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Learning rules for Potts neural networks with biased patterns
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We discuss appropriate modifications of the Hebbian learning rule for Q-state Potts neural networks
with biased patterns, the purpose being to prevent the storage capacity from decreasing drastically with
increasing bias. Several prescriptions are compared. As an illustration their retrieval performance is

studied numerically for Q =3.

PACS number(s): 87.10.+e, 64.60.Cn, 75.10.Hk
I. INTRODUCTION

Most of the properties of attractor neural networks
with multistate Potts neurons are by now well under-
stood. For an overview of the literature we refer to Refs.
[1-3] and the work cited therein. In particular, Potts at-
tractor networks with biased patterns have been studied
in detail in [1]. In order to store and retrieve an extensive
number of such patterns one knows that already for the
Hopfield model the Hebb rule has to be adapted by in-
cluding the bias [4]. It is a generalization of this adapta-
tion that has been used in [1].

A disadvantage of these rules is that the corresponding
storage capacity decreases drastically with increasing
bias. To overcome this problem in the case of the
Hopfield model a ““ferromagnetic term” has been added
to the couplings [4—7]. Interestingly, it turns out that in
this way the storage capacity can be kept at the level of
the unbiased case independent of the bias parameter. To
our knowledge, a study of the analogous question for Q-
state Potts networks has not yet appeared in the litera-
ture. The purpose of this Brief Report is precisely to fill
this gap, especially since the results are different from the
Hopfield case (Q =2).

The rest of this paper is organized as follows. Section
II shortly describes the Potts model with biased patterns.
In Sec. III we discuss some extensions of the Hebbian
learning rule so as take into account the bias properly
and present a signal-to-noise ratio analysis that under-
lines the physical relevance of the extension. Section IV
gives the free energy in the replica-symmetric mean-field
approximation and discusses the retrieval properties of
these learning rules for the Q=3 model.

II. MODEL

We consider the Q-state Potts neural network charac-
terized by the Hamiltonian

N Qo
=1 kl
H= 2 2 2 uai,k']ijul,oj ’ (1)
Lj=1 kiI=1
i#j

*Also at Interdisciplinair Centrum voor Neurale Netwerken,
Katholieke Universiteit Leuven, Leuven, Belgium.
tElectronic address: desire.bolle @ fys.kuleuven.ac.be
Electronic address:
Leo.van.Hemmen @ Physik. TU-Muenchen.de

1063-651X/96/53(1)/1276(4)/$06.00 53

with symmetric couplings J,!;I=J Jl,-k given by the Hebb
learning rule

Xl 1 aN
i NQ? ;El “erktan @

Here u is the Potts spin operator Ug,a; :QBU,-",- —1, with
8 the Kronecker delta and the N neurons taking the
values 1=0,, 0,=0Q, i=1,...,N. For stored patterns &
that are unbiased we randomly sample N numbers
1=&=<Qwith 1<;=<N.

We consider sequential dynamics throughout such that
we have for a flip o; —o0} at site i,

o;l cr;.l _
AH = 2 Q(J,j '—J,'j )ul’a_:hgl_hal . (3)
jFEil ! ! i

Note that hU’_ is not a local field but an energy. Zero-
temperature dynamics implies that always AH <0 and
thus 4 , Zha,- so that a ground state maximizes all 4,

simultaneously. We will use this fact in the signal-to-
noise ratio analysis below.

In this work, however, we are interested in the storage
and retrieval of biased patterns. A bias means that the Q
states of a Potts spin do not have equal probability. We
define [8] the a priori probability

Prob{o,=c}=p(o)=Q Y(1+B,) )
withQ —12B_ = —1and

Qo Q
> plo)=1= ¥ B,=0. (5)
=1 =1
It is readily verified that (for fixed &)
«ug,w ))0=2p(0)u§M’U=B§# . (6)

Here the angular brackets denote an average over the Q
states of a single site denoted symbolically by 0. The un-
biased case has B, =0, whereas the completely degen-
erate case has B, = —1 for all but one o.

III. LEARNING RULES
AND SIGNAL-TO-NOISE RATIO ANALYSIS

What are suitable couplings J,»’J?', if we have bias? Al-

ready for the Hopfield model, Amit, Gutfreund, and
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Sompolinsky [4] have shown that in order to be able to
store an extensive number of biased patterns the Hebb
rule has to be adapted. A generalization of this adapta-
tion to the Potts model has been proposed and discussed
in [1] and [8]. A disadvantage of these rules is that the
corresponding storage capacity decreases drastically with
increasing bias. To overcome this problem in the case of
the Hopfield model Buhman, Divko, and Schutten [7],
e.g., have added a ““ferromagnetic term” to the couplings.
The extension of this idea to the Potts model leads to the
learning rule

e _1 -1 — —
Jij‘Ngz K g(”k,gﬁ‘ Bilu =B Fyug |, ()
with
K=Q0—-1-0 'S B2. (8)
k

The parameter y has been introduced to allow for an op-
timization, which is, in fact, performed in Sec. IV.
A second storage prescription is obtained starting from
a generalization of the Q=2 pseudoinverse learning rule
of [9,10] by extending an argument of [11] (Sec. 1.5.5.) to
the case Q >2 and set
1 -
JH= NG Eu"' g C 7 R 9)

The matrix C is the correlation matrix with elements
N
e
Cun=N"" Z g
i=
={(u e »

=5,, [Q—I—Q“§B£]+Q“§B§

1277

Here we have dropped all terms of order N ~!”2. The ma-
trix C, defined in Eq. (10), has a border size aN with
N — o« and its inverse is readily found

1 K

—_+__.—
¥ aN  (aN)’L
where we have dropped terms of order (aN)™3® and

higher. Combining (11) with (9), we obtain, after some
algebra,

Th=—_

i NQ 2

(€™ ,,=Kk"!

6 ) (11)

[K—lz(ukg,;Bk)(ulg,,—B,)JrL*lBkB,] .
w7 =i

(12)
For Q=2 we recover the Ising coupling matrix with fer-
romagnetic term of [5,6,11]. In passing we note that, to
obtain (12), we have made one further approximation: we
have replaced ¥, "k,gf!/aN by By and ¥, ul,g;’/aN by B,.

Some consequences of this replacement have been con-
sidered in [12]. Through this approximation the sum in
(12) looks appealingly similar to the one in the Ising case.

For Q=2 the rule (7) with ¥ =1 is identical to the rule
(12). This can be seen by using the standard substitution
from Potts to Ising variables u; ;— k! with k and / Ising
spins and B; —ka with a the Ising bias amplitude [4].
For Q >2 both rules give rise to the same signal-to-noise
ratio (see below) and, numerically within an accuracy of
107%, to the same zero-temperature free energy. We will
therefore stick to (7).

The terms (”k,ggf_Bk ) and (“1,57

zero and directly correspond to their Ising analogues.
What, then, is yu, ; good for? To answer this question,
we compute the signal for a given input pattern £*. We

—By) in (7) have mean

=5, K +L . (10I) have by (3)
ol
ho, = 2 Oy u
Jj D, g
1 _
=3 [K Nu, =B, Nu, ,~B)+yu, ,+ K Yu_ ,—B, Nu, ,—B))|u
NQ ; & o8 e : Mzeé:m ik s R RO
1 -
=— K Yu_ ,,—B,NQ—1—B,)+yu_,+ K Yu_ ,—B, Nu,, »,—B,,)
Nj(zséw{ of iQ & 4 k) Méﬂ) vkl e &
=K—1(u,,i,§¢,¢_Ba,-)«(Q_I_Bgﬂ)»g#+7’«”ai,§#»§M+(n°ise)
=u0i’gy+(y—l)B,,i+(noise) ’ (13)

where the noise stems from the sum over A (¥pu). If y =1, we obtain the pure signal term u_ gf‘:QSa. o 1, which

equals Q —1 for o; =& and — 1 otherwise. In a completely similar way it can be calculated that this is also true for the
rule (12). A ground-state dynamics would maximize U, e and thus we would end up in o; =£¥, as should be the case.
i3
If, however, ¥ were to vanish, then we would be left with U, o — B, , which has mean zero. In the deterministic limit
it would even vanish identically. This kind of term is much more sensitive to the noise produced by the other patterns,
i.e.,, the sum over A (¥) in (13), than the pure signal term u e SO the term yu, ; in (13) restores the signal term, but
3

does not influence the noise. Computing the standard deviation of the noise is an easy task. One finds V'a multiplied
with a coefficient depending on the B, and the B,. So here it depends on the probability distribution, in contrast to the

Ising case [11].

IV. RETRIEVAL PROPERTIES

Using standard techniques [11,13,14], one finds for the learning rule (7) the following expression for the free energy
density of u condensed patterns in the replica-symmetric mean-field approximation:
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__ B 2By 2B B,
— =—a - - grp+
Bf B=—%¢ %m“ 20 Mk Qg I T ol
a 1. BK 1
——{In[1—-BK "Hg—q)]— g +<< Dzlntr exp[ —BH »

> el aa V) oexp[—BH(2)])) , (14)
[

where Dz is the Gaussian measure and (By,B,,...,Bp)=B can be ordered and a bias ampli-

H@)=-K 'S (u,,~Bm,~ L Su,m
u ' Q%

_ B, _a—BK! By
g Lo —a—BK qr]%P(k)(uk,o B,)

—K~Waqr 3 Vp(k)u;,—B,)z , (15)
k
with (N — «)
a
r = ) (16)
[1-BK " Ng—q)]?
-1
1-BK~Yg—q) [1—BK™(7—q)]

We remark that in the absence of bias the third term of
the exponent in (15) becomes independent of o and drops
out.

As usual, one should choose that solution of the fixed-
point equations obeyed by the order parameters

m, = <“§u,0_Ba M s

mk:« (uk,a)B» ’

p =<<2p(k)(ukyo—Ba)§»SZj ,
k

q=<<§k;p(k)<(uk,,,—3(,)2>ﬁ>> :

(18)

which maximizes the right-hand side of (14). Here ( 4 )g
is the expectation of 4 with respect to exp[ —BH (z)].
The two outer angular brackets in (18) denote an average
over finitely many p and the Gaussian Dz. The inequali-
ty ¢ <@ is nothing but Cauchy-Schwarz. There is no
need to write out these algebraically complicated equa-
tions in further detail.

We remark that for nonzero bias but y =0 Eqgs. (18)
reduce to the ones obtained in [1]. For zero bias and
¥ =0 they reduce to the ones written down in [15]. If,
furthermore, Q=2 we recover the Ising case [13].

We illustrate the retrieval properties of these Potts net-
works by numerically solving the fixed-point equations
(18) for Q=3. In particular, we have calculated the
storage capacity a and the retrieval quality m for the
learning rules (7) with y =1 and (12). Since qualitatively
the same results, differing by at most 2%, have been ob-
tained for both learning rules, we only show the data cor-
responding to (7). Finally, we have also optimized our re-
sults with respect to .

Due to the fact that the model is invariant under a per-
mutation of the neurons, the bias components

tude a can be defined through [8]

B=a(by,by,...,by), by Zby -+ Zby, a€[0,1].

Recalling (4) and (5) and taking into account that for
Q=3 the symmetry group S; is an invariance group, we
find that only the region satisfying B,—B;=>0,
2B,+B; <0, B; = —1 needs to be considered.

We have selected three representative classes of bias
parameters, viz., B;=a(2,—1,—1), B,=a(1,0,—1), and
B;=a(0.5,0.5,—1). The form of B, indicates that one
state is privileged and the other two have equal probabili-
ty to appear. In fact, for a=1 the probability distribu-
tion for the patterns is such that the lowest state has
probability one. This means that there is no freedom left
for the neurons. In the case of B,, all three states have
different probability. The distribution for the patterns is
such that two states have nonzero probability for a=1.
Hence the neurons can still occupy different states. Fi-
nally, in the case of B; two states have the same probabil-
ity and the third one does not occur, if a=1. We note
that B, and B; have been chosen at the boundary of the
bias region.

In Fig. 1 we have presented an (a,a) diagram at zero
temperature for the above bias parameters and different
values of . For ¥y =0, i.e., the absence of the ferromag-
netic term in the coupling matrix, we recover the results
of [1]. For y=1, i.e., restoring the pure signal term in
(13), the capacity increases but it does not reach the level
of the unbiased case, in contrast to the Ising model. This
is in agreement with the results of the signal-to-noise ra-
tio analysis. Indeed, for Q>2 the variance of the noise
experienced by the input pattern £ and produced by the
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a

FIG. 1. For the Q=3 Potts model at T=0 the storage capa-
city a has been plotted against the bias amplitude a for the bias
parameters B;, B,, and B; with ¥ =0 (dashed lines), y =1 (dot-
ted line), and the optimal y (full lines).
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FIG. 2. Optimal y as a function of the bias amplitude a for
the different bias parameters used in Fig. 1.

other patterns depends on the probability distribution of
the patterns so that we intuitively expect that also the
storage capacity a depends on this distribution.

Optimizing ¥ we can further increase the capacity to
the values indicated in Fig. 1. We note that for the B,
and the B; model there is only a small improvement of
the order of 10™2, not visible on the scale of the figure.
We further observe that for larger values of the bias am-
plitude (@ =0.55) the maximal capacity for the B; model
exceeds that of the B, and the B; model. Finally, in the
case of the B; model at a=1 the addition of a ferromag-
netic term to the learning rule does not improve the
storage capacity at all. The functional dependence of the
optimal y upon the bias amplitude a is shown in Fig. 2.

Finally, we have compared the retrieval qualities of the
learning rule (7) with y =0, y =1, and optimal y. In Fig.
3 the corresponding (m,a) diagrams at zero temperature
have been displayed for the classes of bias parameters and
different values of the bias amplitudes a. It is found that
the learning rule with optimal y always leads to the
highest retrieval quality. The results for y =1 are not
shown explicitly since they are situated between the two
other curves.

V. CONCLUSION

In conclusion, in order to store and retrieve biased pat-
terns in the Potts model as efficiently as possible we have
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FIG. 3. For the Q=3 Potts model at T=0 the retrieval quali-
ty m has been plotted against the storage capacity a for the bias
parameters B, with bias amplitudes a=0, 0.4, and 0.7 and with
v =0 (full lines) and the optimal y (dotted lines). The results for
the bias parameters B, and B, are qualitatively the same.

extended the Hebbian learning rule (2) and introduced
two new learning rules: one invokes a ferromagnetic
term (7) and the other is based on a pseudoinverse argu-
ment (12). As in the Ising case (Q=2), the additional
terms in both (7) and (12) are local and do not depend on
the stored patterns, nor does yu,; in (7) depend on the
probability distribution, though the noise in (13) does for
all Q =3, in contrast to the Ising case. To see why this is
so, we note that for Q=2 the standard deviation of the
noise simply equals V'a. Both learning rules lead to qual-
itatively the same results for the retrieval properties,
differing by at most 2%. One can optimize the storage
capacity a with respect to y, as exemplified by Fig. 2.
The corresponding retrieval quality m as a function of a
is shown in Fig. 3.
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