) has a fast-decaying probability of reaching E(n)
0 for large n, it can be shown

that the stationary densities corresponding to the truncated process Xn(·) converges more

than exponentially fast when n → ∞ towards those for X(·). This allows us to use the

“boundary” condition ψn+1 = 0 to evaluate ψn′ for n′ ≤ n.
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7.4 Remarks on the framework presented in this chapter

These preliminary results showed that this framework is fitted to studying the stationary

properties of the network. Using the generator in Eq. (7.30), we hope to obtain more in-

sight into the evolution of the stochastic process. This framework is a tentative to examine

the pairwise correlation structure and its implications for elaborate neuron models than

the Poisson neuron (Sec. 2.2.1). The present framework could be generalised to any neu-

ron model for which the effect of a pre-synaptic spike vanishes after a given period (short-

term memory): the key consists in expressing the probability of firing for each neuron

depends upon the past spiking history in the network. For integrate-and-fire neurons,

other directions of work to achieve similar goals are currently explored (Moreno-Bote

et al. 2008). The derivation of consistency equations for the firing rates and spike-time

correlations similar to Eqs. (3.22a-3.22c) for more elaborated neuron models is crucial to

analyse the effect of STDP.



Chapter 8

Conclusion

8.1 Summary of original contributions and results

IN THIS thesis a theoretical framework is presented to investigate the effect of STDP

in recurrently connected neuronal networks. The analysis has been carried out for

particular network configurations in order to understand how the weight dynamics re-

sults from an interplay between the neuronal properties, the network connectivity, the

input structure and the learning parameters. This led to determining conditions on the

parameters for which STDP generates neuronal specialisation in the network in a fashion

that corresponds to self-organisation.

8.1.1 Theoretical framework to study learning dynamics

The mathematical framework for analysing the weight dynamics induced by STDP pre-

sented in Chapter 3 relies on the Poisson neuron model (Kempter et al. 1999) and can ac-

count for any arbitrary (excitatory) connectivity topology and input structure. The STDP

rule describes the change in synaptic weight resulting from each spike and pair of pre-

and post-synaptic spikes. By averaging over the spike statistics, we obtain differential

equations to describe the evolution of the weights (first stochastic moment). In addition

to rate-based learning, STDP involve an additional term related to the spike-time covari-

ance at a short time scale between the pre- and post-synaptic spike trains. In this sense,

STDP extends the rate-based description of synaptic plasticity.

The analysis presented in this thesis incorporates the effect of the post-synaptic re-

sponse, in this way extending previous work (Burkitt et al. 2007); however, dendritic
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delays (Senn 2002) are ignored. For richer external input spike trains than the delta-

correlated pools considered in Sec. 3.5, the post-synaptic response may play an important

role (Sprekeler et al. 2007). The derivation of the covariance self-consistency equations

Eqs. (3.18) and (3.20) is a cornerstone of this analysis, which was made tractable by us-

ing the Poisson neuron model (Kempter et al. 1999). These equations are crucial for the

evaluation of spike-driven effects of STDP in recurrent networks, which cannot be cap-

tured by rate-based learning. The evolution of the input weights for slow learning is

described by a dynamical system, which is analyzed in terms of fixed point and stabil-

ity in order to predict the asymptotic behaviour of the weights. This framework targets

network dynamics beyond the mean-field approach in order to study the emergence of a

network structure due to external stimulation. Most of the analysis (Chapters 3-5) focuses

on additive STDP in order to keep the analysis of the weight specialisation as tractable as

possible, but weight-dependent STDP is addressed in Chapter 6.

8.1.2 Weight specialisation in recurrent networks

Both stability and competition for the weights were obtained for a broad range of learning

parameters, in all cases studied in Chapters 4, 5 and 6. This interesting combination of

behaviours arises from a homeostatic equilibrium, in which the mean incoming weight

is constrained to a stable value for each neuron, and a splitting of the weight distribution

occurs on a smaller time scale depending on the input correlations (for small correlation

levels).

The conditions on the learning parameters that ensure the homeostatic equilibrium

for the weights, irrespective of the input stimulation level, correspond to STDP induc-

ing more depression than potentiation for uncorrelated inputs, i.e. the condition W̃ < 0.

This is is in agreement with earlier numerical studies using integrate-and-fire neurons

where the rate-based learning terms win and wout are absent (Song et al. 2000, Song and

Abbott 2001, Morrison et al. 2007). For additive STDP, win and wout are necessary to

obtain stability; when using weight-dependent STDP that induces alone stability, these

rate-based terms modify but do not suppress the equilibrium of the mean weight. The

weight equilibrium enforces the stabilisation of the firing rate for each neuron. The con-
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clusions for the fixed point of the firing rates are valid for any neuron model, provided the

correlation structure between the neurons is sufficiently weak. The firing rates are then

all constrained to the same equilibrium value due to the learning equation Eq. (3.22b).

The stability conditions derived using the Poisson neuron model are expected to hold

equally well for other neuron models with excitatory synaptic weights, although the

actual equilibrium values would then depend on the neuronal activation parameters.

Inhomogeneities in the neuronal properties and/or learning parameters would induce

inhomogeneities in the equilibrium values, but not impair the equilibria.

When the inputs have spike-time correlations, the initial weight distribution is, in

general, modified to comply with the predicted specialisation scheme, which depends

upon the input correlation structure embodied in Ĉ, cf. Eq. (3.5). An exception to this

expected behaviour only occurs for initial conditions in which the weights are already

dramatically specialised in the “wrong” way or there are large differences between input

firing rates, i.e., that would contradict and over-ride the specialisation trend induced by

the spike-time correlations. This was shown for input selectivity, for which STDP poten-

tiates, in general, synaptic connections coming from more correlated inputs (Sec. 4.3.4).

When the weight drift is small, such as during symmetry breaking for the input

weights, the recurrent connections may play a determining role, even when they are

non-plastic. For example, excitatory recurrent connections may cause the neurons to spe-

cialise in the same way, as illustrated in Sec. 4.4. This group effect takes place at the

beginning of learning; when the neurons become sufficiently specialised, the drift takes

over and reinforces the initial symmetry breaking because of the corresponding instabil-

ity of the weight dynamics.

In order to obtain a non-trivial specialisation for the recurrent weights, a network

topology is necessary where different neuron groups receive distinct inputs with correla-

tion. Otherwise, the weight dynamics is equivalent to that in a network with no external

inputs. When conditions are met, such as those described in Sec. 5.5.1 and 5.5.2, the

individual weights exhibit strong competition that can result in the emergence of a feed-

forward synaptic pathway or the strengthening of within-group connections for plastic
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recurrent connections. The weight specialisation is determined by the interplay between

the correlation structure of the external inputs, the STDP window function W and the PSP

response kernel ε, in contrast to the case of input selectivity, where the details of W, ε and

the delays are not important. The different schemes of potentiation vs. depression that

were observed depending upon the sign and magnitude of ĈW∗ζ may explain the con-

tradictory behaviours observed in numerical simulations (Izhikevich et al. 2004, Iglesias

et al. 2005), which generated debate about whether STDP induces more or less synchro-

nisation in recurrent networks.

In the generalised case where the network receives external inputs from more than

two pools (with small within-pool spike-time correlations), the following behaviours are

expected:

• For sufficiently large input spike-time correlations, the splitting of the weight dis-

tribution depends on the input correlation structure, irrespective of (not too large)

inhomogeneities in the input firing rates.

• Weights coming from input pools with stronger spike-time correlations are poten-

tiated.

• The specialisation of input weights corresponds to splitting between the input

pools.

• Neuron groups that receive strong (positive) spike-time correlation will experience

a potentiation of their outgoing weights, provided the conditions on W, ε and the

recurrent delays in Sec. 5.5 are met.

A learning rate η = 5× 10−7 corresponds to a convergence towards the homeostatic

equilibrium in hundreds of seconds, similar to Burkitt et al. (2007), and a development of

a weight structure in tens of thousands of seconds (i.e., hours). Similar results were ob-

tained with faster learning rates (η = 10−5), provided that the consequent noise does not

destroy the homeostatic equilibrium. More noise also reduces the dependence upon the
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initial conditions. Our results show that, even for very small learning rates, the combina-

tion of equilibrium and diverging behaviour leads to the emergence of a weight structure.

8.1.3 Weight-dependence for STDP

Weight-dependent versions of STDP modify the weight dynamics compared to additive

STDP, such as the homeostatic equilibrium and the weight distribution for uncorrelated

inputs (van Rossum et al. 2000, Gütig et al. 2003, Morrison et al. 2007, Morrison et al.

2008). However, when starting from an initial homogeneous distribution of recurrent

weights and for correlated inputs, the weights split in a similar manner to the additive

model so long as the weight competition is strong enough. This was observed for STDP

with a weak non-linearity related to the weight dependence, i.e., almost additive STDP.

The rate-based learning constants win and wout were necessary in the analysis using

additive STDP (Chapters 4 and 5) to obtain homeostatic equilibrium for the weights,

which allowed a weight structure to emerge that resulted from the input spike-time cor-

relation. They do not impair the local character of the learning rule. We expect the stabil-

ity conclusions to hold in most cases for similar stabilising mechanisms, such as weight

scaling (van Rossum et al. 2000), provided the combination with STDP leads to effective

homeostatic equilibrium for the weights.

8.1.4 Self-organisation in visual cortex

The results presented in this thesis can be linked, for example, to the emergence of ocular-

dominance areas in the primary visual cortex, when neuronal circuits specialise to one

ocular pathway (left or right eye) in the first weeks of life of new-born mammals (Swin-

dale 1996). It was shown that the assumption of more correlation for spike trains within

each ocular pathway than between the two pathways is sufficient for STDP to cause the

emergence of specialised recurrently connected areas sensitive to the inputs from only

one eye, as illustrated in Fig. 8.1. STDP thus provides a framework to explain the emer-

gence of ocular dominance (Fig. 8.2). Higher-order effects due to the recurrent connec-

tions may combine with non-linearities in other STDP models (Gütig et al. 2003, Burkitt
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a b

Figure 8.1: Self-organisation scheme. The initially homogeneous weight distribution is modified
by STDP to become asymptotically bimodal depending on the input stimulation. Neuron groups
emerge in response to the input correlation structure and specialise to only one of the correlated
input pathways.

et al. 2004, Appleby and Elliott 2006) or specific input structures (e.g., Leibold et al 2002)

to introduce further complexity in the weight dynamics.

Our results are intended to shed analytical light on previous work that used numeri-

cal simulations to show the emergence of a cortical-like organisation due to STDP (Choe

and Miikkulainen 1998, Wenisch et al. 2005). The present study has made minimal as-

sumptions about the network topology and the input firing rate and correlation struc-

tures in order to explore the input specialisation behaviour in a recurrent network. Fur-

ther study of the weight dynamics is required in a more detailed network topology that

takes into account sptaial structure in agreement to that in the cortex, such as short-range

excitatory and medium-range inhibitory connections in the visual cortex (von der Mals-

burg 1973). The results presented here have some bearing on previous work on ocular

dominance (von der Malsburg 1973, Swindale 1996, Elliott and Shadbolt 1999, Goodhill

2007); most of the models proposed or cited by von der Malsburg (1973) and Swindale

(1996) interestingly combine the same dynamical ingredients as those shown here to be

generated by STDP, namely a combination of stabilisation and divergence.
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Figure 8.2: Ocular dominance columns in macaque monkey. The picture shows the pattern over
nearly the complete visual hemifield in a macaque monkey. The outer boundaries of the pattern
correspond to the vertical midline of the visual field; F indicates the fovea; OD the optic disc, and
MS the monocular segment. The pattern is a drawing made from a montage of sections stained
for cytochrome oxidase in a monkey which had lost one eye over a year prior to sacrifice. Taken
from Florence and Kaas (1992).

8.2 Implications for neuronal information processing

Our results show the importance of spike-time correlations in generating a structure

amongst synaptic weights, in agreement with previous studies (Kempter et al. 1999,

Gütig et al. 2003, Song et al. 2000, Song and Abbott 2001). The time scale associated

with these correlations are of the order of milliseconds. Experimental studies involving

time bins of several tens of milliseconds (Tang et al. 2008, Carrillo-Reid et al. 2009) may

thus only capture a portion of the relevant spike-timing information. The role played by

these correlations in the encoding of neuronal information is still under debate and active

investigation. It was shown that the spiking dynamics of integrate-and-fire neurons, ei-

ther isolated or within networks, are sensitive to the correlation structure of their inputs

(Salinas and Sejnowski 2002, Burkitt 2006, Moreno-Bote et al. 2008, Kriener et al. 2008).

A better understanding of the interplay between the learning and spiking dynamics is a

promising way of providing insight into the encoding of neuronal information.

The learning dynamics are determined by an interplay between STDP, the spike-time

correlation structure and the network topology. The correlations themselves depend

upon the input correlation structure and the neuronal mechanisms (especially the PSP

response in the framework presented here). This elaborate self-organisation scheme is

capable of rich behaviour. We have shown in Sec. 6.3 how STDP can encode into the
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weight structure the spike-time correlation structure of inputs stimulating a single neu-

ron. Namely, for homogeneous pools with distinct levels of within-pool correlation,

weights can be sorted in increasing order with respect to the correlation of their corre-

sponding pool. This can be extended to an arbitrary correlation structure and the algo-

rithm performed by STDP then has the flavour of principal component analysis (PCA),

as was suggested previously by van Rossum and Turrigiano (2001). In this sense, STDP

extends Oja’s rule that relies on rate-based learning (Oja 1982). These preliminary results

nicely link the modelling at the physiological level to machine learning and sheds light

on the functional properties of STDP in neuronal networks. Further studies incorporating

networks with recurrent connections should provide interesting developments to inves-

tigate how neurons process spiking information in a self-organizing distributed fashion

(Kohonen 1982). The ability of STDP to preprocess temporal inputs has already received

support (Carnell 2009), when applied to the lateral connections of a network that acts as a

reservoir of functions to extract information on the inputs, a.k.a. the liquid state machine

(Maass 1997, Maass et al. 2002). To close the loop, it is also necessary to investigate the

influence of the weight structure resulting from learning upon the spiking dynamics in

the network (Amit and Brunel 1997). In particular, the spike-time correlation described in

this study corresponds to fast variations of the probability of firing of the neurons, such

as that required, for example, for image recognition (Thorpe et al. 2002).

8.3 Future research directions

Non-linear neuronal activation mechanisms may play a significant role in determining

the neuron covariance structure. The framework developed in Chapter 7 aims to investi-

gate the effect of non-linearities in the neuronal activation mechanisms upon the network

spiking dynamics. Another challenge is to apply this framework to more complex neuron

models, such as a Poisson neuron with non-linear activation function and the integrate-

and-fire neuron (Burkitt 2006, Moreno-Bote et al. 2008). Preliminary simulation results

(not presented in this thesis) satisfactorily showed that networks of integrate-and-fire

neurons behave for some parameters according to the prediction made using the Poisson
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neuron model.

The present study was constrained to using only narrow distributions of axonal de-

lays and did not investigate the evolution of synchronisation between neurons. Previous

work showed that STDP can induce non-trivial synchrony structure between neurons

(Câteau et al. 2008) and that dendritic delays play an important role (Senn 2002,Lubenov

and Siapas 2008). The present framework can be adapted to incorporate these aspects

with a view to studying neuronal synchrony in networks (Izhikevich et al. 2004, Iglesias

et al. 2005, Câteau et al. 2008). Note that the shift of STDP in Sec. 5.5.2 is equivalent to

the introduction of dendritic delays, while keeping the sum of the axonal and dendritic

delay constant.

The introduction of a population of inhibitory neurons as well as a more detailed

network connectivity (e.g., short-range excitatory and medium-range inhibitory connec-

tions) would provide a further step towards a more realistic model of the visual cortex

(Swindale 1996). Richer input correlation structures, such as oscillatory firing rates or

spike patterns, will be of interest in applying our framework to self-organisation in the

auditory pathways.





Appendix A

Calculations for chapter 3

A.1 Remarks on the input covariance structure

A.1.1 Definition of the external input covariance

In Eq. (3.3) the following definition for the covariance between two external inputs k and

l is used

Cov[Ŝk(t), Ŝl(t + u)] :=
〈
Ŝk(t)Ŝk(t + u)

〉 − 〈
Ŝk(t)

〉〈
Ŝl(t + u)

〉
. (A.1)

The inputs Ŝk are second-order stationary processes, which means that these functions

Cov[Ŝk(t), Ŝl(t + u)] are constant in t. Similar to Hawkes (1971), we take the convention

that all the Cov[Ŝk(t), Ŝl(t + u)] are continuous at u = 0, which means that they do not

include the atomic discontinuity for u = 0 and k = l due to the autocorrelation of the

stochastic point-processes Ŝk. We refer to ‘complete covariance’ for the second moment

that includes the extra contribution 〈Ŝk(t)〉δ(u) for each pair k = l, where δ is the Dirac

delta function and 〈Ŝk(t)〉 the constant firing rate.

This convention aims to discriminate between the intrinsic covariance resulting from

autocorrelation (always present even for uncorrelated inputs) and the correlation struc-

ture that encodes spike synchronization. For uncorrelated inputs, the matrix Ĉ(t, u) de-

fined in Eq. (3.3) satisfies Ĉ(t, u) = 0 for all u ∈ R. Therefore, it can be related to the

spike-timing information conveyed by the external inputs and encoded in their covari-

ance. However, in the derivation of the self-consistency covariance equations Eq. (3.18),

we incorporate terms related to the autocorrelation of the external inputs in order to as-

147
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sess their impact on the learning dynamics.

A.1.2 Properties of the matrix ĈW

Since the stochastic processes Ŝk(t) have time-invariant first and second stochastic mo-

ments, we have 〈Ŝk(t)〉 = const. and

〈
Ŝk(t) Ŝl(t + u)

〉
=

〈
Ŝl(t) Ŝk(t− u)

〉
(A.2)

for all indices k and l, which implies Ĉ(t, u) = ĈT(t,−u) because the input firing rates

〈Ŝk(t)〉 are constant for all k. When convoluting with a given kernel Ψ(t), we obtain

∫ +∞

−∞
Ψ(−u) Ĉ(t, u) du = −

∫ −∞

+∞
Ψ(u) Ĉ(t,−u) du (A.3)

=
∫ +∞

−∞
Ψ(u) ĈT(t, u) du ,

where we have used a change of variable u → −u. In particular, this implies that ĈV =

(ĈW)T for the time-reverse of the STDP window function V(u) = W(−u).

Moreover, for homogeneous pairwise correlation of inputs, we have

〈
Ŝk(t) Ŝl(t + u)

〉
=

〈
Ŝl(t) Ŝk(t + u)

〉
, (A.4)

which implies that the function u 7→ 〈Ŝk(t)Ŝl(t + u)〉 is symmetric in u and thus the

matrix ĈW is symmetric in this case.

A.2 Neuron-to-input covariance consistency equation

In this appendix we derive the self-consistency equations for the covariance coefficients

presented in Sec. 3.4.1, which leads to Eq. (3.18). This analysis includes the spike-triggering

effects induced by the autocorrelation of the external inputs and of the neurons (Kempter

et al. 1999), which were sometimes neglected (Burkitt et al. 2007). In addition, we incor-

porate the fine-timing effects such as delays and the time course of the PSP response.



A.2 Neuron-to-input covariance consistency equation 149

The expression for the time-average covariance coefficient Fik in Eq. (3.3) arises from

the following definition equivalent to (A.1)

Cov[Si(t), Ŝk(t + u)] :=
〈
Si(t) Ŝk(t + u)

〉 − 〈
Si(t)

〉〈
Ŝk(t + u)

〉
. (A.5)

We consider 〈Ŝk(t)〉 to be constant in time, which implies that the instantaneous firing

rate 〈Si(t)〉 for neuron i is quasi-constant due to the slow variation of the weights. The

last term in the above expression reduces to νi(t)ν̂k(t) in Eq. (3.3).

A.2.1 Evaluation of the covariance using the past spiking history

The analysis presented here is based upon that of Hawkes processes (Hawkes 1971).

Hawkes processes are stationary second-order processes, and the stationary property

strictly holds here for fixed weights Kik(t) (Jij being constant), which we assume in the

remainder of this appendix (their dependence upon t will be suppressed here).

The pairwise neuron-to-input correlation 〈Si(t)Ŝk(t + u)〉 can be evaluated using the

same “stochastic expansion” as Kempter et al. (1999) and Burkitt et al. (2007, Sec. 3.4). It

consists of using the definition of the intensity function ρi(t) (cf. Eq. (2.1)) and depends

on the past activity of the external inputs and of the neurons,

〈
Si(t) Ŝk(t + u)

〉
=

〈
ρi(t) Ŝk(t + u)

〉
. (A.6)

However, this equality hides effects induced by autocorrelation, which arise since ρi(t)

has an implicit dependence upon Ŝk.

A.2.2 Spike-triggering effect

The expression of ρi(t) in Eq. (2.1) can be written as

ρi(t) = ν0 + ∑
j

Jij
(
ε ∗ Sj

)
(t− dij) + ∑

l
Kil

(
ε ∗ Ŝl

)
(t− d̂il) . (A.7)
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When l = k, an extra contribution in Eq. (A.6) due to the autocorrelation of the external

input k needs to be taken into account, since this term is defined not to be included in

Cov[Ŝk(t), Ŝl(t′)] for k = l and t = t′ (cf. Eq. (A.1)), as discussed in Appendix A.1.1.

When substituting Eq. (A.7) into Eq. (A.6), the term corresponding to k = l is

∫
ε(r) Ŝk(t− d̂ik − r) Ŝk(t + u) dr (A.8)

and taking the ensemble average 〈· · · 〉 leads to

∫
ε(r)

〈
Ŝk(t− d̂ik − r) Ŝk(t + u)

〉
dr +

∫
ε(r)

〈
Ŝk(t + u)

〉
δ(u + r + d̂ik) dr , (A.9)

where δ denotes the Dirac delta function. The second term of Eq. (A.9) is the spike-

triggering effect: each pre-synaptic spike from input k induces an extra contribution due

to the autocorrelation of input k. The integral in r and the ensemble average brackets

〈· · · 〉 were swapped (Fubini theorem) in order to obtain Eq. (A.9), and ε can be taken

out of the angular brackets since it is a deterministic function. The spike-triggering effect

occurs for t− r− d̂ik = t + u, i.e., r + u + d̂ik = 0, and it reduces to

ε(−u− d̂ik)
〈
Ŝk(t + u)

〉
. (A.10)

Taking this spike-triggering effect into account, Eq. (A.6) becomes

〈
Si(t) Ŝk(t + u)

〉
= ν0

〈
Ŝk(t + u)

〉
(A.11)

+ ∑
j

Jij

∫ +∞

−∞
ε(r)

〈
Sj(t− r− dij) Ŝk(t + u)

〉
dr

+ ∑
l

Kil

∫ +∞

−∞
ε(r)

〈
Ŝl(t− r− d̂il)Ŝk(t + u)

〉
dr

+Kik ε(−u− d̂ik)
〈
Ŝk(t + u)

〉
.
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A.2.3 Time-averaging

We substitute the equalities (A.11) and (3.15) in equation (A.5) to express Cov[Si(t′), Ŝk(t′+

u)]

Cov[Si(t′), Ŝk(t′ + u)] (A.12)

= ∑
j

Jij

∫
ε(r) Cov[Si(t′ − r− dij), Ŝk(t′ + u)] dr

+ ∑
l

Kil

∫
ε(r) Cov[Ŝl(t′ − r− d̂il), Ŝk(t′ + u)] dr

+Kik ε(−u− d̂ik)
〈
Ŝk(t′ + u)

〉
.

Then we integrate in t′ over the time interval [t− T, t] with T much larger than the time

scale of the activation mechanisms, so that we can neglect the impact of the two changes

of variables t′ → t′ + r + dij, t′ → t′ + r + d̂il and t′ → t′ − u, for the terms in the rhs of

Eq. (A.12) resp., as Kempter et al. (1999).

∫
Cov[Si(t′), Ŝk(t′ + u)] dt′ (A.13)

= ∑
j

Jij

∫ ∫
ε(r)Cov[Si(t′), Ŝk(t′ + u + r + dij)] dr dt′

+ ∑
l

Kil

∫ ∫
ε(r)Cov[Ŝl(t′), Ŝk(t′ + u + r + d̂il)] dr dt′

+Kik

∫
ε(−u− d̂ik)

〈
Ŝk(t′)

〉
dt′ .

Ignoring the slight modifications caused by the changes of variables in t′, the integration

bounds are t′ ∈ [t− T, t] and r ∈ R. After the further changes of variables r → r − dij

and r → r− d̂il , we obtain

Fik(t, u) = ∑
j

Jij

∫
ε(r− dij)Fjk(t, u + r) dr (A.14)

+ ∑
l

Kil

∫
ε(r− d̂il)Ĉlk(t, u + r) dr

+Kik ε(−u− d̂ik) ν̂k(t) ,
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where we have used the time-averaged firing rates and covariances defined in equations

(3.2), (3.3) and (3.5).

A.2.4 Use of the Fourier transform

The Fourier operator F between the domains of u and ω for a given function f (i is the

complex root of −1) is given by

F f (ω) :=
∫ +∞

−∞
f (u) exp(−iωu) du . (A.15)

We evaluate the Fourier transformFF(ω) of F(t, u) using matrix notation and Eq. (A.14),

for fixed t,

FF(ω) = J(ω)Fε(−ω)FF(ω) + K(ω)Fε(−ω)F Ĉ(ω) + K(ω)Fε(−ω) diag
(
ν̂
)

,

(A.16)

where we defined Kik(ω) := Kik exp(id̂ikω) and Jij(ω) := Jij exp(idijω); diag(X) is the

diagonal matrix whose diagonal elements are the vector X.

A.2.5 Sharp distribution of delays

In order to simplify the expressions for K and J in Eq. (A.16), we now assume that all the

recurrent delays are identical (dij = d) and all the input delays are identical (d̂ik = d̂). This

is a good approximation for sharp distributions of each type of delay. To obtainFFW(ω)

(FW(t) is given in Eq. (3.3)), we multiply Eq. (A.16) by exp(−id̂ω)FW(−ω),

FFW(ω) = J(ω)Fε(−ω)FFW(ω) (A.17)

+ KF (
W ∗ ε

)
(−ω)F Ĉ(ω)

+ KF (
W ∗ ε

)
(−ω) diag

(
ν̂
)

,
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where K(0) = K. The expression for FFW(ω) is

FFW(ω) =
[
1N − J(ω)Fε(−ω)

]−1 (A.18)
[
KF ĈW∗ε(ω) + F (

W ∗ ε
)
(−ω) K diag

(
ν̂
)]

,

similar to that given in Hawkes (1971, Eq. (21)).

Expanding the inverse [1N − J(ω)Fε(−ω)]−1 in a power series and taking the in-

verse Fourier transform of Eq. (A.18), FW(t) can be rigorously expressed

FW(t) = ∑
n≥0

Jn K ĈW∗ε∗ε
{n}
d (t) (A.19)

+ ∑
n≥0

[
W ∗ ε ∗ ε

{n}
d

]
(0) Jn K diag

(
ν̂(t)

)
,

where εd(t) := ε(t − d) and ε
{n}
d is the nth iterated self-convolution of εd. We use the

convention W ∗ ε ∗ ε
{0}
d = W ∗ ε. The two series are well defined for any PSP kernel ε

provided all eigenvalues of the weight matrix J have a modulus strictly less than one.

Note that the spike-triggering effect is of order M−1 compared to the remainder of the

synaptic influx for each neuron (in the case of full input connectivity), embodied by the

presence of diag(ν̂) in the last term of Eq. (A.19).

A.2.6 Impact of synaptic mechanisms on the covariance structure

When incorporating the effect of the PSP kernel ε and of the recurrent delay d, the input

covariance Ĉ(t, u) in Eq. (A.19) is convolved with W ∗ ε ∗ ε
{n}
d and not W alone. This im-

plies that the separation between depression and potentiation for W ∗ ε is slightly shifted

to the right compared to that of W, as illustrated in Fig. 3.2. Consequently, an input

spike that arrives almost immediately after the neuron fires does not cause depression

but rather potentiation.

For homogeneous delta-correlated inputs with correlation strength ĉav and firing rate
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ν̂av (cf. Sec. 3.5), we have

ĈW∗ε∗ε
{n}
d = ĉav ν̂av

[
W ∗ ε ∗ ε

{n}
d

]
(0) . (A.20)

Then,
[
W ∗ ε ∗ ε

{n}
d

]
(0) > 0 for all n ≥ 0 provided W(u) ≥ 0 for u < 0, as described

in Sec. 2.3. This means that delta-correlated inputs always induce non-zero correlation

coefficients ĈW∗ε and thus a non-zero correlation structure FW in the network. This pro-

vides a finer approximation than in Burkitt et al. (2007) and contrasts with the predictions

stated in that previous paper, i.e., uncorrelated inputs will induce no correlation structure

within the network. Note that the spike-triggering effect is always positive.

The terms of the series for n ≥ 1 in Eq. (A.19) arise due to the recurrent connections.

Only a finite number of terms are non-zero, since ε
{n}
d vanishes uniformly when n → ∞

provided ε is not a Dirac delta function (i.e., has a finite time course), and the series

reduces to a polynomial in J.

A.2.7 Short-duration PSPs and short recurrent delays

In general, the expression in Eq. (A.19) is not tractable. However, we can approximate the

solution FFW in Eq. (A.18) by making the further assumptions that d is small compared

to the time scale of W and that ε has a short time course compared to that of W. This

implies that

J(ω)Fε(−ω) ' J(0)Fε(0) = J , (A.21)

which leads to the expression for FW(t) in Eq. (3.18) and corresponds to the analysis and

the simulations in Chapter 4.

Under these assumptions, the approximation of Eq. (A.21) used to derive Eq. (3.18) is

equivalent to the following approximation in Eq. (A.17)

FFW∗εd(ω) = exp(idω)Fε(−ω)FFW(ω) ' FFW(ω) . (A.22)
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In the time domain, this corresponds to

∫
W(u− r)ε(r− d) dr ' W(u) . (A.23)

The discrepancies are illustrated in Fig. 3.2, where W is represented by a solid line and

W ∗ εd by a dashed line. This approximation may be the source of the small discrepancies

observed when comparing analytical solutions with numerical simulations.

A.2.8 Long recurrent delays

When d is large compared to the time scale of W, such that
[
W ∗ ε ∗ ε

{n}
d

]
(0) = 0 for

n ≥ 1, only the first term of the series for n = 0 remains in Eq. (A.19), which becomes

FW(t) = K ĈW∗ε(t) + [W ∗ ε](0) K diag
(
ν̂(t)

)
. (A.24)

In this case, FW does not depend on the recurrent weights J and has the same expression

as in the case for a feed-forward architecture, i.e., J = 0 (Kempter et al. 1999, Sprekeler

et al. 2007).

A.3 Neuron-to-neuron covariance consistency equations

In this appendix, we derive the self-consistency equations for the covariance coefficient

CW presented in Sec. 3.4.1, which leads to Eq. (3.18). This analysis includes the spike-

triggering effects induced by the autocorrelation of the external inputs and of the neurons

(Kempter et al. 1999), which were neglected in Burkitt et al. (2007). In addition, we

incorporate the fine-timing effects such as delays and the time course of the PSP response.

The instantaneous neuron covariance is given the following definition equivalent to

(A.1)

Cov[Si(t), Sj(t + u)] :=
〈
Si(t′)Sj(t′ + u)

〉 − 〈
Si(t′)

〉〈
Sj(t′ + u)

〉
. (A.25)

As in Appendix A.1 for the input covariances, we consider that the function of u in
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Eq. (A.25) and thus Cij(t, u) in Eq. (3.3) are continuous in u = 0.

A.3.1 Taking the autocorrelation into account

Similar to Appendix A.2, we use the definition of ρi(t),

〈
Si(t) Sj(t + u)

〉
=

〈
ρi(t) Sj(t + u)

〉
, (A.26)

where the rhs incorporates terms due to autocorrelation. However, the derivation of the

consistency equation for the neuron-to-neuron covariance is a bit more complex than for

the input-to-neuron covariance, due to the recurrent connections and the probabilistic

interdependence with the past spiking history of the network that they imply. Here, we

adapt the original derivation in Hawkes (1971, Eqs. (12) and (24)).

We freeze t and consider the Fourier transform of C(t, u) by integrating u, using the

adiabatic assumption that the weights J are quasi-constant. The key-point of this deriva-

tion is that C satisfies

C(t,−u) = CT(t, u) , (A.27)

under the assumption of slow learning for the weights (quasi time-invariant first and

second stochastic moments), as explained in Appendix A.1.2. In order to calculate C(t, u),

we use Eq. (A.26)

〈
Si(t) Sj(t + u)

〉
= ν0

〈
Sj(t + u))

〉
+ ∑

i′
Jii′

〈(
ε ∗ Si′

)
(t− dii′) Sj(t + u)

〉
(A.28)

+ ∑
k

Kik
〈(

ε ∗ Ŝk
)
(t− d̂ik) Sj(t + u)

〉
+ Jij ε(−u− dij) 〈Sj(t + u)〉 .

The last term is a spike-triggering effect due to a recurrent connection, corresponding to

t− r− dij = t + u. It is important to note that this equality is only valid for the half-plane

u < 0.

We then use Eq. (3.15) and proceed to the time-averaging over [t − T, t] in order to
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obtain

Cij(t, u) = ∑
i′

Jii′

∫
ε(r− dii′)Ci′ j(t, u + r) dr (A.29)

+ ∑
k

Kik

∫
ε(r− d̂ik)Fjk(t,−u− r) dr + Jij ε(−u− dij) νj(t) .

The following changes of variable were made: t → t + r + dii′ and r → r− dii′ for terms in

the first sum in i′ on the rhs, and t → t− u + dij and r → r− d̂ik for the second sum in k.

Note the negative sign for u in Fjk. Recall that this is only valid for u < 0, so information

from the past is used to evaluate the impact of the autocorrelation on the covariance

structure and we evaluate the total effect using the symmetry in u of C, cf. Eq. (A.27).

We now assume, as in Appendix A.2, that the delays dij = d and d̂ik = d̂ are sharply

distributed. We would like to take the Fourier transform of Eq. (A.29) in order to ob-

tain an equivalent of the consistency equation for the input-to-neuron covariance in Ap-

pendix A.2. However, Eq. (A.29) is only valid for u < 0. As in Hawkes (1971, Eq. (22)),

we introduce the matrix C̆ defined by the Fourier transform on the rhs of Eq. (A.29) less

the Fourier transform of C, namely FC(ω)

C̆(ω) := −FC(ω) + J(ω)Fε(−ω)FC(ω) + K(−ω)Fε(ω)FFT(−ω)

+J(ω)Fε(−ω) diag
(
ν
)

.

The matrix C̆(ω) thus defined incorporates the effects induced by autocorrelation for the

“future” (u > 0 in Eq. (A.28)). An argument on the regularity of ω 7→ C̆(ω) (i.e., C̆ is

holomorphic) is used in Hawkes (1971) to evaluate it.
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Expressing FC in terms of C̆ from Eq. (A.30)

FC(ω) =
[
1N − J(ω)Fε(−ω)

]−1 (A.30)
[
− C̆(ω) + K(−ω)Fε(ω)FFT(−ω) + J(ω)Fε(−ω) diag

(
ν
)]

=
[
1N − J(ω)Fε(−ω)

]−1
[

J(ω)Fε(−ω) diag
(
ν
)− C̆(ω)

]

+
[
1N − J(ω)Fε(−ω)

]−1 K(ω)Fε(−ω)
[F Ĉ(ω) + diag

(
ν̂
)]

KT(−ω)Fε(ω)
[
1N − J(−ω)Fε(ω)

]−1 T ,

using the expression of FF in (A.16),

FF(ω) =
[
1N − J(ω)Fε(−ω)

]−1 K(ω)Fε(−ω)
[F Ĉ(ω) + diag

(
ν̂
)]

, (A.31)

and also F Ĉ(−ω) = F ĈT(ω), cf. Appendix A.1.2.

Now using Eq. (A.27) with the expression of FC in Eq. (A.30), we obtain

[
1N − J(ω)Fε(−ω)

]−1
[

J(ω)Fε(−ω) diag
(
ν
)− C̆(ω)

]
(A.32)

=
[

J(−ω)Fε(ω) diag
(
ν
)− C̆(−ω)

]T [
1N − J(−ω)Fε(ω)

]−1 T ,

since the last term involving Ĉ and diag(ν̂) in the rhs of Eq. (A.30) satisfies an equality

similar to Eq. (A.27).

Equation (A.32) can be reorganized

J(ω)Fε(−ω) diag
(
ν
)
+

[
1N − J(ω)Fε(−ω)

]
C̆T(−ω) (A.33)

= diag
(
ν
)Fε(ω) JT(−ω) + C̆(ω)

[
1N − J(−ω)Fε(ω)

]T .

The equality Eq. (A.33) allows us to define a function that is regular on the whole plane ω,

each side being regular for the half of the plane related to the sign of the imaginary part

of ω. This requires assumptions on the exponentially-fast decay of ε(u) for u → +∞ and

of elements of C̆. The so-defined holomorphic function vanishes when |ω| → ∞, which

implies that it is actually zero on the whole plane. Consequently, we have the expression

of C̆ in terms of the weight matrices K and J (modified to incorporate the effect of the PSP
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kernel ε and delays), of the covariance between the neurons and the inputs (through F)

and of the autocorrelation of the processes (diag(ν)),

C̆(ω) = −diag
(
ν
)Fε(ω) JT(−ω)

[
1N − J(−ω)Fε(ω)

]−1 T . (A.34)

Finally, we obtain the expression for FC by using Eq. (A.34) in Eq. (A.30), similar to

the expression for FF in Appendix A.2:

FC(ω) =
[
1N − J(ω)Fε(−ω)

]−1 (A.35)
{

K(ω)Fε(−ω)
[F Ĉ(ω) + diag

(
ν̂
)]

KT(−ω)Fε(ω)

+J(ω)Fε(−ω) diag
(
ν
)
+ diag

(
ν
)Fε(ω) JT(−ω)

−J(ω)Fε(−ω) diag
(
ν
)Fε(ω) JT(−ω)

}

[
1N − J(−ω)Fε(ω)

]−1 T

=
[
1N − J(ω)Fε(−ω)

]−1 K(ω)Fε(−ω)
[F Ĉ(ω) + diag

(
ν̂
)]

KT(−ω)Fε(ω)
[
1N − J(−ω)Fε(ω)

]−1 T

+
[
1N − J(ω)Fε(−ω)

]−1 diag
(
ν
) [
1N − J(−ω)Fε(ω)

]−1 T − diag
(
ν
)

.

A.3.2 Remark on the autocorrelation structure due to the recurrent connec-
tions

The autocorrelation effects are the three terms in the first expression ofFC(ω) in Eq. (A.35)

involving ‘diag’. Note that the complete covariance impacts upon STDP, i.e., including

the first-order autocorrelation that corresponds to u = 0, which is added to C(t, u) in

the convolution with W in the learning equation. This actually corresponds to the last

term diag
(
ν
)

in the second expression of FC(ω) in Eq. (A.35). Refer to Appendix A.1.1

for the distinction between covariance and complete covariance (Hawkes 1971) and its

relationship to the encoding of neuronal information.

By naively taking only the spike-triggering effect as an extra contribution in Eq. (A.26),
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one obtains J(ω)Fε(−ω) diag
(
ν
)
. The consideration of the double expansion

〈
Si(t) Sj(t + u)

〉
=

〈
ρi(t) ρj(t + u)

〉
(A.36)

using the expression for ρi(t) in Eq. (2.1) may lead to the expression of Eq. (A.35), since

it preserves the symmetry between the neurons i and j. However, care must be taken to

ensure that the terms involving diag
(
ν
)

are correctly considered.

A.3.3 Short recurrent delays

The function FCW can be obtained by multiplying the lhs of Eq. (A.35) by the term

exp(−idω)FW(−ω), to incorporate the impact of W and the delays dij. The inverse

of 1N − J(ω)Fε(−ω) could be developed in a power series in order to obtain a rigorous

expression of CW(t). This actually leads to a double series because of the two occurrences

of the inverse matrix. For delta-correlated inputs and an STDP window function W with

compact support, only a finite number of terms remain in the double series when ε is

different from the Dirac delta function (cf. Appendix A.2). Unlike the input-to-neuron

covariance, a larger value for the delay d does not lead to a single term and the expres-

sion is more difficult to handle.

To simplify the expression for FC in Eq. (A.35), we use the approximation in (A.21)

assuming the short durations of ε and d. This allows us to deal with the inverses and

express C in the time domain u using the inverse Fourier transform. We obtain the fol-

lowing expression of the term CW(t) + W(d) diag(ν(t)) due to STDP in the rhs of the

learning matrix equation of J (cf. Sec. A.3.2)

CW(t) + W(d) diag
(
ν(t)

)
(A.37)

= [1N − J]−1 K
[
F ĈW∗ζ(t) + [W ∗ ζ](0) diag

(
ν̂
)]

KT [1N − J]−1 T

+W(d) [1N − J]−1 diag
(
ν
)

[1N − J]−1 T .

The function ζ describes the impact of the PSP kernel on the input covariance structure.
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It corresponds to the inverse Fourier transform of (cf. Eq. (A.35)

exp(i d̂ ω)Fε(−ω) exp(−i d̂ ω)Fε(ω) exp(−i d ω) , (A.38)

but reversed in time since the convolution with W corresponds to FW(−ω), i.e.,

ζ(r) :=
∫

ε(r + r′ + d)ε(r′) dr′ '
∫

ε(r + r′)ε(r′) dr′ . (A.39)

The expression in Eq. (A.37) differs from its equivalent in Burkitt et al. (2007) by the

autocorrelation terms involving ‘diag’ and the convolution W ∗ ζ. The recurrent con-

nections induce intrinsic correlation structure within the network, which are at the first

order of the recurrence described by ζ. This may partly explain the small discrepancies

between theoretical predictions and simulation results in Burkitt et al. (2007).





Appendix B

Calculations for chapter 4

B.1 Analysis of the drift of K due to STDP with fixed J

We present in this appendix the main arguments about the general solution of the differ-

ential equation Eq. (4.10) that describes the evolution of input weights K(t). The results

are summarized in Sec. 4.2.2.

B.1.1 Symmetries of the inputs and reduction of dimensionality for K

Here we decompose the space MK, in which K(t) evolves according to Eq. (4.10), depend-

ing on the symmetries of the input pools and input connectivity. We want to reduce the

dimensionality of the matrix K(t) in order to eliminate the subspaces within which the

drift K̇(t) = 0 always, in order to focus on the complementary subspace where the drift is

meaningful and leads to the development of a structure in K(t). We constrain this section

to full input connectivity (ΦK is the identity and MK = RN×M) but the results can also be

applied to the case of partial connectivity, after the transform detailed in Appendix B.1.3.

For each symmetry of the input pools and input connectivity, say inputs #1̂ and #2̂ be-

long to the same input pool and are interchangeable, we can construct a M-column vector

ûD := [1,−1, 0, . . . , 0]T such that AûD = 0 and BûD = 0, which leads to K̇(t)ûD = 0 al-

ways whatever the value of K(t)ûD. This implies that the value of KûD is not constrained

by the drift of the dynamics determined by Eq. (4.10). Furthermore, higher stochastic

orders of the weight dynamics may affect this value without any effect on the drift of K.

The ith element of the column vector KûD corresponds to the difference Ki1−Ki2 between

the weights from these two inputs. A displacement of K along this sole direction in MK,

163
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i.e., modifying Ki1 − Ki2 and preserving all other matrix components in a suitable basis,

consists in a redistribution between the weights Ki1 and Ki2.

In order to study the drift K̇(t), we can thus define equivalence classes K̄ of the ma-

trices K in MK modulo such redistributions of weights that do not impact the drift. In

other words, matrices K belonging to the same class K̄0 have the same drift K̇0. The drift

of K(t) is completely captured by the evolution of K̄(t) in the “reduced” vector space of

the equivalence classes determined by the symmetries. The evolution of K within classes

K̄ is only due to higher orders of the stochastic processes. A similar reduction can be

performed when the neurons and recurrent weights also have symmetries, as described

in Fig. 4.2.

In the reduced space, equivalence classes K̄ lump the weights that correspond to sym-

metries. Taking the example above with #1̂ and #2̂, K̄ is only concerned about the sum

Ki1 + Ki2 for all indices i, not the difference Ki1 − Ki2; we thus reduce MK by M compo-

nents. Using matrix notation, we focus on KûS with ûS := [1, 1, 0, . . . , 0]T and not KûD,

as defined above. Generalizing to the case of many symmetries, the elements of K̄ can

be taken equal to the mean input weights (instead of the sums of weights) averaged over

the considered inputs and neurons, when several neurons are involved.

Such a reduction of dimensionality can also be applied in the case where the param-

eters within an input pool or a neuron group are not strictly identical, but where they

are sharply distributed and the connectivity can be considered homogeneous up to some

“noise” in the parameters. Then the equivalence classes correspond to the respective

mean weights.

B.1.2 General evolution for full input connectivity

Let us consider the evolution of the drift K̇(t) described in Eq. (4.10) when the matrix A

defined in Eq. (4.11) is non-invertible. We also assume full input connectivity: the matrix

K evolves in the space MK = RN×M. We show how the structure of A and B determines

the evolution of the matrix K(t). We first assume that A is diagonalizable and the space
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Figure B.1: Example of evolution of K in two dimensions. The direction of each thick solid
line is determined by û1 and û2 resp.; their intersection corresponds to K(0). The thick dotted
lines correspond to one stable fixed point K(∞)û1 (dashed arrows pointing towards the dotted
line) and one unstable fixed point K(∞)û2 (dashed arrows pointing away from the dotted line).
Learning causes the value of K(t) to reach the line corresponding to Kû1 = K(∞)û1 while pushing
it away from the intersection of the dashed lines (thick arrow) until reaching the upper bound of
K1.

RM can be decomposed into the direct sum of three subspaces of eigenvectors û.

By restricting A to the quotient space obtained by factoring out the null-space of A,

we can use the same formula as Eq. (4.12), since the restriction of A is invertible on the

quotient space (Aû 6= 0 in this subspace; take ûS in Appendix B.1.1 for example). The

restriction of the weight matrix K thus converges or diverges according to the (non-zero)

eigenvalues of the restriction of A. In this case, K will evolve subject to constraints de-

termined by A and B and the network will learn the input firing-rate and correlation

structures. For example, the case of one stable fixed point and one unstable fixed point

for two components of K is illustrated in Fig. B.1.

We now examine the behavior of the weights in the intersection of the two null-spaces

of A and B, i.e., eigenvectors û such that Aû = 0 and Bû = 0, which implies K̇û = 0. Such

vectors û exist, for example, when the network has symmetries, cf. ûD in Appendix B.1.1.

In this subspace, only higher orders of the stochastic dynamics (cf. Sec. 3.6) drive the

evolution of the weights K and the value of Kû can be arbitrary; it depends in particular

on the initial conditions. Changing the value of Kû corresponds to a redistribution of the

strengths of the weights that has no impact on the weight structure.

Finally, for any eigenvector û such that Aû = 0 and Bû 6= 0, we have K̇û = Bû =

const. Thus, Kû will grow linearly in time until the weights hit the bounds. This situation,
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however, corresponds to very specific values of the input and learning parameters. For

example, from Eq. (4.11) the choice ν̂ = −woutê/W̃ with uncorrelated inputs (ĈW = 0)

gives A = 0 and B = winêν̂T 6= 0, when win 6= 0. We do not investigate this case any

further.

In general, A is not diagonalizable and the decomposition above is not as simple; for

example, the image of A can intersect with its null-space. But the set of diagonalizable

matrices is dense in MK and thus the previous analysis can be extended to all matrices in

MK, because the behavior of K qualitatively depends on the eigenvalues of A only.

B.1.3 Partial input connectivity

We now look at the dynamics of K(t) for partial input connectivity, when ΦK nullifies

some terms related to non-existing connections; the space MK is then a strict subspace of

RN×N . Instead of considering K a matrix, we take it as a column vector K̆ indexed by the

duplet (i, k) such that the connection k → i exists and we omit the elements nullified by

ΦK. Eq. (4.10) becomes
˙̆K = LK̆ + B̆ , (B.1)

where B̆ is the column vector constructed from B in the same way as K̆ from K, and L is

a square matrix of dimension nK × nK defined by its elements indexed by {(i, k)(i′, k′)}

L{(i,k)(i′,k′)} := J̃ii′Ak′k , (B.2)

where J̃ := (1N − J)−1. This equation can be analyzed in the same way as in Ap-

pendix B.1.2, with a basis of column vectors ŭ instead of û. The cases where ŭTL and

ŭTB̆ are zero or non-zero are to be considered as above (note the transposition ’T’). It

follows that the evolution of K̆ can be decomposed into evolution within three subspaces

as in Appendix B.1.2.
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When A is invertible, a generalization of Eq. (4.12) can be written as

K(t) = K(∞) + ∑
n≥0

tn

n!
K̃n (B.3)

with

K̃n+1 := ΦK

[
(1N − J)−1 K̃n A

]
, (B.4)

K̃0 := K(0)− K(∞) ,

K(∞) = −ΦK

[
(1N − J) ΦK

(
B
)

A−1
]

.

B.2 Dependence of the fixed point K(∞)ĥ upon input correlation

Here we derive a condition on the input correlation strengths ĉ1 and ĉ2 such that the

sign of the elements of the fixed point K(∞)ĥ in Eq. (4.25) is determined by the balance

between the correlations ĉ1 and ĉ2 and not by that of the firing rates ¯̂ν1 and ¯̂ν2. Recall

that this sign determines the evolution of K, i.e., which input pathway is potentiated by

learning, for homogeneous initial input weights.

We focus on the role of the correlation strengths ĉ1 and ĉ2 in the numerator nK
avK∗avγ +

(1 − nJ
av Jav)γ′ + κ′. Multiplying the numerator by the denominator of K∗av in Eq. (4.6)

gives

[(
1− nJ

av Jav

)
winν̂av + ν0

(
wout + W̃ν̂av

)] [
W̃ν̂av

¯̂ν1 − ¯̂ν2

2
+ [W ∗ ε](0)

ĉ1 ¯̂ν1 − ĉ2 ¯̂ν2

4

]

−
[
(1− nJ

av Jav)win
¯̂ν1 − ¯̂ν2

2
+ W̃ν0

¯̂ν1 − ¯̂ν2

2

] [
ν̂av

(
wout + W̃ν̂av

)
+ ĈW∗ε

av

]
(B.5)

=
¯̂ν1 − ¯̂ν2

2
ĈW∗ε

av

[
−

(
1− nJ

av Jav

)
win − W̃ν̂0

]

+
ĉ1 ¯̂ν1 − ĉ2 ¯̂ν2

4
[W ∗ ε](0)

[(
1− nJ

av Jav

)
winν̂av + ν0

(
wout + W̃ν̂av

)]
,

where we have used the means ν̂av = ( ¯̂ν1 + ¯̂ν2)/2 and ĈW∗ε
av = [W ∗ ε](0)(ĉ1 ¯̂ν1 + ĉ2 ¯̂ν2)/4;

the expressions for γ, γ′ and κ′ are given in Eq. (4.18).

If the difference ĉ1 ¯̂ν1− ĉ2 ¯̂ν2 dominate the rhs of Eq. (B.5), then the correlation strengths
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ĉ1 and ĉ2 determine the sign of the fixed point K(∞)ĥ. This condition can be rewritten

∣∣∣∣
ĉ1 ¯̂ν1 − ĉ2 ¯̂ν2

¯̂ν1 − ¯̂ν2

∣∣∣∣ >
2ĈW∗ε

av
[W ∗ ε](0)

∣∣∣∣∣∣
ν̂av +

woutν0(
1− nJ

av Jav

)
win + W̃ν0

∣∣∣∣∣∣

−1

. (B.6)

B.3 Symmetry breaking within K for different neurons

This appendix details some calculations related to the study of the impact of recurrent

connections on the symmetry breaking performed by STDP on input connections through

the second stochastic moment of their weight dynamics.

B.3.1 Second moment of the stochastic evolution of K

Here we consider Υi,k,j,k(t, t′) defined in Eq. (3.25) for indices i, j and k = l. This coef-

ficient relates to the relative evolution of the weights Kik and Kjk: the sign of Υi,k,j,k(t, t′)

indicates whether Kik and Kjk tend to evolve in the same direction or not (potentiation or

depression). We only consider the simplified case of identical input firing rates ν̂k = ν̂0

and spike-time correlation (ĉ0). From Eq. (3.24) we have

dKv
ik(t)
dt

dKv
jk(t′)
dt

(B.7)

=
[
(win)2 Ŝk(t− d̂) Ŝk(t′ − d̂) + (wout)2Si(t)Sj(t′)

+winwout Ŝk(t− d̂)Sj(t′) + winwoutSi(t) Ŝk(t′ − d̂)

+win
∫

W(u)Si(t) Ŝk(t + u− d̂) Ŝk(t′ − d̂) du

+win
∫

W(u) Ŝk(t− d̂) Ŝk(t′ + u′ − d̂)Sj(t′) du′

+wout
∫

W(u)Si(t) Ŝk(t + u− d̂)Sj(t′) du

+wout
∫

W(u′)Si(t) Ŝk(t′ + u′ − d̂)Sj(t′) du′

+
∫ ∫

W(u)W(u′)Si(t) Ŝk(t + u− d̂) Ŝk(t′ + u′ − d̂)Sj(t′) du du′
]

.
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The leading-order drift obtained when taking the expectation value of the sum of these

nine terms is 〈dKv
ik(t)
dt 〉〈dKv

jk(t′)
dt 〉, while neglecting the autocorrelation effects and some prob-

abilistic interdependence of the spike trains Ŝk, Si and Sj. This leading-order term is al-

most zero when the input mean weights are stable around their equilibrium value for all

neurons, which follows from

〈
dKv

ik(t)
dt

〉
= K̇ik(t) = 0 (B.8)

for all indices k and i. Consequently, higher orders involving autocorrelation effects of

inputs and neurons may have an impact on the evolution of Kik and Kjk when they have

reached the homeostatic equilibrium. We identify different kinds of contributions: the

first-order autocorrelation terms that are independent of the network connectivity, which

will not be discussed here, see Kempter et al. (1999) for details; spike-triggering effects

(second-order in terms of autocorrelation) that depend on the connectivity; and further

orders that will not be considered, i.e., terms that arise from recurrent synaptic paths of

length two or more.

B.3.2 Recurrent connections and spike-triggering effect

We focus on the spike-triggering effects related to recurrent connections when taking the

ensemble average of Eq. (B.7) for two given neurons i 6= j and a given input k. First,

we consider a single recurrent connection j → i with weight Jij > 0, ignoring all other

recurrent connections. Spike-triggering effects due to the autocorrelation of input k arise

in the second, seventh, eighth and ninth terms of the rhs of Eq. (B.7).

In the second term of Eq. (B.7), taking the ensemble average of Si(t)Sj(t′) induces

an additional term Jij ε(t− t′ − d) 〈Sj(t′)〉 due to the autocorrelation of neuron j, which

arises from the relationship

〈
Si(t)Sj(t′)

〉
=

〈
ρi(t)Sj(t′)

〉
, (B.9)
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where ρi(t) involves Jij [ε ∗ Sj](t− d). This gives the following contribution to Υi,k,j,k(t, t′)

induced by Jij

(wout)2 Jij ε(t− t′ − d)
〈
Sj(t′)

〉
. (B.10)

For each spike fired by neuron j at time t′, there is a non-zero contribution given by

Eq. (B.10) for all times t ≥ t′ + d such that ε(t− t′ − d) 6= 0.

The seventh term of Eq. (B.7) gives

wout Jij

∫
W(u) ε(t− t′ − d)

〈
Sj(t′) Ŝk(t + u− d̂)

〉
du (B.11)

' wout Jij ε(t− t′ − d)
〈
Sj(t′)

〉 ∫
W(u)

〈
Ŝk(t + u− d̂)

〉
du ,

where Sj(t′) and Ŝk(t + u− d̂) are taken to be independent, which is equivalent to con-

sidering only the leading-order in terms of the autocorrelation of neuron j. Likewise, the

eighth term of Eq. (B.7) gives

wout Jij

∫
W(u′) ε(t− t′ − d)

〈
Sj(t′) Ŝk(t′ + u′ − d̂

〉
du′ (B.12)

' wout Jij ε(t− t′ − d)
〈
Sj(t′)

〉 ∫
W(u′)

〈
Ŝk(t′ + u′ − d̂)

〉
du′ .

Finally, the ninth term in Eq. (B.7) gives

Jij

∫ ∫
W(u)W(u′) ε(t− t′ − d)

〈
Sj(t′) Ŝk(t + u− d̂) Ŝk(t′ + u′ − d̂)

〉
du du′ (B.13)

' Jij ε(t− t′ − d)
〈
Sj(t′)

〉 ∫ ∫
W(u)W(u′)

〈
Ŝk(t + u− d̂)

〉〈
Ŝk(t′ + u′ − d̂)

〉
du du′ .

Summing the four terms in Eqs. (B.10), (B.11), (B.12) and (B.13), we obtain the total

contribution to Υi,k,j,k(t, t′) induced by the single weight Jij

Jij ε(t− t′ − d)
〈
Sj(t′)

〉 [
wout +

∫
W(u)

〈
Ŝk(t + u− d̂)

〉
du

]2

, (B.14)

which is positive since the instantaneous firing rate 〈Sj(t′)〉, ε and the recurrent weight

Jij are positive.

This additional contribution implies that Υi,k,j,k(t, t′) is more positive in the presence
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of the recurrent connection j → i. This induces a more positively correlated evolution of

Kik and Kjk, which means that they tend to evolve in the same direction: either they both

increase or both increase.

Since weights vary slowly compared to the time scale of the neuronal activation

mechanisms related to ε, d and d̂, we integrated Eq. (B.14) over time to obtain the time-

averaged effect. In the case of homogeneous inputs, this leads to

Jij νav

(
wout + W̃ν̂av

)2
, (B.15)

since the integral of ε is normalized to one. Using the approximation of the equilibrium

value of νav in Eq. (4.9), the expression Eq. (B.15) becomes

−Jij ν̂av win
(

wout + W̃ν̂av

)
> 0 . (B.16)

Recall that (wout + W̃ν̂av) < 0 is required for homeostatic stability.

Note that, because J has no self-connections, the diagonal terms Jii do not contribute

to the variance of the input weights, which is related to Υi,k,i,k(t, t′).

B.3.3 Arbitrary homogeneous connectivity

We now consider the situation when each input and recurrent connection have the prob-

ability nK/NM and nJ/N(N − 1) resp. of existing (recall that nK and nJ are the number

of input and recurrent connections, resp.). We average Eq. (B.15) over the whole network

for all triplets (k, i, j) to obtain the time-averaged contribution to ∑k→i ∑k→j Υi,k,j,k(t, t′)

due to all recurrent connections

MN(N − 1)
(

nK

NM

)2 nJ

N(N − 1)
Jav νav

(
wout + W̃ν̂av

)2

' nKnK
avnJ

av

MN
Jav νav

(
wout + W̃ν̂av

)2
, (B.17)

where nK
av = nK/N and nJ

av = nJ/N are the mean numbers per neuron of incoming

external input connections and incoming recurrent connections, respectively.
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B.4 Symmetry breaking by competition between input weights

We consider the equivalent of Eq. (B.7) for dKv
ik(t)
dt

dKv
il (t′)
dt with two external inputs k 6= l

and recurrently connected neuron i. When k and l come from the same correlated in-

put pool with correlation strength ĉ, an additional contribution for t = t′ to Υi,k,i,l(t, t′)

defined in Eq. (3.25) arises from the autocorrelation of inputs k 6= l, namely

ĉν̂av

(
win + W̃νav

)2
. (B.18)

This contribution multiplied by the number of external input connections nK is to be

compared with the evaluation of the increase of the external input weight variance in

Eq. (4.31), which “generates” the symmetry breaking. In order for the symmetry breaking

to occur between different external input pools and not within the pools, it is necessary

that the correlation strength ĉ be sufficiently large in order that the expression in Eq. (B.18)

is comparable with that in Eq. (4.31), as shown by Gütig et al. (2003).



Appendix C

Calculations for chapter 5

C.1 Invertibility of [1N − J(t)]

In Chapter 3 and in Burkitt et al. (2007) we require that the matrix [1N − J(t)] is invert-

ible for all times t since the contrary would imply a divergence of the firing rates, cf.

Eq. (3.22a). Actually, the possibility of diverging firing rates is related to the properties

of our Poisson neuron model. This can be illustrated with a single neuron with sponta-

neous rate ν0 > 0 connected to itself by a scalar weight J. In this case, the synaptic input

is ν0 + Jν and the resulting firing rate ν is determined by

ν =
ν0

1− J
. (C.1)

Provided 0 ≤ J < 1, the firing rate is finite and positive.

This constraint on the upper bound of J is relaxed if, instead of our version of the

Poisson neuron model, we introduce an upper bound on the firing rate ν. For example,

we may use a sigmoidal-like function σ such that the firing rate is defined by the self-

consistency relation

ν = σ (ν0 + Jν) . (C.2)

This gives a solution of ν for any value of J ≥ 0, as illustrated in Fig. C.1.

This can be extended to the case of several recurrently connected neurons, where J is

a matrix. When σ is the identity function, the spectrum of J must then be within the unit

circle. This condition on the spectrum relates to the expansion of (1N − J)−1 in a power

series, which is well defined for eigenvalues whose absolute values are strictly less than

173
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Figure C.1: Illustration of the impact of the activation function upon the weight constraint. This
figure compares two Poisson neurons with (a) a linear and (b) a sigmoidal activation function
σ. Each neuron is connected to itself with a scalar weight J. The dashed and the dashed-dotted
lines correspond to different values of the weight J (resp. 1 and 0.3) in Eq. (C.2), while the solid
lines correspond to the activation function. The intersection point determines the firing rate self-
consistently constrained by the recurrent loop. For J = 1, the left plot has no solution, whereas
the right plot does have a solution.

one.

A bounded activation function σ allows us to remove the upper bounds on the weights.

However, the framework of this thesis exploits the linearity of the Poisson neuron model

to make the analysis tractable. The qualitative behavior is expected to be the same for

the Poisson neuron model with non-linear activation function in terms of equilibria and

stability, provided the activation function σ is continuous, increasing and bounded. In

this case, Eq. (C.2) always has a unique bounded solution ν for any given value of J.

In simulations, an explicit bound on the weights J was introduced (generally around

0.9 for the sum of incoming recurrent weights). This ensured that [1N − J(t)] remained in-

vertible at all times. Consequently, for certain parameter values, the simulations showed

some discrepancies from the analytical predictions.
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C.2 Equilibrium induced by STDP

This appendix contains a number of derivations whose results are discussed in Sec. 5.2.

C.2.1 Fixed point of the firing rates in the presence of recurrent loops

We define the function q as in Eq. (5.4)

q(x) = − winx
wout + W̃x

. (C.3)

For a synaptic loop of length n, the firing rate νi of any neuron i within the loop satisfies

q{n}(νi) = νi where q{n} denotes the nth iteration of the self-composition of q, i.e., q{n} :=

q ◦ . . . ◦ q.

For each n ≥ 0, the function q{n} has a fractional form ax/(b + cx) (proof by recur-

rence; a, b and c depend on n). Thus it has two fixed points at most, determined by the

quadratic equation ax − x(b + cx) = 0. Since q has two fixed points, q{n} has the same

two fixed points: 0 and µ := −(win + wout)/W̃.

C.2.2 Stability of the manifold of fixed points

We study the spectrum of the endomorphism related to the first-order derivative of the

learning equation around a given fixed point J∗, defined in Eq. (5.8). In the following

analysis, we fix J∗ and denote by L the endomorphism that operates on matrices X ∈ MJ

L(X) = −µ ΦJ

[
win (1N − J∗)−1 X e eT + wout e eT XT (1N − J∗)−1 T

]
. (C.4)

Recall that MJ is the space of N × N real matrices X such that ΦJ(X) = X, i.e., matrices

with non-zero elements only for indices (i, j) corresponding to an existing connection j →
i in the network. The dimension of MJ is equal to the number of recurrent connections

nJ . L has at least nJ − N eigenmatrices related to the eigenvalue 0, since any matrix X

such that Xe = 0 implies L(X) = 0.

If the real parts of all eigenvalues in the spectrum of L are negative (i.e., in left half of
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the complex plane), then the fixed point J∗ is stable. When all the J∗ have negative real-

part eigenvalues, the fixed-point manifold M∗ is attractive. Any J∗ with one eigenvalue

or more in the right half-plane will be unstable.

C.2.3 Decomposition of L

We now study the N remaining eigenmatrices that do not correspond to the subspace

Xe = 0. The columns of the matrix (1N − J∗)−1 are denoted by the N-column vectors

gi for 1 ≤ i ≤ N, namely gi = (1N − J∗)−1 xi with xi the ith N-column vector of the

canonical basis of RN (with all elements equal to zero except that on the ith row, which

is equal to one). We denote by Aij the matrices of the canonical basis of MJ with all

elements equal to zero except the element on the ith row and jth column. For each index

i, all the matrices L(Aij) are identical, since Aije = xi; thus we fix an index ji = j(i) and

one matrix Ăi = Aiji ∈ MJ . For a given i, the identical images L(Aij) can be expressed in

terms of the Ăi′ with 1 ≤ i′ ≤ N and a matrix Z(i) ∈ MJ such that Z(i)e = 0

L(Aij) = L(Ăi) (C.5)

= −µ ΦJ

[
win gi eT + wout e gT

i

]

= −µ ∑
i′

{
winxT

i′ ΦJ
[
gi eT]

e + woutxT
i′ ΦJ

[
e gT

i
]

e
}

Ăi′ + Z(i) .

The matrix Z(i) corresponds to the specific redistribution of the coefficients of L(Aij),

where all the elements on each row i′ are summed to form the coefficient of the element

Ăi′ = Ai′ ji′ (for a matrix X, the corresponding sum is xT
i′ Xe). This redistribution for

each L(Aij) = L(Ăi) only depends on i and not on j. In other words, we reduce the

dimensionality of MJ and work with classes of equivalent matrices ∆J ∈ MJ that induce

the first-order drift ∆̇J ' L(∆J), defined modulo the subspace {X ∈ MJ , Xe = 0}.

Therefore, we can express the endomorphism L in the basis of MJ consisting of the

N matrices Ăi, and a linearly-independent family of nJ − N matrices X ∈ MJ such that

Xe = 0 to complete the basis

L ∼

 Lr 0

LZ 0


 , (C.6)
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where we assimilate L with its matrix in the basis defined above. The (nJ − N) × N

matrix LZ is the expression of the Z(i) of Eq. (C.5) in the subbase of {X ∈ MJ , Xe = 0}.

The N × N matrix Lr is given by

(Lr)ij = −µ

(
winnJ

i (gj)i + wout ∑
i′→i

(gj)i′

)
. (C.7)

The matrix element (Lr)ij corresponds to the expression of Lr(Ăi) in terms of the Ăi′ in

Eq. (C.5); note that i and j in Eq. (C.7) correspond to the indices i′ and i resp. in Eq. (C.5).

Note that (gj)i is the ith element of the vector gj defined above, i.e., the element of (1N −
J∗)−1 for indices (i, j). The sum ∑i′→i is a sum over all i′ such that there exists a connection

from i′ to i; nJ
i is the number of incoming connections of neuron i. This decomposition

allows us to study the non-zero spectrum of L, which coincides with that of Lr according

to Eq. (C.6), excluding the nJ − N eigenvalues equal to zero. Using Eq. (C.7), we obtain

Eq. (5.9), where R defined in Eq. (5.10) is the diagonal matrix with ith element equal to

nJ
i . Note that for the case of full connectivity except for self-connections, this links to the

analysis by Burkitt et al. (2007).

C.2.4 Homogeneous connectivity topology

The matrix R in Eq. (5.10) can be approximated by nJ
av1N in the case of random connec-

tivity with roughly the same number nJ
av = nJ/N of incoming connections per neuron.

It follows that Lin ' −µnJ
av (1N − J∗)−1. The spectrum of J∗ is assumed to be in the unit

circle at all times (cf. Appendix C.1), which means that the spectrum of (1N − J∗)−1 lies in

the right half of the complex plane. Since µ > 0, the spectrum of Lin (crosses in Fig. 5.2(a))

is in the left half-plane, i.e., its eigenvalues have negative real parts. The spectrum of Lout

(circles in Fig. 5.2(b)) contains N − 1 eigenvalues roughly equal to zero due to the pres-

ence of ΦJ [e eT] (it is strictly zero for full connectivity except for self-connections) and

one non-zero eigenvalue related to the eigenvector e given by

−eT Lout e
N

' −nJ
avµ2

ν0
< 0 , (C.8)
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which also lies in left half-plane. We have used the approximation ΦJ [e eT]e ' nJ
ave.

The discussion about the spectrum Lr depending on the values of win and wout is

detailed in Sec. 5.2.3. For wout > 0 and win > 0, we expect the spectrum to remain

in the left half-plane, contained within the convex hull of the spectra of Lin and Lout

expanded by the scale factor win + wout. The conclusions on the stability are the same

for all fixed points J∗, and hence they determine whether the whole fixed-point manifold

M∗ is attractive or not. Denser recurrent connectivity also gives larger positive values of

nJ
av in R ' nJ

av1N and in Eq. (C.8). This implies stronger stability of the fixed points J∗

when the conditions on win and wout are met.

C.3 Second order of the stochastic evolution of the weights

In this appendix, we provide details of calculations useful to evaluate the structural evo-

lution of the recurrent weights due to STDP, which occurs after the fast convergence

towards the homeostatic equilibrium described in Sec. 5.2. The weight dispersion can be

related to the second moment of the stochastic evolution of the weight matrix J, through

the multidimensional matrix Γ(t, t′) whose elements are defined in Eq. (5.12). We show

how the connectivity is involved in the evaluation of this matrix, due to the autocorrela-

tion of the neuron activity.

C.3.1 Analysis of the matrix Γ(t, t′)

The trace of this matrix was used in order to evaluate the linear increase of the weight

variance due to STDP near the beginning of the learning epoch for t = t′ and zero recur-

rent delays dij = 0 (Burkitt et al. 2007). The variance is the expectation value of the trace

of the matrix product involving the derivative of J,

Var(J)(t) =
〈 1

nJ − 1 ∑
j→i

[
Jij(t)− Jav(t)

]2
〉

(C.9)

=
1

nJ − 1

〈
trace

{[
J(t)− Jav(t)ΦJ(eeT)

] [
J(t)− Jav(t)ΦJ(eeT)

]T
}〉

,
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where ∑j→i is the sum over the existing connections. When the network is at the homeo-

static equilibrium, the mean weight over the network (considered “deterministic”) satis-

fies Jav(t) = const. It follows that the growth rate of the weight variance is given by

dVar(J)
dt

(t) =
2

(nJ − 1)t

∫ t

0
trace

〈
dJv(t)

dt

[
dJv(t′)

dt

]T
〉

dt′ , (C.10)

where dJv(t)
dt denotes here the derivative of the weight matrix J for one stochastic trajec-

tory; it is different from the drift J̇(t) (expectation value). Note that before the home-

ostatic equilibrium is reached, the variance will evolve both due to deterministic and

stochastic contributions depending on the initial value of the variance if the weights are

not homogeneous at the beginning of the learning. The stochastic part can then be eval-

uated using Γ(t, t′)− J̇(t) J̇T(t′) instead of Γ(t, t′) alone in Eq. (C.10).

The non-diagonal elements of Γ(t, t′) can also be related to the stochastic dispersion of

the weights J. The sign of Γi,j,i′,j(t, t′) indicates whether the two incoming weights Jij and

Ji′ j of neurons i and i′ evolve in the same direction (potentiation or depression): when

positive, they tend to both either increase together or decrease together. Sets of weights

for which ∑ Γi,j,i′,j(t, t′) (synaptic connections involving indices i 6= i′ and j) are more

positive will exhibit a smaller dispersion. However, these terms do not directly relate to

the generation of the increasing variance described by Eq. (C.9) (Burkitt et al. 2007).

C.3.2 Autocorrelation effects on weight dispersion

We consider now the situation of network evolution at the equilibrium, i.e., the weight

matrix J(t) is on the manifold of fixed pointsM∗ at all times without reaching the bounds

and its drift J̇(t) = 〈dJv(t)
dt 〉 = 0 with ν(t) = µe. We want to evaluate the impact of the

recurrent connectivity on the evolution of Γi,j,i′,j(t, t′).

Impact of Jii′ on Γi,j,i′,j(t, t′)

Here we evaluate the effect of the presence of a single recurrent connection i′ → i at

the first order of the recurrence, by naively deriving the spike-triggering effects related
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to Jii′ in Γi,j,i′,j(t, t′). We use similar calculations to those in Appendix B.3 to evaluate

the common evolution of input weights. Using Eq. (3.6) to express the variation of the

weights Jij and Ji′ j for one stochastic trajectory, we obtain

dJv
ij (t)

dt

dJv
i′ j(t′)
dt

=
[

winSj(t− d) + woutSi(t) +
∫

W(u)Si(t)Sj(t + u− d) du
]

(C.11)
[

winSj(t′ − d) + woutSi′(t′) +
∫

W(u′)Si′(t′)Sj(t′ + u′ − d) du′
]

,

where we assumed that all the recurrent delays are equal to d. Four terms induced by

spike-triggering effects related to Jii′ arise from Eq. (C.11) and contribute to Γi,j,i′,j(t, t′)

when taking the ensemble average on Eq. (C.11).

First, (wout)2Si(t)Si′(t′) involves Jii′ through the dependence of Si(t) on the past synap-

tic input history of Si′(t), according to Eq. (2.1), namely for index j′ = i′,

ρi(t) = ν0 + ∑
j′

Jij′

∫
ε(r)Sj′(t− r− d) dr . (C.12)

This leads to an extra contribution due to the autocorrelation of Si′ for j′ = i′ and t− r−
d = t′,

Jij′ε(t− t′ − d)
〈
Si′(t′)

〉
. (C.13)

Note that this expression is a priori valid only for t′ < t, but it actually holds in general

since ε(t − t′ − d) = 0 for t′ ≥ t. Second, [woutSi(t)][
∫

W(u′)Si′(t′)Sj(t′ + u′ − d) du′]

gives

wout Jii′ε(t− t′ − d)
∫

W(u′)
〈
Si′(t′)Sj(t′ + u′ − d)

〉
du′ (C.14)

' wout Jii′ε(t− t′ − d)
〈
Si′(t′)

〉 ∫
W(u′)

〈
Sj(t′ + u′ − d)

〉
du′ ,

where the spike trains Si′ and Sj are taken to be independent (we only evaluate the lead-

ing order here). Third, the term [
∫

W(u)Si(t)Sj(t + u− d) du][woutSi′(t′)] gives

wout Jii′ε(t− t′ − d)
〈
Si′(t′)

〉 ∫
W(u)

〈
Sj(t + u− d)

〉
du . (C.15)



C.3 Second order of the stochastic evolution of the weights 181

Fourth and last, [
∫

W(u)Si(t)Sj(t + u − d) du][
∫

W(u′)Si′(t′)Sj(t′ + u′ − d) du′], where

the function W is involved twice, gives

Jii′ε(t− t′ − d)
〈
Si′(t′)

〉 ∫ ∫
W(u)W(u′)

〈
Sj(t + u− d)

〉〈
Sj(t′ + u′ − d)

〉
du du′ . (C.16)

Summing the terms in Eqs. (C.13), (C.14), (C.15) and (C.16), we obtain the total con-

tribution to Γi,j,i′,j(t, t′) due to the single weight Jii′ , at the leading order:

Jii′ε(t− t′ − d)
〈
Si′(t′)

〉 [
wout +

∫
W(u)

〈
Sj(t + u− d)

〉
du

]2

. (C.17)

The coefficient of Jii′ in Eq. (C.17) is positive, which tends to cause the weights Jij and Ji′ j

to evolve in the same direction, either potentiation or depression, cf. Appendix C.3.1.

When the network is at the equilibrium, νi(t) = µ for each neuron i and the time-

averaged contribution to the weight coupling Γi,j,i′,j(t, t′) due to Jii′ given in Eq. (C.17)

becomes

Jii′µ
(

wout + W̃µ
)2

= Jii′µ (win)2 , (C.18)

where we have used the normalization of the PSP kernel function (
∫

ε = 1) and the

definition of µ in Eq. (5.6).

Impact of Jji on Γi,j,i′,j(t, t′)

Similar to the calculation above, we now evaluate the effect of Jji on Γi,j,i′,j(t, t′) using

Eq. (C.12) and examine the spike-triggering effect due to the autocorrelation of Si. We

find the equivalent to Eq. (C.18) for the time-averaged contribution at the equilibrium,

Jjiµ
(

wout + W̃µ
) (

win + W̃µ
)

= Jjiµ winwout , (C.19)

where we have used Eq. (5.6). The sign of the coefficient of Jji can either be positive

or negative here. For example, our choice of parameters corresponds to win > 0 and

wout < 0 (cf. Appendix D), so the contribution in Eq. (C.19) is negative in this case.
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Link to the density of recurrent connections

It follows from this analysis that the stronger the recurrent connections are in a neuron

group, the more its weights tend to evolve together. Weakly connected sets of weights

are more likely to exhibit individual weights that evolve in different directions (potenti-

ation vs. depression). For homogeneous recurrent connectivity, where each connection

has the probability nJ/N(N − 1) of existing (nJ is the number incoming recurrent con-

nections), the lumped effect for the whole network corresponds to the sum of the terms

in Eqs. (C.18) and (C.19) for the two possible connections i′ → i and i → j, and for all

triplets (i, i′, j) when the connections j → i and j → i′ exist:

1
t

∫
∑
j→i

∑
j→i′

Γi,j,i′,j(t, t′) dt′ ' N(N − 1)(N − 2)(nJ)3

[N(N − 1)]3
Jav µ win (

win + wout) (C.20)

' −(nJ
av)

3 Jav
win (

win + wout)2

W̃
,

where we have used the definition of µ in Eq. (5.6) and taken the limit of a large network

(N À 1 neurons). Recall that nJ
av = nJ/N is the mean number of incoming recurrent

connections per neuron. Note that the triplets are ordered so that the triplet (i, i′, j) ac-

counts for the connections j → i and j → i′; the connections i → i′ and i′ → j are taken

into account by the triplet (i′, i, j). The overall effect is positive provided win and W̃ have

opposite signs, which is the case where the fixed-point manifold M∗ of the weights J is

attractive (cf. Sec. 5.2.3 and 5.2.2): win > 0 and W̃ < 0.

The contributions due to the recurrent connections at the first order of the recur-

rence are captured by the spike-triggering effects in Eq. (C.20). Similar to the expansion

(1N − J)−1 = ∑n Jn, it is possible to rigorously incorporate higher orders of autocorrela-

tion induced by these spike-triggering effects. Since the network contains only positive

weights, all of these effects are positive and accumulate. The higher order terms de-

cay exponentially and consequently do not substantially change the result obtained in

Eq. (C.20). This can be illustrated for a scalar J such that 1− J < 1 with a “safety” margin

(J is not too close to 1), where J/(1− J) and J are of the same order.
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C.3.3 Weight evolution for a synaptic loop j → i → j

Now we evaluate the effect of STDP on a given synaptic loop of length two between neu-

rons i and j via the evolution of Γi,j,j,i(t, t′) defined in a similar manner to Eq. (5.12) with

different indices. Similar to Eq. (C.11), we use Eq. (3.6) in order to express the relative

evolution of the weights Jij and Jji for one stochastic trajectory, which relates to

dJv
ij (t)

dt

dJv
ji (t′)
dt

=
[

winSj(t− d) + woutSi(t) +
∫

W(u)Si(t)Sj(t + u− d) du
]

(C.21)
[

winSi(t′ − d) + woutSj(t′) +
∫

W(u′)Sj(t′)Si(t′ + u′ − d) du′
]

.

We consider the network to be at the homeostatic equilibrium in order to evaluate the

effects due to the autocorrelation of the neurons, νi = µ = −(win + wout)/W̃ for all i, cf.

Eq. (5.6). In this case, the leading order of the terms that arise is negative, independent of

the learning parameters,

2
[
winwoutµ + (win + wout)W̃µ2

]
= −2µ

[
(win)2 + (wout)2 + winwout] < 0 , (C.22)

since the polynomial in x of the second order x2 + ax + a2 is always positive for any value

of the coefficient a. Note that we did not use the Poisson neuron model here.

C.4 Dependence of the asymptotic weight distribution on initial
conditions

We consider a specific example of evolution of the weights J with full connectivity except

for self-connections, so that in this case ΦJ only nullifies the diagonal terms of its matrix

argument. The sums of the outgoing weights for each neuron are given by the elements

of the row vector eT J, which according to Eq. (3.22b) is

eT J̇ = win eT e νT + wout eT ν eT + W̃ eT ν νT − (
win + wout) νT − W̃ νT diag

(
ν
)
. (C.23)
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We consider initial conditions for which the sums on the incoming weights are identical

for each neuron, but the sums of the outgoing weights are inhomogeneous: Je ∝ e but

eT J is not proportional to eT. This implies homogeneous firing rates, i.e., ν ∝ e, since

J̇e ∝ e at all times using a similar equation to that above. Then eT J̇ reduces to

eT J̇ = (N − 1)νav

(
win + wout + W̃νav

)
eT .

Consequently, the sums of the outgoing weights (i.e., on each column of the matrix J)

will evolve identically; hence, the initial discrepancies will remain after the learning sta-

bilizes, when νav = µ.

This example illustrates that STDP does not reorganize the sums of the outgoing

weights for each neuron, as it does for the sums of incoming weights in order to obtain

homogeneous neuron firing rates. Likewise, for an initial inhomogeneous vector of firing

rates ν, eT J will be modified until ν converges to µe, which may cause inhomogeneities

to develop even if initially eT J is homogeneous. As a result, the asymptotic value of eT J

is not constrained by STDP and this evolution does not relate to learning per se. A similar

conclusion can be drawn for the case of partial connectivity.



Appendix D

Simulation parameters

The results in Chapters 4 and 5 were obtained using discrete-time numerical simulation

and the parameters listed in Table D.1, unless stated otherwise. At each time step, the

probability of firing for each source and neurons is computed depending on the past

spiking history and the new spikes are determined by random draws; then the weights

are modified accordingly.

The additive STDP window function W is given by

W(u) =





cP exp
(

u
τP

)
for u < 0

−cD exp
(
− u

τD

)
for u > 0 .

(D.1)

In Chapter 6, weight-dependent STDP with alpha functions was used:

W+(u) = 2cP
u

τP/2
exp

(
u

τP/2

)
for u < 0 , (D.2)

W−(u) = −2cD exp
(
− u

τD

)
for u > 0 .

The constant 2 is used to obtain a decaying profile similar to that of additive STDP.

The PSP kernel ε is defined by

ε(t) =





exp(t/τB)−exp(t/τA)
τB−τA

for t ≥ 0

0 for t < 0 .
(D.3)

The synaptic weights are not normalized, but defined such that the sum of the incoming

weights for each neuron is of the order of one. This implies that the effective rate of

185



186 Simulation parameters

Table D.1: Table of simulation parameters

time step 10−4 s
simulation duration 105 s

Input Poisson spike trains

firing rates ν̂av = 30 - 35 Hz
correlation strength ĉav = 0 - 0.2

Poisson neurons

spontaneous firing rate ν0 = 5 Hz

Synapses

rise time constant τA = 1 ms
decay time constant τB = 5 ms
mean of recurrent delays d = 0.4± 0.2 ms
mean of input delays d̂ = 7± 1 ms

STDP

learning parameter η = 10−5 - 5× 10−7

pre-synaptic rate-based coeff. win = 4
post-synaptic rate-based coeff. wout = −0.5
potentiation time constant τP = 17 ms
potentiation scaling coefficient cP = 15
depression time constant τD = 34 ms
depression scaling coefficient cD = 10

change per second for the weights is at least two orders of magnitude (10−2) below their

upper bound. These parameters are in the same range as those used in previous studies

Kempter et al. (1999) and Burkitt et al. (2007).
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