

 $x_{in}(t)$

Koeffizienten, $a_i(t) = a_i$

Ansatz:

$$x(t) = p(t) e^{\lambda t}$$

 $p(t) = \sum_{i=0}^{n-1} b_i t^i; \lambda \in \mathbb{C}$

Allgemeine Lösung: $\Re\left(\sum_{i=1}^n C_i \, p_i(t) \, e^{\lambda_i t}\right)$

$$x_h(t) = \sum_{i=1}^n C_i x_i(t)$$

Lösung der
inhomogenen DGL durch
Variation der Konstanten:

Allgemeine Lösung ist $x(t) = x_h(t) + x_{in}(t)$

Trennung der Variablen möglich und 1. Ordnung: $\dot{x}(t) = f(x(t)) g(t)$

Allgemeine Lösung aus $\int \frac{1}{f(x)} dx = \int g(t) dt$